MATEMATIK GU, Chalmers A.Heintz

Datum: 2010-08-18 Hjälpmedel: Inga

Telefonvakt: Jonatan Vasilis

Tid: 8:30 ~ 13.30
Tel.: 1)703-088304

Tenta i matematisk modellering, MMG510, MVE160

1. Linear systems.

Consider the following ODE:

$$\frac{d\overrightarrow{r}(t)}{dt} = A\overrightarrow{r}(t), \ \overrightarrow{r}(t) = \left[\begin{array}{c} r_1(t) \\ r_2(t) \end{array} \right] \text{ with } A = \left[\begin{array}{c} 1 & -4 \\ -2 & 1 \end{array} \right],$$

Find the evolution operator for this system.

(2p)

Find which type has the stationary point at the origin and give a possibly exact sketch of the phase portrait. (2p)

2. Lyapunovs functions and stability of stationary points.

Consider the system of equations: $\left\{ \begin{array}{l} x' = -x + 2xy^2 \\ y' = -x^2y^3 \end{array} \right.$

Show that $V(x,y) = x^2 + y^2$ is a weak Lyapunov function at the origin. (2p)

Find if the origin is an asymptotically stable stationary point. (2p)

3. Periodical solutions to ODE.

Use Poincare - Bendixsons theorem to show that the system of equations.

$$\begin{cases} x' = 1 - xy \\ y' = x \end{cases}$$

does not have periodical solutions.

(4p)

4. Hopf bifurcation.

Show that the system
$$\left\{ \begin{array}{l} x' = \mu x + y - x^3 \cos(x) \\ y' = -x + \mu y \end{array} \right.$$

has a Hopf bifurcation for $\mu = 0$. Explain what means Hopf bifurcation. (4p)

5. Chemical reactions by Gillespies method

Consider the following reactions: $X+Z \overset{c_1}{\underset{\leftarrow}{\longleftarrow}} W$, $W+Z \overset{c_3}{\underset{\leftarrow}{\longleftarrow}} P$ where $c_i dt$ is the c_2

probability that during time dt the reaction with index i will take place i = 1, 2, 3, 4.

- a) Write down differential equations for the number of particles for these reactions. (2p)
- b) Give formulas for the algorithm that shell model these reactions stochastically by Gillespies method. (2p)

Max. 20 points;

For GU: VG: 15 points; G: 10 points. For Chalmers: 5: 17 points; 4: 14 points; 3: 10 points; Total points for the course will be an average of points for the project (60%) and for this exam (40%).