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Ordinary di¤erential equations and mathematical modelling
MVE162/MMG511.

1 Prerequisite knowledge for the course.

This relatively di¢ cult course uses the whole scope of linear algebra and

analysis that Chalmers students from Technical mathematics group and

GU students from the group in mathematics learned during the �rst year.

Students with di¤erent backgrounds might lack some of this material.

Before starting learning this course it is good to check notions and

theorems that are supposed to be known during teaching this course.

If you miss some of them, check Appendix 1 and Appendix 2 in the course

book by Logemann and Ryan, where all necessary mathematical

background is discussed in detail.

Some internatinal students might also need to learn Matlab or use other

programming tools to make computations in obligatory modeling projects.

Notions from linear algebra and analysis:
Vector space, normed vector space, norm of a matrix. Eigenvectors and

eigenvalues of a matrix. Matrix diagonalization.

Cauchy sequence. Complete vector space (Banach space). Open, closed and

compact sets in Rn. Continuous functions and their properties on compact
sets. Uniform convergence in the space of continuous functions.

Results from analysis:
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Space C(I) of continuous functions on a compact I is a complete vector

space (Banach space). Example A.14, p. 272.

Bolzano-Weierstrass theorem. Theorem A.16, p. 273.

Weierstrass criterion for uniform convergence of functional series. Corollary

A.23 , p. 277.
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2 Introduction. Initial value problem, exis-

tence and uniqueness of solutions.

The main subject of the course is systems of di¤erential equations in the

form

x0(t) = f (t; x(t)) (1)

classi�cation and qualitative properties of their solutions. Here

f : J �G! Rn is a vector valued function regular enough with respect to
time variable t and space variable x. J is an interval; G is an open subset of

Rn. Equations where the function f is independent of t are called
autonomous:

x0(t) = f(x(t))

Finding a function x(t) : L! Rn satisfying the equation (1) on the interval
L � J together with the initial condition

x(�) = � (2)

for � 2 L is called the initial value problem (I.V.P.).
The curves x(t) in G have the property that they are tangent to the vector

�eld f (t; x(t)) 2 Rn at each time t and point x(t) 2 G.
One can reformulate the I.V.P. (1),(2) in the form of the integral equation

x(t) = � +

Z t

�

f (�; x(�)) d� (3)

Continuous solutions to the integral equation (3) can be interpreted as

generalized solutions to (1),(2) in the case when f (t; x) is only piecewise

continuous with respect to t and therefore the integral in (3) does not have
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derivative in some isolated points. If f is continuous, then these two

formulations are equivalent by the Newton-Leibnitz theorem.

More general notions of solutions can be introduced in the case when

f (t; x(t)) is integrable in the sense of Lebesque, but we do not consider

such generalised solutions in this course.

3 Classi�cation of ordinary di¤erential equa-

tions and the plan of the course.

1. Equations where the right hand side is independent of time:

x0(t) = f(x(t))

f = f(x); x 2 G;

are called autonomous as we mentioned before. General di¤erential
equations are with f = f(t; x) are called non-autonomous.

Autonomous equations have a nice graphical interpretation. One can

consider and also draw a picture of the vector �eld f : G! Rn. For every
point � 2 G this vector �eld gives according to the di¤erential equation, the

velocity of a possible solution curve x(t) going through the point �.

All solutions to an autonomous di¤erential equation have the property that

corresponding curves are tangent curves to the vector �eld f : G! Rn.
One often calls autonomous di¤erential equations continuous dynamical

systems.
2. General (non-autonomous) linear systems of di¤erential equations in

the form

x0(t) = A(t)x(t); x(t) 2 Rn; t 2 J

with a matrix A(t), A(t) : J ! Rn�n that is a continuous matrix valued
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function of time t on the interval J . A particular class of non-autonomous

linear systems is the class of periodic linear systems with periodic
matrix A(t+ p) = A(t) with some period p:

3. We will also consider linear non-homogeneous systems of di¤erential
equations in the form

x0(t) = A(t)x(t) + g(t); x(t); g(t) 2 Rn; t 2 J

with a given term g(t) in the right hand side, both autonomous and

non-autonomous.

4. Linear autonomous systems of di¤erential equations in the form

x0(t) = Ax(t); x(t) 2 Rn; t 2 R

with a constant matrix A:

The plan for the course is: to consider after some introductory examples

and then all these types of equations in the reverse order, from simpler to

more complicated: linear autonomous, linear non-autonomous, linear

periodic, nonlinear autonomous. At the very end of the course we will

consider the existence of solutions in the most general non-linear

non-autonomous case. Many ideas will be introduced and exploated �rst on

the example of linear autonomous ODEs. Later these ideas will be

developed further and applied in more complicated situations. This way of

studying pursues two goals: to have more material for exercises and to

introduce many general mathematical ideas in a more "user friendly" way.

The course is divided into two large qualitatively di¤erent parts:

A) one - devoted to linear equations and using and developing some

advanced linear algebra, and

B) another one - devoted to non-linear equations and using reasoning based

on relatively advanced analysis.
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4 Main types of problems posed for systems

of ODEs

I) Existence and uniquness of solutions to I.V.P. Finding maximal
interval of existence of solutions to I.V.P.

We give here two simple examples illustrating that solutions to a di¤erential

equation might exist not on any time interval (solutions can blow up - tend

to in�nity in �nite time), and that solutions do not need to be unique

(there can be two di¤erent solution curves going through one point (t; x))

Example of bounded maximal interval. (Ex. 1.2, p.14, L.R.) I.V.P.

x0(t) = t � x3; x(0) = 1

. By separation of variables we arrive to a solution that exists only on a

�nite time interval (�1; 1) called later maximal interval for these initial
conditions.

dx

x3
= t dt;

Z
dx

x3
=

Z
t dt; � 1

2x2
=
t2

2
+
C

2
; � 1

x2
= t2 + C; C = �1;

x =
1p
1� t2

10.50-0.5-1

10

7.5

5

2.5

0

x

y

x

y

Point out that for another initial conditions the maximal interval can be
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di¤erent.

Example of non-uniqueness. (Ex.1.1, p.13, L.R.) I.V.P.

x0(t) = t � x1=3; t 2 R; x(0) = 0:

Point out that the right hand side has in�nite slope in x variable d
dx
(x1=3).

We will say later, after giving corresponding de�nition, that this function is

not Lipschitz with respect to x.
Constant solution x(t) = 0 exists. On the other hand for all c > 0 functions

x(t) =
(t2�c2)

3=2

(3)3=2
, t � c are also solutions to the equation. See the calculation

below. By extending these solutions by zero to the left from t = c we get a

family of di¤erent solutions satisfying the same initial conditions x(0) = 0:

54.543.532.521.5

20

15

10

5

0

x

y

x

y

Calculation of solutions uses separation of variables.

dx

dt
= tx1=3;

dx

x1=3
= tdtZ

dx

x1=3
=

Z
tdt;

3

2
x
2
3 =

1

2

�
t2 � c2

�
x2=3 =

t2 � c2
3

; x =
(t2 � c2)3=2

(3)3=2
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Here c is arbitrary constant c � t. Check the solution:

d

dt
x(t) =

d

dt

 
(t2 � c2)3=2

(3)3=2

!
=
1

3
t
p
3t2 � 3c2 = tx1=3

II) One can for particular classes of equations pose the problem of �nding a

reasonable analytical description of all solutions to the above equation.

Such an expression is called general solution.
III) Find particular types of solutions: equilibrium points � 2 Rn of
autonomous systems (points where f(�) = 0), periodic solutions, such
that after some period T > 0 the solution comes back to the same point:

x(t) = x(t+ T ) for any starting time t.

IV) Find how solutions x(t) behave in the vicinity of an equilibrium point �

with t!1 : it is interesting if they stay close to � starting arbitrarily close

to it, or solutions can go go out of � with time t!1 for some initial

points � situated arbitrarily close to � (we will call these properties for

stability or instability of the equilibrium point �).

V) Find a geometric description of the set of all trajectories of solutions to

an equation. By trajectory we mean here the curve x(t), that the solution

goes along, during the time t 2 I when it exists. In the case of autonomous
systems of dimension 2 we will calle call such a picture phase portrait.

VI) Describe geometric properties of so called limit sets, or "attractors"
of a solution: such a set that the solution x(t) "approaches" in�nitely close

when t!1.
Examples

Pendulum is described by the Newton equation: Force = m � Acceleration;
Acceleration = l � �00(t),V elocity = l � �0(t):
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ml�00(t) = �l�0(t)�mg sin(�(t)) = 0

Both for theoretical analysis and for numerical solution one always rewrites

the second order equation as a system of two equations for x1(t) = �(t) and

x2(t) = �
0(t) :

x01(t) = x2(t)

x02(t) = � 
m
x2(t)�

g

l
sin(x1(t))

We can rewrite it in general vector form as

x0(t) = f(x(t))

with

f(x) =

"
x2

� 
m
x2 � g

l
sin(x1)

#
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This non-linear system of equations cannot be solved analytically. We show

below results of numerical solutions of this system in a form of a phase
portrait of the system.

Phase portrait.
The picture of trajectories - curves (x1(t); x2(t)) corresponding di¤erent

solutions to the equation for the pendulum in the phase plane of variables
x1 and x2 looks as the following. Such pictures are called phase portrait
of the system. We will draw many of them in this course, in particular in

modelling projects.

Points � = 0 + 2�k, �0 = 0 and � = � + 2�k, �0 = 0 on the �rst picture are

equilibrium points. One can see closed orbits around equilibrium points
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� = 2�k, �0 = 0, corresponding to periodic solutions. Points � = � + 2�k,

�0 = 0 correspond to the upper position of the pendulum that is a

non-stable equilibrium point. Higher up and down when the angular

velocity is large enough we observe non-bounded solutions corresponding to

rotation of the pendulum around the pivot. Orbits for the pendulum

without friction can be described by a non-linear equation.

In the case with friction on the second picture one observes the same

equilibrium points. But the phase portrait is completely di¤erent. Almost

all trajectories tend to one of equilibrium points � = 2�k, �0 = 0 when time

goes to in�nity. No closed orbits and no unbounded solutions are observed

in this case.

Van der Pol equation . (Example 1.1.1. p. 2 in Logemann/Ryan)

x0(t) = f(x(t))

f(x) =

"
x2

�x1 + x2(1� (x2)
2)

#

We see that the equilibrium point in the origin is unstable but all
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trajectories tend to a limit set or "attractor" that is a closed curve (depicted

in red) that seems to be an orbit corresponding to a periodic solution.

For two dimensional systems only stationary points and closed orbits and

some chains of stationary points connected with orbits are possible as

"attractors". In dimension 3 much more complicated attractors are possible

with a classical example being the Lorenz equation.

Lorenz model for turbulence. Strange attractor.

x0 = ��(x� y)
y0 = rx� y � xz
z0 = xy � bz

A trajectory for � = 10; r = 28, b = 8=7:
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5 Linear autonomous systems of ODE

We will �rst consider general concepts in the course in the particular case

for linear system of ODEs with constant matrix (linear autonomous

systems).

x0(t) = Ax(t); x(t) 2 Rn; t 2 R (4)

where A is a constant n� n matrix A 2 Rn�n.
In particular we will �nd solutions to initial value problem (I.V.P. ) with

initial condition

x(�) = �; (5)

We point out that all general results about linear systems of ODE are also

valid in the case of the complex vector space x 2 Cn , � 2 Cn and complex
matrix A 2 Cn�n: Some of the results are formulated in a more elegant
form in the complex case or might be valid only in complex form.

Several general questions that we formulated above will be addressed for

this type of systems.

The �nal goal in this particular case will be to give a detailed analytical

description of all solutions and to connect their qualitative properties with

speci�c properties of the matrix A, its eigenvalues and eigenvectors together

with more subtle spectral properties such as subspaces of generalised

eigenvectors.

13



5.1 The space of solutions for general non-autonomous

linear systems

We make �rst two simple observations that are valid even for general

non-autonomous linear systems with a matrix A(t) that is not constant but

is a continuous fu

x0(t) = A(t)x(t); x(t) 2 Rn; t 2 J (6)

nction of time on the interval J .

