MATEMATIK GU, Chalmers A.Heintz

Datum: 2011-05-25

Tid: 8:30

Hjälpmedel: Beta

Tel.:

Telefonvakt:

MARTIN BERGLUND

0703-088304

Tenta i matematisk modellering, MMG510, MVE160

1. Linear systems.

Consider the following ODE:

$$\frac{d\overrightarrow{r}(t)}{dt} = A\overrightarrow{r}(t), \ \overrightarrow{r}(t) = \left[\begin{array}{c} r_1(t) \\ r_2(t) \end{array} \right] \ \text{with} \ A = \left[\begin{array}{c} 1 & -4 \\ -2 & 1 \end{array} \right],$$

Find the evolution operator for this system.

(2p)

Find which type has the stationary point at the origin and give a possibly exact sketch of the phase portrait. (2p)

2. Ljapunovs functions and stability of fixed points.

Consider the system of equations: $\begin{cases} x' = -x + 2xy^2 \\ y' = -(1 - x^2)y^3 \end{cases}$

$$\begin{cases} x' = -x + 2xy^2 \\ y' = -(1 - x^2)y^3 \end{cases}$$

Investigate stability of the fixed point in the origin

3. Periodic solutions to ODE.

Show that the system of equations

$$\begin{cases} x' = \sin(y) + x(y^2 + 1) \\ y' = (x - 1)^2 + x^2y \end{cases}$$

does not have periodic solutions.

(4p)

4. Hopf bifurcation.

Explain the notion Hopf bifurcation

Show that the system
$$\begin{cases} x' = \mu x + y - x^3 \cos(x) \\ y' = -x + \mu^2 y \end{cases}$$

has a Hopf bifurcation at $\mu = 0$

(4p)

5. Chemical reactions by Gillespies method

Consider the following reactions: $X+Z \overset{c_1}{\leftarrow} W$, $W+Z \overset{c_3}{\leftarrow} P$ where $c_i dt$ is the

probability that during time dt the reaction with index i will take place i = 1, 2, 3, 4.

- a) Write down differential equations for the number of particles for these reactions. (2p)
- b) Give formulas for the algorithm that models these reactions stochastically by Gillespies method. (2p)

Max. 20 points;

For GU: VG: 15 points; G: 10 points. For Chalmers: 5: 17 points; 4: 14 points; 3: 10 points; Total points for the course will be an average of points for the project (60%) and for this exam together with bonus points for home assignments (40%).