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1. Linear systems.
Consider the following ODE:

d7(t) oy = | Ti(E) . 1 —4
_d.tu__AT(t), T (t) = [Tz(t)} with 4 = Z9 1 b
Find the evolution operator for this system. (2p)

Find which type has the stationary point at the origin and give a possibly exact sketch of the
phase portrait. (2p)

2. Lyapunovs functions and stability of stationary points.

. e 2
Consider the system of equations: { :c’ B :1:2+32:cy
y = —aty
Show that V(z,y) = z? + y? is a weak Lyapunov function at the origin, (2p)

Find if the origin is an asymptotically stable stationary point. (2p)
3. Periodical solutions to ODE,

Use Poincare - Bendixsons theorem to show that the system of equations.

2’ =1-xy
¥==2
does not have periodical solutions, (4p)

4. Hopf bifurcation,

o' = pz + y — 2 cos(z)

y'=—z+py

has a Hopf bifurcation for 4 = 0. Explain what means Hopf bifurcation. (4p)

Show that the system {

5. Chemical reactions by Gillespies method
Ci C3

Consider the following reactions: X + Z : W, W+ Z : P where ¢;dt is the

Cco Cy
probability that during time dt the reaction with index i will take place 1 = 1,2, 3,4.

a) Write down differential equations for the number of particles for these reactions. (2p)

b) Give formulas for the algorithm that shell model these reactions stochastically by Gillespies
method. (2p)
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