Lemma. The sets of solutions Shom to (4), and to (6) are linear vector
spaces.

Proof. Shom includes zero constant vector and is therefore not empty. By
the linearity of the time derivative x0(t) and of the matrix multiplication

A(t)x(t); for a pair of solutions x(t) and y(t) their sum x(t) + y(t) and the

product Cx(t) with a constant C are also solutions to the same equation:

(x(t) + y(t))0 = A(t)(x(t) + y(t))

(Cx(t))0 = A(t)(Cx(t))

�

5.2 Uniqueness of solutions to autonomous linear sys-

tems.

One shows the uniqueness of solutions to (4) by using a simple version of

the Grönwall inequality that in general case will be considered later.

Grönwall inequality

Suppose that the I.V.P. (4),(5) for an autonomous linear system has a

solution x(t) on an interval I including � . Consider the case when � � t.
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We can write an equivalent integral equation for x(t) for t 2 I; � � t

x(t) = � +

Z t

�

Ax(�)d� (7)

We calculate of the norm of the left and right sides in the integral equation

(7) and use triangle inequality:

kx(t)k � k�k+
Z t

�

Ax(�)d�


The triangle inequality for integrals:Z t

�

x(�)d�

 � Z t

�

kx(�)k d�

and the de�nition of the matrix norm:

kAk = sup
kxk6=0

(kAxk = kxk) = sup
kxk=1

(kAxk)

imply that

kx(t)k � k�k+
Z t

�

kAx(�)k d�

and �nally

kx(t)k � k�k+
Z t

�

kAk kx(�)k d�

We will prove now that this integral inequality for kx(t)k implies the
famous Grönwall inequality giving an estimate for kx(t)k in terms of the

initial data k�k.
This is a standard argument that will be used within the course again later

two more times for more complicated types of equations.
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Introducing the notation G(t) = k�k+
R t
�
kAk kx(�)k d� we conclude that

G(�) = �, kx(t)k � G(t); and

G0(t) = kAk kx(t)k � kAkG(t)

Multiplying the last inequality by the integrating factor exp(�kAk t) we
arrive to

G0(t) exp(�kAk t)� kAk exp(�kAk t)G(t) � 0

G0(t) exp(�kAk t) +G(t) (exp(�kAk t))0 � 0

(G(t) exp(�kAk t))0 � 0

Integrating the left and the right hand side from � to t we get the inequality

G(t) exp(�kAk (t)) � G(�) exp(�kAk (�))
G(t) � k�k exp(kAk (t� �))

that implies the Grönwall inequality in this simple case:

kx(t)k � k�k exp(kAk (t� �)) (8)

�(Knowlege of this proof is required at the exam)
Lemma. The solution to I.V.P. (4),(5) is unique.

Proof. Suppose that there are two solutions x(t) and y(t) to the I.V.P.
(4),(5) on a time interval including � and both are equal to � at the initial

time t = � . Consider the vector valued function z(t) = x(t)� y(t) and the
case when � � t: Then z(t) is also a solution to the same equation (4) and

satis�es the initial condition z(�) = 0.

The estimate (8) applied to z(t) implies that z(t) = 0 and therefore the

uniqueness of solution to I.V.P. (4),(5). The proof of the case � � t is
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similar.�
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5.3 Exponent of a matrix

Two ideas are used to construct analytical solutions to (4) :

1) One is to �nd a possibly simple basis fv1(t); :::; vN(t)g to the solution
space.

2) Another one is based on an observation that the matrix exponent

eA(t��)
def
= I+A (t� �)+1

2
A2 (t� �)2+:::+ 1

k!
Ak (t� �)k ::: =

1X
k=0

1

k!
Ak (t� �)k

gives an expression of the the unique solution to the I.V.P. (1), (1a):

x(t) = eA(t��)�

One can derive this property of the matrix exponent by considering the

integral equation (7) for x(t)

x(t) = � +

Z t

�

Ax(�)d�

equivalent to the I.V.P. (4),(5). We can try to solve this integral equation

by iterations:

xk+1(t) = � +

Z t

�

Axk(�)d� (9)

x0 = �

xk(t) =

�
I + A (t� �) + 1

2
A2 (t� �)2 + :::+ 1

k!
Ak (t� �)k

�
�

Iterations xk(t) converge uniformly on any �nite time interval as k !1
and the limit gives the series for exp(At) formulated above times the initial

data �:

The series for exp(At) =
P1

k=0
1
k!
Ak (t� �)k converges uniformly on any

�nite time interval [�T; T ] including initial time point � 2 [�T; T ] by the
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Weierstrass criterion. Most of you studied it before. We will remind it�s

formulation here. It will be used several times in the course.

Weierstrass criterion. Corollary A.23, p. 277 in L.R.
Let X be a normed vector space, Y be a complete normed vector space

(Banach space) K � X be compact,ffn(x)g1n=1 ; x 2 K be a sequence of

continuous functions fn : K ! Y and let fmng1n=1 a real sequence such that
kfn(x)k � mn for all x 2 K and all n 2 N, where k:::k is the norm in Y .

If
P1

n=1mn is convergent, then
P1

n=1 fn(x) is unifomly convergent on K.�
You studied this theorem in the case when X = RN , Y = RM : In our

situation here K is a closed interval in R for example [�T; T ] in R and Y is
a space of matrices RN�N (or CN�N).

To prove that our series satis�es the Weierstrass criterion, we will apply the

estimate for the norm of the product of two matrices: kABk � kAk kBk : It
implies that kA2k � kAk kAk, kA3k � kAk kAk kAk ; :::and

Ak � kAkk.
Prove the inequality kABk � kAk kBk yourself!

Therefore the norm of each term in the series
P1

k=0
1
k!
Ak (t� �)k is

estimated by a term from a convergent number series: 1k!Ak (t� �)k
 � 1

k!

Ak jt� � jk �
1

k!
kAkk jt� � jk � 1

k!
kAkk (2T )k

for the exponential function exp(kAk (2T )): We use here that jt� � j � 2T
for each t 2 [�T; T ]:

Application of the Weierstrass criterion to the series
P1

k=0
1
k!
Ak (t� �)k

leads to the solution of the I.V.P. in the form

x(t) = eA(t��)� = exp(A (t� �))� =
 1X
k=0

1

k!
(t� �)k Ak

!
�

We make this conclusion by tending to the limit k !1 in the integral

equation (9) de�ning iterations because the expression under the integral in

19



(9) converges uniformly and therefore the limit of the integral is equal to

the integral of this uniform limit. This solution is unique by the Lemma we

proved before.

Corollary 2.9 in L.&R. The function x(t) = exp(A(t� �))� is the unique
solution to the I.V.P. (4),(5).

This theoretical expression for unique solutions to (1) dispite of it�s

elegansce has a huge disadvantage that the series

exp(At) =
P1

k=0
1
k!
(t� �)k Ak is not possible to calculate analytically in a

simple way.

We will try instead to �nd a basis of the vector space Shom of all solutions
to (1).

5.4 The dimension of the space Shom of solutions

Theorem. (Proposition 2.7, p.30, L.R. in the case of non-autonomous
systems).

Let b1; :::; bN be a basis in RN(or CN). Then the functions yj : R! RN(or
CN) de�ned as solutions to the I.V.P. (4),(5) with yj(�) = bj, j = 1; :::N , by
yj(t) = exp(A(t� �))bj; form a basis for the space Shom of solutions to (4).
The dimension of the vector space Shom of solutions to (4) is equal to N -

the dimension of the system (4).

Idea of the proof. This property is a consequence of the linearity of the
system and the uniqueness of solutions to the system and is independent of

detailed properties of the matrices A(t) and A in (4) and (6).

Proof. Consider a linear combination of yj(t) equal to zero for some time
� 2 R: l(�) =

PN
j=1 �jyj(�) = 0. Observe that the trivial constant zero

solution 0(t) coinsides with l at this time point.

But by the uniqueness of solutions to (4) it implies that l(t) at arbitrary

time must coinside with the trivial zero solution for all times and in

particular at time t = � . Therefore l(�) =
PN

j=1 �jbj = 0 (point out that

yj(�) = bj). It implies that all coe¢ cients �j = 0 because b1; :::; bN are
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linearly independent vectors in RN(or CN). It implies that y1(t); :::; yN(t)
are linearly independent for all t 2 R by de�nition. Arbitrary initial data
x(�) = � in RN(or CN) can be represented as a linear combination of basis
vectors b1; :::; bN : � =

PN
j=1Cjbj. The construction of y1(t); :::; yN(t) shows

that an arbitrary solution to (4) can be represented as linear combination

of y1(t); :::; yN(t).

x(t) = exp(A(t� �))� = exp(A(t� �))
NX
j=1

Cjbj =

=

NX
j=1

Cj[exp(A(t� �))bj]
=yj(t)

=
NX
j=1

Cjyj(t)

Therefore fy1(t); :::; yN(t)g is the basis in the space of solutions Shom and

therefore Shom has dimension N:�(Knowlege of this proof is required
at the exam)

By taking � = e1; :::; en we observe that each column in the matrix

exp(A (t� �)) is a solution to the equation (4). We have just shown in the
theorem before that these columns are linearly independent and build a

basis in the space of solutions.

Properties of the matrix exponent.
We collect in the following Lemma some (may be partially known)

properties of the matrix exponent.

For a complex matrix M the notation M� means transpose and complex

conjugate matrix (called also Hermitian transpose)

Lemma (Lemma 2.10 , p. 34 in L.&R.) Let P and Q be matrices in RN�N

or CN�N

(1) For a diagonal matrix P = diag(�1; �2; :::; �n)

exp(P ) = diag(exp(�1); :::; exp(�n))
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(2) exp(P �) = (exp(P ))�

(3) for all t 2 R,

d

dt
exp(At) = A exp(At) = exp(At)A

(4) If P and Q are two commuting matrices PQ = QP , then
exp(P )Q = Q exp(P ) and

exp(P +Q) = exp(P ) exp(Q)

(5) exp(�P ) exp(P ) = exp(P ) exp(�P ) = I or exp(�P ) = (exp(P ))�1

Proof
Proofs of (1),(2) are left as exercises. We proof �rst (4) by direct

calculation.

(P +Q)k =
kX

m=0

�
k

m

�
PmQk�m (for commuting matrices)

eP+Q =

1X
k=0

1

k!
(P +Q)k =

=
1X
k=0

1

k!

kX
m=0

�
k!

m! (k �m)!

�
PmQk�m

=
1X
k=0

X
m+p=k

Pm

m!

Qp

p!
=

 1X
m=0

1

m!
Pm

! 1X
p=0

1

p!
Qp

!
= eP eQ

(3) Can be proved in three di¤erent ways.

It follows from the de�nition of exp(At) by elementwise di¤erentiation of

the corresponding uniformly converging series.

It follows also from the observation above that each column in exp(At) with

index k is a solution to the system of equations x0 = Ax with initial data

x(0) = ek .

A straightforward proof can be given by the de�nition of derivative and
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using the relation (4). We use the formula exp(P +Q) = exp(P ) exp(Q) for

commuting matrices, the fact that At and As commute for any t and s and

the Taylor formula applied to for exp(Ah)� I for small h:

exp(A (t+ h))� exp(At) = (exp(Ah)� I) exp(At) =�
Ah+O(h2)

�
exp(At)

Therefore

d

dt
(exp(At)) = lim

h!0

(exp(A (t+ h))� exp(At))
h

=

lim
h!0

(Ah+O(h2)) exp(At)

h
= A exp(At)

�

5.5 Analytic solutions. Case when a basis of eigenvec-

tors exists.

An idea that leads to an analytical solution is to �nd a basis

fy1(t); :::; yN(t)g to the solution space Shom by �nding a particular basis
fv1; :::; vNg in CN or RN such that the matrix exponent exp(At) acts on the

elements of this basis in a particularly simple way, so that all

yk(t) = exp(A (t� �))vk can be calculated explicitely. We will consider
mainly the case � = 0 for autonomous systems.

The simplest example that illustrates this idea is given by eigenvectors to

A. These are vectors v 6= 0 such that

Av = �v

for some number �. Numbers � are called eigenvalues of A. Eigenvalues
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must be roots of the characteristic polynomial

p(�) = det(A� �I)

because rewriting the de�nition of an eigenvector we arrive to a

homogeneous system of linear equations with matrix (A� �I)

(A� �I) v = 0

with v 6= 0. Using the de�nition Av = �v for the eigenvalue and the
eigenvector k times we conclude that Akv = �kv. Substituting this formula

into the expression eAtv =
P1

k=0
1
k!
tkAkv we conclude that

eAtv =
1X
k=0

1

k!
tk�kv = e�tv:

Important idea.
Another more general idea leads to the same formula, but has an advantage

that it can be applied in more complicated situations. We use here that the

eigenvector v corresponding to the eigenvalue � makes all powers

(A� �I)k v = 0 except k = 0:

eAtv = exp (�tI + (At� �tI)) v = exp (�tI) exp ((A� �I) t) v = (10)

=
�
e�tI

� 1X
k=0

1

k!
tk (A� �I)k v = e�tv:

This observation leads to a simple conclusion that if the matrix A has N

linearly independent eigenvectors fvkg, then any solution to (4) with initial
data � =

PN
k=1Ckvk can be expressed as a linear combination in the form

x(t) =

NX
k=1

Ck
�
e�ktvk

�

24



with vector functions
�
e�ktvk

	
building a basis for the space of solutions to

(4).

We point out that � and v can be a complex eigenvalue and a complex

eigenvector here. In the case when all these eigenhvalues are real, this basis

will be real. In the case if a real matrix A has some complex eigenvalues;

they appear as pairs of complex conjugate eigenvalues and corresponding

eigenvectors, that still can be used to build a real basis for solutions. We

will demonstrate it on a couple of examples later.

Example 1. Consider system x0 = Ax with matrix A =

"
0 1

1 0

#
. The

matrix A has characteristic polynomial p(�) = �2 � 1 and two eigenvalues
�1 = 1 and �2 = �1:

Corresponding eigenvectors satisfy homogeneous systems (A� �1) v1 = 0

with matrix (A� �1I) =
"
�1 1

1 �1

#
and (A� �1I) v2 = 0 with matrix

(A� �2I) =
"
1 1

1 1

#
.

Eigenvectors are v1 =

"
1

1

#
and v2 =

"
�1
1

#
and are linearly independent

(in particular it follows from the fact that eigenvalues are di¤erent).

Solutions y1(t) = etv1 and y2(t) = e�tv2 are linearly independent.

Arbitrary real solution to the system of ODEs has the form

x(t) = C1y1(t) + C2y2(t) = C1e
t

"
1

1

#
+ C2e

�t

"
�1
1

#

with arbitrary coe¢ cients C1 and C2:Corresponding phase portrait will

include particular solutions tending to in�nity along the vector v1 =

"
1

1

#
,

solutions tending to the origin along the vector v2 =

"
�1
1

#
and other
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solutions �lling the rest of the plain having orbits in the form of hyperbolas.

One can observe it by integrating the di¤erential equation

x01 = x2

x02 = x1

dx2
dx1

=
x1
x2
; x2dx2 = x1dx1

with separable variables that follows from the system and concluding that

x21 � x22 = Const

543210-1-2-3-4-5

5

4

3

2

1

0

-1

-2

-3

-4

-5

x

y

x

y

Similar phase portraits will be observed in the arbitrary case when the

2� 2 real non-degenerate matrix A has real eigenvalues with di¤erent signs
but the picture will be rotated and might be less symmetric depending on

the directions of the eigenvectors v1 and v2 (here they are orthogonal). One

can still draw trajectories along eigenvectors and then sketch other

trajectories according to the directions of trajectories along eigenvectors.

6 Generalised eigenvectors and eigenspaces.
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It is easy to give examples of matrices that cannot be diagonalized. For

linear autonomous systems with such matrices the expression of arbitrary

solutions in terms of linearly independent eigenvectors is impossible because

we just do not have N linearly independent ones.

Example 3.(
x01 = �x1
x02 = x1 � x2

or x0(t) = Ax with A =

"
�1 0

1 �1

#
, the characteristic

polynomial is p(�) = (�+ 1)2:

Matrix A has an eigenvalue � = �1 with algebraic multiplicity m(�) = 2.

There is only one eigenvector v =

"
0

1

#
satisfying the equation

(A� �I)v = 0.

(A� (�1)I) =
"
0 0

1 0

#
The function x(t) = e�tv is a solution to the system. One likes to �nd a

basis of solutions to the space Shom of all solutions. We need another
linearly independent solution for that. Observe that

x1(t) = C1e
�t

is the solution to the �rst equation, substitute it into the second equation

and solve it explicitely with respect to x2(t):

x02(t) = �x2(t) + C1e�t

etx02(t) + e
tx2(t) = C1�

etx2(t)
�0

= C1

etx2(t) = C2 + C1t

x2 = C2e
�t + C1t e

�t
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Therefore the general solution to this particular system has the form

x(t) =

"
x1(t)

x2(t)

#
= C1e

�t

"
1

t

#
+ C2e

�t

"
0

1

#
=

C1e
�t

 "
1

0

#
+ t

"
0

1

#!
+ C2e

�t

"
0

1

#
= C1e

�t �v(1) + tv�+ C2e�tv
where v(1) =

"
1

0

#
. The phase portrait looks as:

1050-5-10

4

2

0

-2 x

y

x

y

In this particular example we could �nd an explicit solution using the fact

that the matrix A is trianglular. This idea cannot be generalized to the

arbitrary case but can be used for linear system with variable coe¢ cients

and triangular matrix.

We point out that the initial value for the derived solution

x(t) = C1e
�t �v(1) + tv�+ C2e�tv is

x(0) = C1

"
1

0

#
+ C2

"
0

1

#
=C1v(1) + C2v.
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Vector v(1) =

"
1

0

#
is linearly independent of the eigenvector v =

"
0

1

#
,

and applying the lemma before we conclude that e�tv and e�t
�
v(1) + tv

�
are linearly independent for all t 2 RN and build a basis for the space of

solutions to the system.

Observe that v(1) has a remarkable property that (A� �I) v(1) = v
as

"
0 0

1 0

#"
1

0

#
=

"
0

1

#
and therefore (A� �I)2 v(1) = 0. Such vectors

are called generalised eigenvectors to A corresponding to the eigenvalue
�:

We point out that the initial data in this explicit solution are represented

as a linear combination of an eigenvector and a generalised eigenvector:

x(0)=C1v(1) + C2v.

We observe that the general solution we have got could be derived by

applying the same idea as in the formula (10) but to the generalised

eigenvector v(1):

exp(At)v(1) = exp (�tI + (At� �tI)) v(1) = exp (�tI) exp ((A� �I) t) v(1)

e�t
1X
k=0

1

k!
tk (A� �I)k v(1) = e�t

�
v(1) + t (A� �I) v(1)

�
=

= e�t
�
v(1) + tv

�
(A� �I)k v(1) = 0; k � 2

This reasoning again gives the second basis vector in the space of solutions,

that we have got before by the trick with separation of variables, and gives

a clue what might be a general way to explicit solution to the linear system

with arbitrary constant matrix.�
De�nition of generalised eigenvectors.

A non-zero vector z 2 CN( or RN) is called a generalised eigenvector to the
matrix A 2 CN�N corresponding to the eigenvalue � with the algebraic

multiplicity m(�) if (A� �I)m(�) z = 0.
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If (A� �I)r z = 0 and (A� �I)r�1 z 6= 0 for some 0 < r < m(�) we say
that z is a generalised eigenvector of rank (or height) r to the matrix A.�

An eigenvector u is a generalised eigenvector of rank 1 because

(A� �I)u = 0:
The set ker

�
(A� �I)m(�)

�
(kernel or nullspace in Swedish) of all

generalized eigenvectors of an eigenvalue � is denoted by E(�) in the course

book. E(�) is a subspace in CN .
Proposition on A - invariance of E(�).

E(�) is A- invariant, namely if z 2 E(�), then Az 2 E(�).
Proof. We check it by taking z 2 E(�) such that (A� �I)m(�) z = 0 and
calculating (A� �I)m(�)Az = A (A� �I)m(�) z = 0, the last equality is

valid because A and (A� �I)m(�) commute:�
Proposition on exp(At) - invariance of E(�).

E(�) is invariant under the action of exp(At), namely if z 2 E(�), then
exp(At)z 2 E(�).

Proof. Consider the expression for the exp(At)z as a series

exp(At)z =
1X
k=0

1

k!
tkAkz = lim

m!1

mX
k=0

1

k!
tkAkz| {z }
2E(�)

9>>=>>; 2 E(�)

All terms Akz in the sum belong to E(�). One can see it by repeating the

argument in the previous proposition.

The expression for exp(At)z is therefore a limit of linear combinations of

elements from the �nite dimensional generalized eigenspace E(�) that is a

closed and complete set. Therefore exp(At)z must belong to E(�).�
A remarkable property of generalised eigenvectors z is that the series for

the matrix exponent exp(At) applied to z can be expressed in such a way

that it would include only a �nite number of terms and can be calculated

analytically.

Theorem (2.11, Part 1), p. 35 in the course book) Let A 2 CN�N .
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For an eigenvalue � 2 �(A) with algebraic multiplicity m(�) denote the
subspace of its associated generalised eigenvectors by

E(�) = ker (A� �I)m(�) and for z 2 E(�) denote by xz(t) = exp(At)z - the
solution of I.V.P. with initial data xz(0) = z. Then

for � 2 �(A) and z 2 E(�) a generalised eigenvector

exp (At) z = e�t
m(�)�1X
k=0

tk

k!
(A� �I)k z

Proof.
We show it by the following direct calculation:

xz(t) = exp (At) z = exp (t�I) exp ((A� �I) t) z =(11)

e�t
1X
k=0

tk

k!
(A� �I)k z = e�t

m(�)�1X
k=0

tk

k!
(A� �I)k z

because powers (A� �I)k z = 0 - terminate on z 2 E(�) for all k � m(�)
by the de�nition of generalised eigenvectors.

We also use at the �rst step of calculations the property (4) from the

Lemma about matrix exponents: exp(P +Q) = exp(P ) exp(Q) for

commuting matrices P and Q. �

6.1 Analytic solutions. General case using a basis of

generalized eigenvectors.

The next theorem gives a theoretical background for a method of

constructing analytic solutions to (4) (x0(t) = Ax(t)), by representing

arbitrary initial data x(0) = � using a basis of generalised eigenvectors to A

in CN . We are going to consider initial conditions for autonomous systems
only at the point � = 0, because all other solutions are derived from such

ones just by a shift in time, because the right hand side in the equation
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does not depend on time explicitely and if x(t) is a solution, then x(t+ �) is

also a solution.

De�nition The sum V1 + V2 + :::+ Vs of subspaces V1,V2 ...Vs in a vector

space is a set of vectors in the form v1 + v2 + :::+ vs with vectors vj 2 Vj,
j = 1; :::; s: �

De�nition Direct sum V1 � V2 � :::� Vs of subspaces V1,V2 ...Vs is
a usual sum V1 + V2 + :::+ Vs of these subspaces with a special additional

property that any vector in v 2 V1 � V2 � :::� Vs is represented only in a
unique way as a sum v = v1+ v2+ :::+ vs of vectors vj 2 Vj, j = 1; :::; s: �
It makes in this case any set of vectors vj 2 Vj, j = 1; :::; s belonging to

di¤erent Vj linearly independent.

Subspaces Vj, j = 1; :::; s have only one common point - zero.

Theorem (generalized eigenspace decomposition theorem A.8, p.
268 in the course book, without proof)

Let A 2 CN�N and �1; :::; �s be all distinct eigenvalues of A with
multiplicities mj,

Ps
j=1mj = N . Then CN can be represented as a direct

sum of generalised eigenspaces E(�j) = ker(A� �j)mj to A having

dimensions mj:

dim (ker(A� �j)mj) = mj

CN = ker(A� �1)m1 � :::� ker(A� �s)ms (12)

�
The formula (11) together with the decomposition of CN into direct the sum
of generalised eigenspaces gives a recipe for a �nite analytic representation

of solutions to I.V.P. to (4) and a representation of general solutions to (4).

Theorem (2.11, part 2, p. 35 in the course book) Let z 2 E(�) be a
generalized eigenvector corresponding to the eigenvalue �. Denote by

xz(t) = exp(At)z - the solution of I.V.P. with xz(0) = z.
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Let B(�j) be a basis in E(�j) having dimesion mj, and denote

B = [sj=1B(�j) - the union of all bases of generalized eigenspaces E(�j) for
all eigenvalues �j 2 �(A). The set of functions fxz : z 2 Bg is a basis of the

solution space Shom of (4).
Proof. By the generalized eigenspace decomposition theorem

CN = ker(A� �1)m1 � :::� ker(A� �s)ms and therefore all subspaces

E(�j) = ker(A� �j)mj making them linearly independent. The total

number of these basis vectors is
Ps

j=1mj = N that is equal to the

dimension of CN . Therefore B is a basis in CN :
From the theorem on the dimension of the solution space Shom of a linear
system it follows that solutions with initial data taken from the basis B

build a basis in the solution space Shom of (4).
�

We continue with a description of how this theorem can be used for

practical calculation of solutions to I.V.P.

Let the matrix A have s distinct eigenvalues �1; :::; �s with corresponding

generalised eigenspaces E(�j). Represent the initial data x(0) = � for the

solution x(t) as a sum of its components from di¤erent generalised

eigenspaces:

� =
sX
j=1

x0;j; x0;j 2 E(�j)

Here x0;j 2 E(�j) - are components of � in the generalized eigenspaces
E(�j) = ker(A� �j)mj of the matrix A. These subspaces intersect only in

the origin and are invariant with respect to A and exp(At). It implies that

for the solution xz(t) with initial data z 2 E(�j), we have xz(t) 2 E(�j) for
all t 2 R:

Let mj be the algebraic multiplicity of the eigenvalue �j. We apply the

formula (11) to this representation and derive the an expression for
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solutions for arbitrary initial data as a �nite sum (instead of series):

x(t) = eAt� = eAt
sX
j=1

x0;j = (13)

sX
j=1

 
e�jt

"
mj�1X
k=0

(A� �jI)k
tk

k!

#
x0;j

!
(14)

Series expressing exp(At)x0;j terminates on each of the generalised

eigenspaces E(�j).

The last formula still needs speci�cation to derive to an explicit solution.

General solution can be written explicitely by �nding a basis of of

eigenvectors vj and generalized eigenvectors for each generalised eigenspace

E(�j) and expressing all components x0;j of � in the generalized eigenspaces

E(�j) in the form

x0;j = :::Cpvj + Cp+1v
(1)
j + Cp+2v

(2)
j ::: (15)

including all linearly independent eigenvectors vj corresponding to �j (it

might exist several eigenvectors vj corresponding to one �j ) and enough

many linearly independent generalized eigenvectors v(1)j ,..., v
(l)
j :

We will start with examples illustrating this idea in some simple cases.

Example 4. Matrix 3x3 with two linearly independent
eigenvectors.

Consider a system of equations x0 = Ax with matrix A =

264 1 1 1

0 1 0

0 0 1

375 It is
easy to see that � = 1 is the only eigenvalue with algebraic multyplicity 3.

Characteristic polynomial is p(�) = (1� �)3.
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The eigenvectors satisfy the equation (A� I) v = 0: A� I =

264 0 1 1

0 0 0

0 0 0

375.
It has two linearly independent solutions that can be chosen as v1 =

264 10
0

375
and v2 =

264 0

1

�1

375. The eigenspace is a plane through the origin orthogonal
to the vector

264 01
1

375
We like to �nd a generalised eigenvector linearly independent of v1 and v2.

We take the eigenvector v1 and solve the equation

(A� �I)v(1)1 = v1:

We denote it by two indexes to point out that it belongs to a chain with

base on v1. Denoting v
(1)
1 = [y1; y2; y3]

T we consider the system

264 0 1 1

0 0 0

0 0 0

375
264 y1y2
y3

375 =
264 10
0

375

It gives a solution y3 = 1, y2 = 0, y1 = 0. v
(1)
1 =

264 00
1

375 . We point out that
if we try to �nd a chain of generalised eigenvectors starting from the
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eigenvector v2; it leads to a system (A� I)v(1)2 = v2264 0 1 1

0 0 0

0 0 0

375
264 y1y2
y3

375 =
264 0

1

�1

375
that has no solutions. If we try to extend the chain of generalised

eigenvectors with one more: v(2)1 by solving the system (A� I)v(2)1 = v
(1)
1

264 0 1 1

0 0 0

0 0 0

375
264 y1y2
y3

375 =
264 00
1

375
we �nd that it has no solutions (in fact we know that there cannot be more

linearly independent generalised eigenvectors because we have already

found 3 of them).

We can write general solution to the system of ODE with matrix A using

the general formula (13) and expressing the initial data as a linear

combination of eigenvectros v1 and v2 and the generalised eigenvector v
(1)
1 :

x(t) = e�t

"
2X
k=0

(A� �I)k t
k

k!

#�
C1v1 + C2v2 + C3v

(1)
1

�
� = C1v1 + C2v2 + C3v

(1)
1

m(�) = 3. It is why we put upper bound in the sum equal to m(�)� 1 = 2.
The expression above simpli�es (using that by construction

(A� �I)v(1)1 = v1) and therefore (A� �I)2v(1)1 = (A� �I)v1 = 0: to

x(t) = C1e
tv1 + C2e

tv2 + C3e
t [I + (A� I) t] v(1)1

C1e
tv1 + C2e

tv2 + C3e
tv
(1)
1 + C3te

tv1
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Example 5. Matrix 3x3 with one eigenvector.

Consider a system of equations x0 = Ax with matrix A =

264 �1 �1 0

0 �1 �2
0 0 �1

375
It is easy to see that � = �1 is the only eigenvalue with multiplicity 3.

Eigenvectors satisfy the equation

(A� �I) v = 0

A+ I =

264 0 �1 0

0 0 �2
0 0 0

375. It has one linearly independent solution that can
be chosen as v =

264 10
0

375. We will build a chain of generalised
eigenvectors starting with this eigenvector. Solve the equation

(A� �I)v(1) = v

(A+ I)v =

264 0 �1 0

0 0 �2
0 0 0

375
264 y1y2
y3

375 =
264 10
0

375
It implies that y2 = �1, and we are free to choose y1 = 0 and y3 = 0.

v(1) =

264 0

�1
0

375.
The next generalised eigenvector v(2) in the chain must satisfy the equation

(A� �I)v(2) = v(1)
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(A+ I)v(2) =

264 0 �1 0

0 0 �2
0 0 0

375
264 y1y2
y3

375 =
264 0

�1
0

375

y3 = 1=2, y2 = 0, y1 = 0. v
(2) =

264 0

0

1=2

375.

x(t) = e�t

"
2X
k=0

(A� �I)k t
k

k!

# �
C1v + C2v

(1) + C3v
(2)
�
=

C1e
�tv + C2e

�tv(1) + C2te
�t (A� �I) v(1) + C2

�
t2

2

�
e�t (A� �I)2 v(1)| {z }

=0

+C3e
�tv(2) + C3te

�t(A� �I) v(2)| {z }
=v(1)

+ C3

�
t2

2

�
e�t(A� �I)2 v(2)| {z }

=v

x(t) = C1e
�tv + C2e

�tv(1) + C2te
�tv

+C3e
�tv(2) + C3te

�tv(1) + C3

�
t2

2

�
e�tv

x(t) = C1e
�t

264 10
0

375 + C2e�t
264 0

�1
0

375+ C2te�t
264 10
0

375

+C3e
�t

264 0

0

1=2

375+ C3te�t
264 0

�1
0

375+ C3�t2
2

�
e�t

264 10
0

375
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x(t) =

264 C1e
�t + tC2e

�t + 1
2
t2C3e

�t

�C2e�t � tC3e�t
1
2
C3e

�t

375
�

6.2 Chains of generalised eigenvectors

A practical method for calculating a basis of linearly independent

generalized eigenvectors in the general case is an extension of the approach

that we used in the last examples.

We �nd a basis of the eigenspace to � consisting of r(�) eigenvectors

satisfying the equation (A� �I)u0 = 0:Their number r(�) is called
geometric multiplicity of � and r(�) � m(�). Then for each eigenvector
u0 6= 0 from this basis we �nd a vector u1 6= 0 satisfying the equation
(A� �I)u1 = u0, and continue this calculation, building a chain of

generalised eigenvectors u1; :::; ul satisfying equations.

(A� �I)uk = uk�1 (16)

up to the index k = l when there will be no solutions to the next equation.

The largest possible number l is (m(�)� r(�)� 1), but it can also be
smaller if the eigenvalue � has more than one linearly independent

eigenvector.

Claim.
Point out that depending on the range of the operator with matrix (A� �I)

(column space of the matrix (A� �I)) one might need to be careful
choosing non-unique (!) eigenvectors u0 and generalised eigenvectors uk in

the equations (16) so that they belong to the column space of the matrix

(A� �I) (if possible!) to guarantee that the equations (16) have a solution.
Alternatively one can start this algorithm from above, solving �rst the
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equation

(A� �I)l ul = 0

(A� �I)l�1 ul 6= 0

for a generalized eigenvector of rank l and then can apply equations (16) to

calculate generalized eigenvectors of lower rank that belong to corresponding

chain of generalized eigenvectors. The last vector in this calculation will be

an eigenvector. Check the solution to the Exercise 864 in the �le with

exercises, where these observations are important.

Lemma. The chain of generalised eigenvectors constructed in (16) is

linearly independent. It can be proved by contradiction.(Exercise!)
�

Theorem. A set of generalised eigenvectors corresponding to p chains of
eigenvectors as in (16) is linearly independent if and only if eigenvectors in

the bottom of corresponding chains of generalised eigenvectors are linearly

independent.

�
In the case when all eigenvalues �1; :::; �s to a real matrix A 2 RN�N are

real, the generalized eigenvectors will be also real and therefore

RN = ker(A� �j)m1 � :::� ker(A� �j)ms

In this case chains of eigenvectors and generalized eigenvectors build by the

procedure as above gives a basis in RN .
To �nd a basis in the generalized eigenspace E(�j) one can start with

�nding all linearly independent eigenvectors that are linearly independent

solutions to the equation (A� �jI) v = 0 and collecting them in a set

denoted by E . Then �nd all linearly independent solutions to
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(A� �jI)2 v(1) = 0 (that are not eigenvectors) and adding them E . Next
one �nds solutions to (A� �jI)3 v(2) = 0 linearly independent from those in

E and collecting them also in E e.t.c. Continuing in this way one �nishes
when the total number of derived linearly independent generalised

eigenvectors will be equal to mj - the algebraic multiplicity of the

eigenvalue �j.

A more systematic approach to this problem is to calculate such a basis as

a chain of generalised eigenvectors corresponding to each of linearly

independent eigenvector as it is was suggested in examples before:

(A� �jI) vj = 0;

(A� �jI) v(1)j = vj

(A� �jI) v(2)j = v
(1)
j

e:t:c:

(A� �jI) vlj = vl�1j

This approach has also an advantage that using chains of generalised

eigenvectors as a basis leads to a particularly simple representation of the

system of equations (4) with matrix A in so called Jordan canonical form,

that we will learn later.

Substituting the expression (15) for arbitrary initial data � in to the general

formula above and calculating all matrix (A� �jI) powers and
matrix-vector, multiplications we get a general solution with a set of

arbitrary coe¢ cients C1; :::; CN .

Keep in mind that (A� �jI) vj = 0 and (A� �jI)2 v(1)j = 0 e.t.c., so many

terms in the general expression for the solution can be zeroes.

Initial value problems. To solve an I.V.P. one needs to express a
particular initial data � in terms of the basis of generalized eigenvectors

soving a linear system of equations for coe¢ cients C1; :::; CN in (15)
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Look for exercises in a separate �le Exercises_3.pdf with exercises on linear

autonomous systems of ODE. Check a link in Canvas.

6.3 Real solutions for systems with real matrices hav-

ing complex eigenvalues.

We will consider an example of a system in plane with real matrix having

two simple, conjugate complex eigenvalues (no more because of the small

dimension). The idea of solution was to build a complex solution

corresponding to one of these eigenvalues and use it�s real and imaginary

part at two linearly independent solutions to construct a general solution.

The same idea works in the general case when a real matrix might have

conjugate complex eigenvalues (might be multiple in higher dimensions).

We build a basis of eigenvectors and generalized eigenvectors for invariant

generalized eigenspaces corresponding to distinct conjugate complex

eigenvalues. One can start with one of these eigenvalues and then can just

choose the basis for the second one as a complex conjugate (do not need to

do it in fact). Then we construct arbitrary complex solutions in the

invariant generalized eigenspace corresponding to the �rst of these

conjugate eigenvalues. The real and imaginary parts of these solutions are

linearly independent and build a basis of solutions in the corresponding real

invariant subspace.

Example 2. Real matrix with complex eigenvalues.

x0 = Ax with A =

"
3 �2
4 �1

#
; �nd a general real solution to the system. In

this case we �nd �rst a general complex solution and then construct a

general real solution based on it.

Solution. A =

"
3 �2
4 �1

#
, characteristic polynomial: �2 � 2�+ 5 = 0;

Hint. We point out here that in the case of 2� 2 matrices the
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characteristic polynomial always has a simple representation

p(�) = �2 � �tr(A) + det(A)

where tr(A) is the sum of diagonal elements in A called trace, and det(A) is

determinant. Here tr(A) =�1 + �2; detA = �1�2

�
Eigenvalues are: �1 = 1� 2i; and �2 = 1 + 2i.

They are complex conjugate:

�1 = �2

p(�) = (�� �1)(�� �2)

because the characteriscic polynomial has real coe¢ cients.

Eigenvectors satisfy the equations (A� �I)v1 =
"
2 + 2i �2
4 �2 + 2i

#
v1 = 0

and"
2� 2i �2
4 �2� 2i

#
v2 = 0.

These eigenvectors muct be also complex conjugate. We see it by

considering the equations for v1 that is

(A� �1I)v1 = 0 and its formal complex conjugate (A� �1I)v1 = 0 that is
satis�ed because the conjugate of the real matrix A is the matrix A itself.

Therefore v1 is the eigenvector corresponding to the eigenvalue �2 = �1. We

point out that this argument is independent of this particular example and

would be valid for any real matrix with complex eigenvalues.

The �rst and the second equation in each of these systems are equivalent

because rows are linearly dependent (homogeneous system has non-trivial

solutions and the determinant of the matrix A� �I is zero).
We solve the �rst equation in the �rst system by choosing the �rst

component equal to 1. It implies that the second component denoted here
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by z satis�es the equation 2 + 2i� 2z = 0 and therefore z = 1 + i. The
second eigenvector is just the complex conjugate of the �rst one.

v1 =

("
1

1 + i

#)
$ �1 = 1� 2i; and v2 =

("
1

1� i

#)
$ �2 = 1 + 2i.

They are linear independent as eigenvectors corresponding to di¤erent

eigenvalues.

One complex solution is x�(t) = e(1�2i)t
"

1

1 + i

#
, another one is

y�(t) = e(1+2i)t

"
1

1� i

#
x�(t) and y�(t) are linearly independent at any time as corresponding to

linearly independent initial vectors v1 and v2 (according to the theorem

before) and build a basis of complex solutions to the system. Therefore the

matrix [x�(t); y�(t)] has determinant det ([x�(t); y�(t)]) 6= 0.
Two linearly independent real solutions can be chosen as real and

imaginary parts of x�(t) (or y�(t)): Re [x�(t)] = 1
2
(x�(t) + y�(t)) and

Im [x�(t)] = 1
2i
(x�(t)� y�(t)) that are linearly independent because the the

matrix T = 1
2

"
1 1=i

1 �1=i

#
of the transformation

[x�(t); y�(t)]T =

"
x�1 y�1

x�2 y�2

#"
1=2 1= (2i)

1=2 �1= (2i)

#
"

1
2
x�1 +

1
2
y�1

1
2i
x�1 � 1

2i
y�1

1
2
x�2 +

1
2
y�2

1
2i
x�2 � 1

2i
y�2

#
= [Re [x�(t)] ; Im [x�(t)]]

is invertible: detT = � 1
2i
6= 0 and therefore, by the property of the

determinant for the product of matrices,

det [x�(t); y�(t)] det(T ) = det ([Re [x�(t)] ; Im [x�(t)]]) 6= 0

and Re [x�(t)] and Im [x�(t)] are linearly independent.
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Therefore real valued vector functions Re [x�(t)] and Im [x�(t)] can be used

as a basis for representing the general real solution to the system:

x(t) = C1Re [x
�(t)] + C2 Im [x

�(t)] :

We express x�(t) with help of Euler formulas and separate real and

imaginary parts

x�(t) = e(1�2i)t
"

1

1 + i

#
= et (cos 2t� i sin 2t)

"
1

1 + i

#
=

et

"
cos 2t� i sin 2t

(1 + i) cos 2t+ (1� i) sin 2t

#
= et"

cos 2t� i sin 2t
cos 2t+ sin 2t+ i (cos 2t� sin 2t)

#
=

et

"
cos 2t

cos 2t+ sin 2t

#
� i et

"
sin 2t

(sin 2t� cos 2t)

#

The answer follows as a linear combination of real and imaginary parts:

x(t) = C1Re [x
�(t)] + C2 Im [x

�(t)] :

Answer: x(t) = C1et
"

cos 2t

cos 2t+ sin 2t

#
+ C2e

t

"
sin 2t

sin 2t� cos 2t

#
:

We will transform this expression to clarify its geometric meaning and the

shape of orbits in the phase plane. We observe �rst that if we drop

exponents et, in the expression for x(t) and consider the expression

x(t)e�t = C1

"
cos 2t

cos 2t+ sin 2t

#
+ C2

"
sin 2t

sin 2t� cos 2t

#
;we will observe that

it represents a movement along ellipses in the plane.

We use an elementary trick that makes that any linear combination of
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sin() and cos() is C sin( + �) or C cos( � �) with some constants C, �:

x1(t)e
�t = C1 cos(2t) + C2 sin(2t) =q

C21 + C
2
2

  
C1p
C21 + C

2
2

!
cos 2t+

 
C2p
C21 + C

2
2

!
sin 2t

!
=

q
C21 + C

2
2 (cos(�) cos 2t+ sin(�) sin 2t)

=
q
C21 + C

2
2 cos(2t� �)

� = arccos

  
C1p
C21 + C

2
2

!!

Similarly

[x2(t)� x1(t)] e�t = C1 sin(2t)� C2 cos(2t) =q
C21 + C

2
2

  
C1p
C21 + C

2
2

!
sin 2t� C2p

C21 + C
2
2

cos 2t

!
=

q
C21 + C

2
2 (cos(�) sin 2t� sin(�) cos 2t)

=
q
C21 + C

2
2 sin(2t� �)

Finally we arrive to a parametric expression for a periodic movement along

ellipses with size depending on C1 and C2.
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x(t)e�t = C1

"
cos 2t

cos 2t+ sin 2t

#
+ C2

"
sin 2t

sin 2t� cos 2t

#

=
q
C21 + C

2
2

"
cos(2t� �)

cos(2t� �) + sin(2t� �)

#

=
q
C21 + C

2
2

"
cos(2t� �)p

2 [sin(�=4) cos(2t� �) + cos(�=4) sin(2t� �)]

#

=
q
C21 + C

2
2

"
cos(2t� �)p

2 [sin(2t� � + �=4)]

#

illustrated in the next picture:

1050-5-10
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5

0

-5

-10

x

y

x

y

This movement is modulated in our solution x(t) by the exponential term

et giving orbits as spirals going to in�nity out of the origin that is an

unstable equilibrium point for this system.
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Example. It is good to consider here the solution to the exercise 858.
Ideas about solutions to systems with complex eigenvalues demonstrated in

exercises can in the general situation expressed by the following Theorem.

Theorem 2.14. p. 38 on real solutions to autonomous systems
with real matrix and complex eigenvalues (without proof)

Let A 2 RN�N: for � an eigenvalue, let m(�) be the algebraic multiplicity of
�, E(�) = ker(A� �I)m(�) denote it�s generalised eigenspace. Let B(�) be a

basis in E(�) chosen to be real for real �.

For all z 2 CN ; we denote xz, yz : R! RN real solutions to the equation

x0 = Ax as

xz = exp(At) Re z; yz = exp(At) Im z

Then

1) Let B0 (respectively B+) denote the union of all B(�) for all real

eigenvalues � to A (correspondingly for all � with Im� > 0) The set of real
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functions given by

fxz; z 2 B0 [B+g [ fyz : z 2 B+g

forms a basis of the solutuion space to x0 = Ax.

2) If � is a real eigenvalue to A, then for every generalized eigenvector

z 2 E(�) ; the solution xz is expressed as

xz(t) = e
�t

m(�)�1X
k=0

tk

k!
(A� �I)k Re z

3) If � = �+ i� with � 6= 0, is an eigenvalue of A;then for every generalized
eigenvector z 2 E(�);

solutions xz = exp(At) Re z and yz = exp(At) Im z with initial data Re z

and Im z are expressed as

xz(t) = e�t
m(�)�1X
k=0

tk

k!

h
cos(�t) Re

�
(A� �I)k z

�
� sin(�t) Im

�
(A� �I)k z

�i
yz(t) = e�t

m(�)�1X
k=0

tk

k!

h
cos(�t) Re

�
(A� �I)k z

�
+ sin(�t) Im

�
(A� �I)k z

�i
�

The theorem shows the how m(�) real linearly independent solutions can

be obtained for a real matrix A with complex eigenvalues �. The part 1) of

the theorem shows that such solutions build a real basis of the solution

space for x0 = Ax with a real matrix.
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7 Jordan canonical form of matrix. Func-

tions of matrices.

7.1 Change of variables. Properties of similar matri-

ces. Block matrices.

We tried in previous lectures to �nd a basis
n
v1; v

(1)
1 ; :::

o
in CN or in RN

such that expressing initial data � in I.V.P.

x0(t) = Ax(t); x(0) = �

in terms of this basis led to a particularly simple expression of the solution

as an explicit linear combination including polynomials of t(A� �iI) acting
on basis vectors. We can interpret these results by introducing a linear

change of variables

x = V y; y = V �1x

with matrix V of this transformation having columns consisting of N

linearly independent vectors.

In terms of the new variable y the system has the form

y0(t) = V �1AV y; y(0) = V �1�

In the case when the matrix A has N linearly independent eigenvectrosthe

matrix V �1AV = D is diagonal with eigenvalues f�1:::; �j; :::g of the matrix
A standing on the diagonal m(�j) times equal to the algebraic multiplicity

of �j: The number r(�j) of linearly independent eigenvectors belonging to

�j is equal to m(�j) in this case.

De�nition. Matrices A and V �1AV are called similar.
They have several characteristics the same: determinant, and characteristic
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polynomials. It is a simple consequence of properties of determinants of

products of matrices.

Prove it as an exercise using: det (AB) = det (A) det (B);
det(B�1) = (detB)�1 if detB 6= 0.

Using the associative property of matrix multiplication we arrive to the

property

Theorem. If matrices A and B are similar through B = V �1AV ,
A = V BV �1 then

Bk = V �1(Ak)V ;

exp(B) = V �1(expA)V

Ak = V (Bk)V �1

exp(A) = V (expB)V �1

Prove it as an exercise.
Corollary. If the matrix A is diagonalisable, then exp(A) = V exp(D)V �1

where V matrix of linearly independent eigenvectors and the matrix D is

diagonal matrix of eigenvalues �j and exp(D) is a diagonal matrix with

exp(�j) on the diagonal. In this case the system in new variables

y(t) = V �1x(t) consists of independent di¤erential equations y0j(t) = �jyj(t)

for he components yj(t) of y(t) that have simple solutions yj(t) = Cje�jt

De�nition. Block - diagonal matrices
Block-diagonal matrices are square matrices that have a number of square

blocks B1,... along diagonal and other terms all zero. For example:

B =

266664
B1 O O O
O B2 O O
O O B3 O
O O O B4

377775
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B2 =

266664
B1 O O O
O B2 O O
O O B3 O
O O O B4

377775
266664
B1 O O O
O B2 O O
O O B3 O
O O O B4

377775 =
266664
B21 O O O
O B22 O O
O O B23 O
O O O B24

377775
=

These matrices have a property that their powers lead to block diagonal

matrices of the same structure with powers of original blocks on the

diagonal:

Bk =

266664
(B1)k O O O
O (B2)k O O
O O (B3)k O
O O O (B4)k

377775
This simple observation leads immediately to the formula for the exponent

of a block diagonal matrix.

exp (B) =
1X
k=0

1

k!
Bk =

266664
exp (B1) O O O
O exp (B2) O O
O O exp (B3) O
O O O exp (B4)

377775
In fact the same relation would be valid even for an arbitrary analytical

function f with power series f(z) =
P1

k=0 akz
k, converging in the whole C:
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f (B) =

266664
f (B1) O O O
O f (B2) O O
O O f (B3) O
O O O f (B4)

377775
Claim. Let the space CN or RN be represented as a direct sum of

subspaces V1; :::; Vs, invariant under the action of operator Ax:

CN = V1 � V2 � :::� Vs

Then there is a basis fu1; ; ; ; ; uNg in CN , correspondingly RN such that the
operator Ax in this basis has matrix B similar to A : B = U�1AU , or

UB = AU

that is block diagonal, with blocks of size equal to dimensions of subspaces

V1; :::; Vs and matrix U that has columns u1,...,uN .

The basis fu1; :::; uNg is easy to choose as a union of bases for each
invariant subspace Vj. It is evident that this construction leads to a block

diagonal matrix for the operator Ax because columns with index j in the

matrix B are equal to U�1Auj that are coordinates of vectors Auj in terms

of the basis fu1; :::; uNg and belong to the same invariant subspace as uj.
We illustrate this fact on a simple example with two invariant

subspaces.
Consider a decomposition of the space CN into two subspaces V and W
; dimV = m, dimW = p; m+ p = N invariant with respect to the operator

de�ned by the multiplication Ax. Choose base vectors in each of these

subspaces: fu1; :::; umg and fw1; :::; wpg. They constitute a basis
fu1; :::; um; w1; :::; wpg for the whole space CN .
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Introduce a matrix T = [u1; :::; um; w1; :::; wp] with basis vectors of the

whole CN collected according to the invariant subspace they belong to.
Represent a vector x in terms of this basis: x = Ty where

y = [y1; :::; ym; ym+1; :::; yp+m]

is a vector of coordinates of x in the basis consisting of columns in T . The

operator Ax acting on the vector x is expressed in terms of these

coordinates y as

Ax = ATy

We express now the image of this operation also in terms of

the basis fu1; :::; um; w1; :::; wpg:

T
�
T�1Ax

�
= ATy

Here (T�1Ax) gives coordinates of the vector Ax in terms of the basis

fu1; :::; um; w1; :::; wpg that are columns in the matrix T . It implies that

T�1Ax =
�
T�1AT

�
y

So the matrix (T�1AT ) is a standard matrix of the original mapping Ax in

terms of the basis fu1; :::; um; w1; :::; wpg associated with invariant subspaces
V and W . Now observe that taking vector of y - coordinates with only

components y1; :::; ym non-zero we get vectors that belong to the invariant

subspace V , namely vectors having only y - coordinates 1; :::;m non-zero. It

means that �rst m columns in (T�1AT ) must have elements m+ 1; :::m+ p

equal to zero because A maps V into itself. If we choose y coordinates with

only components ym+1; :::ym+p non-zero, we get a vector that belongs to the
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subspace W; namely vectors that have only coordinates m+ 1, ...;m+ p

non-zero. It means that last p columnst in (T�1AT ) must have elements

1; :::m equal to zero because A maps W into itself. It means �naly that

(T�1AT ) has a block diagonal structure with blocks of size m�m and

p� p corresponding to the invariant subspaces V and W .
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7.2 Jordan canonical form of matrix and it�s functions.

We will observe now that a basis of generalised eigenvectors

CN = E(�1)� E(�2)� :::� E(�s)

build with help of chains of generalised eigenvectors as we discussed before,

leads to a particular "canonical" matrix J similar to the matrix A by the

transformation

V �1AV = J

or A = V JV �1 with the matrix

V =
�
:::v; v(1); :::; v(r�1):::

�
where columns are generalised eigenvectors from di¤erent chains of

generalised eigenvectors corresponding to linearly independent eigenvectors

put in the same order as in (17).

Consider �rst an m�m matrix A in Cm�m that has one eigenvalue � from
characteristic polynomial p(z) = (z � �)m, of multiplicity m and only one

linearly independent eigenvector v:Corresponding chain of generalised

eigenvectors
�
v; v(1); :::; v(m�1)

	
has rank m equal to the dimension of the

space and satis�es equations:

(A� �I) v = 0; (17)

(A� �I) v(1) = v

(A� �I) v(2) = v(1)

e:t:c:

(A� �I) v(m�1) = v(m�2)
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(A� �I)m v(m�1) = 0:
We rewrite this chain of equations as

Av = �v

Av(1) = �v(1) + v

Av(2) = �v(2) + v(1)

e:t:c:

Avm�1 = �v(m�1) + v(m�2)

Using the de�nition of the matrix product and the matrix V de�ned as

V =
�
v; v(1); :::; v(m�1)

�
we observe that vector equations for the chain of generalised eigenvectors

are equivalent to the matrix equation

AV = V D + VN = V (D +N )

where D is the diagonal matrix with the eigenvalue � on the diagonal and

the matrix N has all elements zero except elements over the diagonal that

are equal to one:

N =

26666666664

0 1 0 ::: 0 0

0 0 1 ::: 0 0
...
...
...
. . .

...
...

0 0 0 ::: 1 0

0 0 0 ::: 0 1

0 0 0 ::: 0 0

37777777775
;

Shifting property of the right multiplication by the matrix N .
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The speci�c structure of N makes that the product BN of an arbitrary

square matrix B by the matrix N from the right is a matrix where each

column k is a column k � 1 from the matrix B shifted one step to the right,

except the �rst one that consists of zeroes. It follows from the de�nition of

the matrix product and the observation that elements from the column k in

the matrix B in the product BN meet exactly one non zero element 1 in

the column k + 1 in the matrix N :

B =

266666666664

B11 B12 B13 ::: B1(m�1) B1m

B21 B22 B23 ::: B2(m�1) B2m
...

...
. . . . . .

...
...

...
...

... :::
...

...

B(m�1)1 B(m�1)2 B(m�1)3 ::: B(m�1)(m�1) B(m�1)m

Bm1 Bm2 Bm3 ::: Bm(m�1) Bmm

377777777775
; N =

26666666664

0 1 0 ::: 0 0

0 0 1 ::: 0 0
...
...
...
. . .

...
...

0 0 0 ::: 1 0

0 0 0 ::: 0 1

0 0 0 ::: 0 0

37777777775
;

We observe this transformation in equations for the chain of generalized

eigenvectors with the matrix V instead of an arbitrary matrix B .

Observe also that Nm = 0, m is the size of N .
Therefore

AV = V (D +N )
V �1AV = (D +N ) = J

De�nition of the Jordan block. The matrix J = D +N
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J =

26666666664

� 1 0 ::: 0 0

0 � 1 ::: 0 0
...
...
...
. . .

...
...

0 0 0 ::: 1 0

0 0 0 ::: � 1

0 0 0 ::: 0 �

37777777775
is called Jordans block. Here D is a diagonal matrix with the eigenvalue �

on the diagonal and the matrix N de�ned above, consists of zeroes except

for the diagonal above the main one consisting of ones.

We have proved the following theorem.

Theorem (special case of Theorem A.9 , p. 268) Let m�m matrix

A have one eigenvalue of multiplicity m (characteristic polynomial

p(z) = (z � �)m) and only one linearly independent eigenvector v. Then the
matrix A is similar to the Jordans block J with the similarity relations:

A = V JV �1

J = V �1AV

where the matrix V has columns V =
�
v; v(1); :::; v(m�1)

�
that are elements

from the chain of generalized eigenvectors built as solutions to the

equations (17).

The "shifting" property of the matrix N implies that N 2 consists of zeroes

except the second diagonal over the main one �lled by 1, N 3 consists of

zeroes except the third diagonal over the main one �lled by 1, and �nally

Nm = 0.

De�nition A matrix with such property that for some integer r we have
N r = 0 is called nilpotent.
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Corollary

exp(J) = e�
m�1X
k=0

1

k!
(N )k (18)

exp(J) = e�

26666666664

1 1 1=2 ::: 1
(m�2)!

1
(m�1)!

0 1 1 ::: 1
(m�3)!

1
(m�2)!

...
...

...
. . .

...
...

0 0 0 ::: 1 1=2

0 0 0 ::: 1 1

0 0 0 ::: 0 1

37777777775
because exp(J) = exp(�I +N ) = exp(�I) exp(N ) = e�

Pm�1
k=0

1
k!
(N )k and

each term with index k in the sum is a matrix with k -th diagonal over the

main one, �lled by 1
k!
�

Similarly

exp(Jt) = e�t
m�1X
k=0

tk

k!
(N )k (19)

exp(Jt) = e�t

26666666664

1 t t2=2 ::: tm�2

(m�2)!
tm�1

(m�1)!

0 1 t ::: tm�3

(m�3)!
tm�2

(m�2)!
...
...

...
. . .

...
...

0 0 0 ::: t t2=2

0 0 0 ::: 1 t

0 0 0 ::: 0 1

37777777775

By properties of similar matrices we arrive to the

Corollary. See proof of the spectral theorem 2.19 on page 60-61 in
Logemann Ryan.

For an m�m matrix A having one eigenvalue of multiplicity m and only
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one linearly independent eigenvector v it follows the following expression for

exp(At) :

exp(At) = V exp(Jt)V �1 = V

 
e�t

m�1X
k=0

tk

k!
(N )k

!
V �1

Remark.
If instead of the exponential function we like to calculate an arbitrary

analytical function that has converging in C Maclorain series

f(z) =

1X
k=0

f (k)(0)

k!
zk

then the same reasoning and the Maclorain series for the function f lead to

an expression for the matrix function f(J)

f(J) =

m�1X
k=0

f (k)(�)

k!
(N )k (20)

Theorem A.9 , on Jordan canonical form of matrix p. 268 in
Logemann Ryan.

Let A 2 CN�N ,. There is an invertible matrix T 2 CN�N and an integer
k 2 N such that

J = T�1AT

has the block diagonal structure
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J =

266664
J1 O O O
O J2 O O
...

...
. . .

...

O O O Jk

377775
where Jj has dimension rj � rj and is a Jordan block. Furthermore,Pk
j=0 rj = N and if rj = 1 them Jj = � for some eigenvalue � 2 �(A).

Every eigenvalue � occurs at least at one block; the same � can occur in

more than one block. The number of blocks with the same eigenvalue � on

the diagonal is equal to the number of linearly independent eigenvectors

corresponding to this eigenvalue � (it�s geometric multiplicity g(�)).

Speci�cation of detailes for Theorem A.9 with a sketch of the
proof.

1) Our considerations about chains of generalised eigenvectors and the

special case of Theorem A.9 considered above imply that the matrix T
in the general theorem A.9 on Jordan canonical form can be chosen in such

a way that it�s columns are elements from chains of generalised eigenvectors

built on the maximal number of linearly independent eigenvectors to the

matrix A.

2) The matrix J = T�1AT has a block diagonal structure with one block

corresponding to each linearly independent eigenvector. It follows from the

fact that generalised eigenspaces are invariant with respect to the

transformation A and from the fact that linear envelopes of the chains of

generalised eigenvectors are linearly independent of each other and are also

invariant with respect to A.

3) Each block corresponding to a particular eigenvector is a Jordan block

with corresponding eigenvalue on diagonal, because of the special case of

Theorem A.9 considered above. The size of a particular Jordan block in the

Jordan canonical form depends on the length of the corresponding chain of
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generalised eigenvectors, that is the smallest integer r such that the

equations (A� �I)rv(r) = 0 and (A� �I)r�1v(r) 6= 0 are satis�ed.
4) It follows from the structure of the canonical Jordan form that the

algebraic multiplicity m(�) of an eigenvalue � is equal to the sum of sizes rj
of Jordan blocks corresponding to � and coinsides with the dimension of it�s

generalised eigenspace E(�) = ker
�
(A� �)m(�)

�
.

De�nition. An eigenvalue is called semisimple if it�s generalised eigenspace
consists only of eigenvectors and its algebraic multiplicity is equal to its

geometric multiplicity: m(�) = r(�). In this case corresponding the Jordan

blocks will all have size 1� 1.
Jordan blocks in the Jordan canonical form are unique but can be

combined in various orders. The position of Jordan blocks within a

canonical Jordan form depends on positions of the chains of generalised

eigenvectors in the transformation matrix T and is not unique in this sense.

Example of calculating the Jordan canonical form of a matrix.
(Try to solve yourself exercises from the �le with exercises on linear

autonomous systems, where all answers and some solutions are given)

Consider matrix C =

266664
1 �1 �2 3

0 0 �2 3

0 1 1 �1
0 0 �1 2

377775, Find its canonical Jordan�s
form and corresponding basis.

Find �rst the characteristic polynomial.

det(C � �I) = det

266664
1� � �1 �2 3

0 �� �2 3

0 1 1� � �1
0 0 �1 2� �

377775 =

(1� �) det

264 �� �2 3

1 1� � �1
0 �1 2� �

375 =
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(1� �) (��) det
"
1� � �1
�1 2� �

#
� (1� �) det

"
�2 3

�1 2� �

#
=

(1� �) (��)
�
�2 � 3�+ 1

�
� (1� �) (2�� 1) =

(1� �)
�
3�2 � �� �3

�
+ (1� �) (1� 2�) =

(1� �)
�
3�2 � 3�� �3 + 1

�
= (1� �) (1� �)3 = (1� �)4.

Matrix C has one eigenvalue � = 1 with multiplicity 4. Consider the

equation for eigenvectors (C � I)x = 0 with matrix

(C � I) =

266664
0 �1 �2 3

0 �1 �2 3

0 1 0 �1
0 0 �1 1

377775 Gauss elimination gives

=)

266664
0 �1 �2 3

0 0 0 0

0 0 �2 2

0 0 �1 1

377775 =)
266664
0 �1 �2 3

0 0 �2 2

0 0 0 0

0 0 0 0

377775
with two free variables: x1 and x4. Therefore the dimension of the

eigenspace is 2. There are two linearly independent eigenvectors that can

be chosen as

v1 =

266664
1

0

0

0

377775 and v2 =
266664
1

1

1

1

377775 : Each of these eigenvectors might generate a
chain of generalised eigenvectors.

We check the equation (C � �I )v(1)1 = v1 with extended matrix266664
0 �1 �2 3 1

0 �1 �2 3 0

0 1 0 �1 0

0 0 �1 1 0

377775 and carry out the same Gauss elimination as
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before: =)

266664
0 �1 �2 3 1

0 0 0 0 �1
0 0 0 �2 2

0 0 0 �1 1

377775 : The second equation is not
compatible and the system has no solution.

For the second eigenvector v2 we solve similar system (C � �I )v(1)2 = v2

with the extended matrix

266664
0 �1 �2 3 1

0 �1 �2 3 1

0 1 0 �1 1

0 0 �1 1 1

377775
Gauss elimination implies the echelon matrix266664

0 �1 �2 3 1

0 0 0 0 0

0 0 �2 2 2

0 0 �1 1 1

377775 =)
266664
0 �1 �2 3 1

0 0 �1 1 1

0 0 0 0 0

0 0 0 0 0

377775 that has a

two-dimensional set of solutions. We choose one as v(1)2 =

266664
1

1

�1
0

377775 and
build up the chain of generalized eigenvectors by solving one more equation

(C � �I )v(2)2 = v
(1)
2 with the extended matrix266664

0 �1 �2 3 1

0 �1 �2 3 1

0 1 0 �1 �1
0 0 �1 1 0

377775 =)
266664
0 �1 �2 3 1

0 0 0 0 0

0 0 �2 2 0

0 0 �1 1 0

377775 =)
266664
0 �1 �2 3 1

0 0 1 �1 0

0 0 0 0 0

0 0 0 0 0

377775 leading to a generalized eigenvector (not unique)
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v
(2)
2 =

266664
1

�1
0

0

377775. Finally we conclude that the Jordan canonic form of the

matrix C in the basis v1, v2, v
(1)
2 , v

(2)
2 is J = T�1CT =

266664
1 0 0 0

0 1 1 0

0 0 1 1

0 0 0 1

377775 ,

with transformation matrix T =

266664
1 1 1 1

0 1 1 �1
0 1 �1 0

0 1 0 0

377775, inverse:

T�1 =

266664
1 1 2 �4
0 0 0 1

0 0 �1 1

0 �1 �1 2

377775 ;

8
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9 Theorem about conditions for the exponen-

tial decay and for the boundedness of the

norm kexp(At)k (Corollary 2.13)
Theorem.

Let A 2 CN�N be a complex matrix. Let �A = max fRe� : � 2 �(A)g
where �(A) is the set of all eigenvalues to A. �A is the maximal real part of

all egenvalues to A.

Then three following statements are valid.

1. kexp(At)k decays exponentially if and only if �A < 0. ( It means that
there are M� > 0 and � > 0 such that kexp(At)k �M�e

��t )

2. limt!1 kexp(At)�k = 0 for every � 2 CN (it means that all solutions
to the ODE x0 = Ax tend to zero) if and only if �A < 0:

3. if �A = 0 then supt�0 kexp(At)k <1 if and only if all purely imaginary

eigenvalues and zero eigenvalues are semisimple meaning that m(�) =

g(�).

Remark. One can prove this theorem in two slightly di¤erent but

essentially equivalent ways.

1) Using the similarity of the matrix A and it�s Jordan matrix J

J = T�1AT ; A = TJT�1

corresponding expression of exp(At) in terms of exp(Jt) that is known

explicitely:

exp (At) = T exp(Jt)T�1

2) Using the expression for general solution to a linear autonomous system
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in terms of eigenvectors and generalized eigenvectors to A :

x(t) = exp(At)x0 =
sX
j=1

 "
mj�1X
k=0

(A� �jI)k
tk

k!

#
x0;je�jt

!

for solutions with initial data x0 =
Ps

j=1 x
0;j with x0;j 2 E(�j) -

components of x0 in the generalized eigenspaces E(�j) = ker(A� �j)mj of

the matrix A, where �j; j = 1:::; s are all distinct eigenvalues to A with

algebraic multiplicities mj.

The �rst method is shorter and more explicit.

In the course book the second method is used for proving Theorem 2.12

that is formulated in a slightly unfriendly style.

The Corollary 2.13 almost equivalent and can be proven in exactly the

same way as Theorem 2.12 but a bit simpler.

We give here a proof based on the expression exp (At) = T exp(Jt)T�1

using Jordan matrix.

Proof.
We point out that any matrix A 2 CN�N can be represented with help of
its Jordan matrix J as A = TJT�1 where T is an invertible matrix with

columns that are linearly independent eigenvectors and generalized

eigenvectors to A ordered as in chains of generalised eigenvectors. The

Jordan matrix J is a block diagonal matrix

J =

26666664
J1 O ::: O O
O J2 ::: O O
::: ::: ::: ::: :::

O O ::: Jp�1 O
O O ::: O Jp

37777775
where the number of blocks p is equal to the number of linearly

independent eigenvectors to A. The symbol O denotes zero block.

68



Each Jordan block Jk has the structure as the following:

Jk =

26666664
�i 1 0 0 0

0 �i 1 0 0

0 0 �i 1 0

0 0 0 �i 1

0 0 0 0 �i

37777775
with possibly some blocks of size 1� 1 being just one number �i : The sum

of sizes of blocks is equal to N .

We use the expression

exp (At) = T exp(Jt)T�1

that reduces analysis of the boundedness and limits of the norm kexp (At)k
to the similar analysis for the matrix exp(Jt) because for two matrices A

and B the estimate kABk � kAk kBk and therefore

kexp (At)k � kTk
T�1 kexp(Jt)k

For exp(Jt) we have the following explicit expression in terms of

eigenvalues and their algebraic and geometric multiplicities:

exp(Jt) =

26666664
exp(J1t) O O O O
O exp(J2t) O O O
O O ::: O O
O O O exp(Jp�1t) O
O O O O exp(Jpt)

37777775 (21)

where for example the block of size 5� 5 looks as
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exp(Jkt) = exp(�it)

26666664
1 t t2

2!
t3

3!
t4

4!

0 1 t t2

2!
t3

3!

0 0 1 t t2

2!

0 0 0 1 t

0 0 0 0 1

37777775 (22)

For a block of the size 1� 1 we will get exp(Jkt) = exp(�it). If an
eigenvalue �i is semisimple, that means it has the number of linearly

independent eigenvectors (geometric multiplicity) r(�i) equal to the

algebraic multiplicity m(�i) of �i. In this case all blocks corresponding to

this eigenvalue and corresponding blocks in the exponent exp(Jt) all have

size 1� 1 and have this form exp(Jkt) = exp(�it).

Matrices N �N build a �nite dimentional linear space with dimension

N �N . All norms in a �nite dimensional space are equivalent. It means
that for any two norms k�k1 and k�k2 in the space of matrices, there are

constants C1, C2 > 0 such that for any matrix A

C1 kAk1 � kAk2 � C2 kAk1

It is easy to observe that the expression maxi;j=1:::N jAijj =kAkmax is a
norm in the space of matrices and therefore can be used instead of the

standart eucledian norm. There are constants B1 and B2 > 0 such that

B1 kAkmax � kAk � B2 kAkmax

I makes that to show the boundedness of the matrix norm kexp(Jt)k for
exp(Jt); it is enough to show boundedness of all elements in exp(Jt).

Similarly, to show that kexp(Jt)k ! 0 when t!1 it is enough to show

that all elements in exp(Jt) go to zero when t!1
To prove the statements in the theorem we need just to check how elements
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in the explicit expressions (22) for blocks in exp(Jt) see (21), behave

depending on the maximum of the real part of eigenvalues:

max fRe� : � 2 �(A)g and check situations when blocks of size 1� 1 not
including powers tp can appear.

� We observe in (22) that all elements in exp(Jt) have the form: exp(�it)
or C exp(�it)tp with some constants C > 0 and some p > 0 with possibly

similar �i in di¤erent blocks.

� Absolute values of the elements in exp(Jt) have the form: exp((Re�i) t)
or C exp((Re�i) t)tp where all Re�i � �A. because jexp(i Im�j)j according

to the Euler formula.

We prove �rst su¢ ciency of the conditions in the statement 1. for the
formulated conclusions.

1. If �A < 0 then maximum of absolute values of all elements [exp(Jt)]ij
in exp(Jt) satisfy the inequality

max
i;j

���[exp(Jt)]ij��� �M exp [(�A + �)t] �!
t!1

0

and tends to zero exponentially for some constant M > 0 and � so

small that �� = �A + � < 0. It follows because

exp(Re�it)t
p � exp(�At)t

p = exp [(�A + � � �) t] tp

= exp [(�A + �) t] (t
p exp [��t])| {z }

�M

�M exp [��t]

Therefore kexp(Jt)k � M� exp [��t] �!
t!1

0 with another constant M�

and therefore kexp(At)k � (kTk kT�1kM�) exp [��t] decays exponen-
tially.

Now we prove the su¢ ciency of the conditions in the statement 2. for
the formulated conclusion.

2. The de�nition of the matrix norm implies immediately that if �A < 0
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then by the result for the matrix norm kexp(At)k that limt!1 kexp(At)�k �
k�k limt!1 kexp(At)k = 0 for every � 2 CN :

Now we prove the su¢ ciency and necessity of the conditions in the

statement 3. for the uniform boundedness of the transition matrix

exp(At): supt�0 kexp(At)k <1:

3. If �A = 0 and then there are purely imaginary or zero eigenvalues �.

Then elements in the blocks of exp(Jt) corresponding to purely imagi-

nary or zero eigenvalues will have the form exp(i Im�it) orC exp(i Im�it)tp.

The absolute values of these elements will be 1 orCtp because jexp(i Im�it)j =
1. Therefore absolute values of these elements will be bounded if and

only if corresponding blocks are of size 1 � 1 and therefore elements
Ctp with powers of t are not present. This situation takes place if and

only if purely imaginary and zero eigenvalues are semisimple (have
geometric and algebraic multiplicities equal: m(�) = g(�)). Elements

in exp(Jt) in the blocks corresponding to eigenvalues with negative real

parts will be exponentially decreasing by the arguments in the proof of

statement 1.

Finally we prove necessity of the condition in the Statement 1. We
observe that if �A = 0 then referring to the analysis in 3. absolute
values of the elements corresponding to purely imaginary or zero �i in

exp(Jt) are be bounded in the case if the conditions in 3. are sati�ed,
or otherwise they have the form Ctp and go to in�nity when t ! 1:
Therefore the norm kexp(At)k does not decay exponentially in this case.
If �A > 0 the matrix exp(Jt) will include terms that are exponentially

rising and the norm kexp(At)k can not decay exponentially in this
case.

The nessecity of the conditions in the statement 2 follows from the

behaviour of the elements in exp(Jt) considered before or from the

formula for general solution to the linear autonomous system.
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The condition �A � 0 means that there are eigenvalues � with real

part Re� positive or zero. In the �rst case choosing vector � equal to

a generalized eigenvector or an eigenvector corresponding to �i with

Re�i > 0 we get a solution exp(At)� represented as a sum with terms

including exponents exp(�it) such that jexp(�it)j = jexp(Re�it)j ! 1.
In the second case there are eigenvalues �i = i Im�i. Choosing � equal

to one of corresponding generalized eigenvectors we obtain a solution

exp(At)� represented as a sum including terms with constant absolute

value or an absulute value that rises as some power tp with t!1. It
implies the necessity of conditions in 2. for having limt!1 exp(At)� = 0

for every � 2 CN .�

The proof of the Corollary 2.13 in the book uses the explicit expression of

solutions that we discussed at the beginning of this chapter of lecture notes

and is a bit more complicated.

10 De�nition of stable equilibrium points.

De�nition: A point x� 2 G is called an equilibrium point to the equation

x0 = f(x) if f(x�) = 0:

The corresponding solution x(t) � x� is called an equilibrium solution.

De�nition. (5.1, p. 169, L.R.)
The equilibrium point x� is said to be stable if, for any " > 0; there is � > 0

such that, for any maximal solution x : I ! G to the I.V.P.

x0 = f(x)

x(0) = �

such that 0 2 I and kx(0)� x�k � � we have kx(t)� x�k � " for any
t 2 I \ R+ for all "future times".

Below a picture is given in the case x� = 0.
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De�nition. (5.14, p. 182, L.R.)
The equilibrium point x� of (??) is said to be attractive if there is � > 0
such that for every � 2 G with k� � x�k � � the following properties hold:

the solution x(t) = '(t; �) to I.V.P. with x(0) = � exists on R+and
'(t; �)! x� as t!1.

De�nition. We say that the equilibrium x� is asymptotically stable if it
is both stable and attractive.

In the analysis of stability we will always choose a system of coordinates so

that the origin coinsides with the equilibrium point. In the course book this

agreement is applied even in the de�nition of stability.

De�nition. The equilibrium point x� is said to be unstable if it is not

stable. It means that there is a "0 > 0; such that for any � > 0 there is

point x(0) : kx(0)� x�k � � such that for some t0 2 I we have
kx(t0)� x�k > "0:(a formal negation to the de�nition of stability)

11 Classi�cation of phase portraits of autonomous

linear systems in the plane.

Characteristic polynomial for a 2� 2 matrix A is

p(�) = �2 � �TrA+ detA
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Eigenvalues are:

�1;2 =
TrA

2
�

s
(TrA)2

4
� detA

The line detA = (TrA)2

4
separates points in the plane (TrA; detA)

corresponding to real and complex eigenvalues of the matrix A.

For TrA; detA in the �rst and second quadrants in the plane (TrA; detA)

both Re�1;2 are correspondingly positive and negative.

In the half plane where detA < 0 eigenvalues �1;2 are real but have di¤erent

signs.

These observations imply the following classi�cation of phase portraits for

linear autonomous systems in plane.

A classi�cation of phase portraits for non-degenerate linear
autonomous systems in plane in terms of the determinant and the

trace of the matrix A.
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Stable (unstable) nodes when eigenvalues �1; �2 are real, di¤erent,
negative (positive). det(A) < 1

4
(tr(A))2; det(A) > 0; tr(A) < 0, (

tr(A) > 0):

Saddle (always unstable) when eigenvalues �1; �2 are real, with di¤erent
signs. det(A) < 0:

Stable (unstable) focus - spiral when �1; �2 are complex, with negative
(positive) real parts. det(A) > 1

4
(tr(A))2 6= 0; tr(A) < 0 ( tr(A) > 0):

Stable (unstable) improper - degenerate node when eigenvalue �1 is
real negative (positive) with multiplicity 2 having only one linearly

independent eigenvector. det(A) = 1
4
(tr(A))2; tr(A) < 0 ( tr(A) > 0):

Center (stable but not asymptotically stable) when �1; �2 are complex
purely imaginary. tr(A) = 0 ; det(A) > 0

Stable (unstable) star, when eigenvalue �1 is real negative (positive)
with multiplicity 2 as for improper node, but having two linearly

independent eigenvectors (diagonal matrix A)

�
Example.

An example on instability: saddle point. There are trajectories (not all)

that leave a neighbourhood kxk < d of the origin for initial conditions �
arbitrary close to the origin: for any " > 0 and 0 < k�k � " after some time

T".

r0 = Ar with A =

"
1 1

2 0

#
, characteristic polynomial: �2 � �� 2 = 0;

eigenvectors:

("
1

�2

#)
$ �1 = �1;

("
1

1

#)
$ �2 = 2

r = C1e
2t

"
1

1

#
+ C2e

�t

"
1

�2

#
- the general solution

choosing a ball kxk � 1; and for arbitrary " > 0; � = "
"
1=
p
2

1=
p
2

#
, k�k we
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see that the corresponding solution x(t) = e2t"

"
1=
p
2

1=
p
2

#
will leave this ball

kxk � 1;after time 2T" = � ln ".

7.552.50-2.5-5-7.5

7.5

5

2.5

0

-2.5

-5

-7.5

x

y

x

y

Exercise.
Consider the following system of equations:(

x0 = 2y � x
y0 = 3x� 2y

1. a) can the system have a trajectory going from the point (�a2� 1;�1)
to the point (1; a2 + 1)?

b) which type of �xed point is the origin?

c) draw a sketch of the phase portrait. (4p)

Solution

Matrix of the system is A =

"
�1 2

3 �2

#
. Characteristic polynomila is

det(A� �I) = det
"
�1� � 2

3 �2� �

#
= �2 + 3�� 4. Eigenvalues and

eigenvectors are

"
�1 2

3 �2

#
, eigenvalues: �1 = �4; �2 = 1.
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Eigenvectors v1 =

"
�2
3

#
$ �1 = �4; satis�es the equation

(A� �1) v1 = 0 with (A� �1) =
"
3 2

3 2

#

v2 =

"
1

1

#
$ �2 = 1;satis�es the equation (A� �2) v2 = 0 with (A� �2) ="

�2 2

3 �3

#
Origin is a saddle point and is unstable. Trajectories are hyperbolas

asymptotically approaching with t!1 or t! �1 trajectories L1, L2, L3,

L4, that are straight lines through the origin and are parallell to the

eigenvectors.

Checking points (�a2 � 1;�1) and (1; a2 + 1) we observe that they are
separated by the above mentioned straight trajectories L1, L2, L3, L4.

Therefore no one trajectory can go between these two points because such a

trajectory should cross one of L1, L2, L3, L4 that is impossible because of

the uniquness of solutions to linear systems.�

Exercise 868. Exponent of a matrix with complex eigenvalues.

Calculate exp(A) for the matrix A =

"
0 �1
1 0

#
; with eigenvalues �i.

The set of matrices of the structure

"
a �b
b a

#
have the same properties

with respect to matrix multiplication and addition as complex numbers of

the form a+ ib.

In particular matrices of the form

"
a 0

0 a

#
behave as real numbers and

matrix

"
0 �1
1 0

#
behave as imaginary unit i.

We check that

"
0 �1
1 0

#"
0 �1
1 0

#
=

"
�1 0

0 �1

#
= �

"
1 0

0 1

#
= �I
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and

"
a 0

0 a

#"
b 0

0 b

#
=

"
ab 0

0 ab

#
and observe that the diagonal matrix"

a 0

0 a

#
and the matrix

"
0 �1
1 0

#
commute.

It makes that we can apply the Euler formula!!!!!!

exp(a+ ib) = exp(a)(cos(b) + i sin(b))

for computing the exponentof a matrix of such structure:

exp

 "
a �b
b a

#!
= exp

 "
a 0

0 a

#!
exp

 "
0 �b
b 0

#!
=

exp(a)I

"
cos(b)

"
1 0

0 1

#
+ sin(b)

"
0 �1
1 0

##
= exp(a)

"
cos(b) � sin(b)
sin(b) cos(b)

#

exp

 "
a �b
b a

#!
= exp(a)

"
cos(b) � sin(b)
sin(b) cos(b)

#

It implies immediately that

exp(A) = exp

 
0 �1
1 0

!
=

"
cos(1) � sin(1)
sin(1) cos(1)

#
Example of a stable but NOT asymptotically stable equilibrium

point.

Consider the system x0(t) = Ax(t) with A =

"
0 �2
2 0

#
: Eigenvalues of the

matrix A are � = �2i are purely imaginary (and non-zero). Therefore there
are no other equilibrium points except the origin. The

exp(At) =

"
cos(2t) � sin(2t)
sin(2t) cos(2t)

#
. The solution to the initial value problem
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with initial data [�1; �2]
T is

x(t) =

"
�1 cos(2t)� �2 sin(2t)
�1 sin(2t) + �2 cos(2t)

#
= j�j

"
�1
j�j cos(2t)�

�2
j�j sin(2t)

�1
j�j sin(2t) +

�2
j�j cos(2t)

#
=

= j�j
"
cos(�) cos(2t)� sin(�) sin(2t)
cos(�) sin(2t) + sin(�) cos(2t)

#
= j�j

"
cos(� + 2t)

sin(� + 2t)

#

with cos(�) = �1
j�j : Therefore orbits of solutions are circles around the origin

with the radius equal to j�j. It implies that the equlibrium point in the

origin is stable. �" > 0 in the de�nition of stability can be chosen equal to

" > 0 .�
Exercise.

Calculate exp(At) for the constant matrix A =

"
3 �1
2 0

#
and sketch phase

portrait for the system x0 = Ax.

Solution.
exp(At) is a fundamental matrix to the system of di¤erential equations

x0 = Ax. It means that columns in exp(At) are solutions to the system

above with initial data e1 =

"
1

0

#
and e2 =

"
0

1

#
. The plan is to �nd �rst

the general solution, and then these two particular solutions.

The characteristic polynom for A is

"
3 �1
2 0

#
, X2 � 3X + 2 =

(X � 1) (X � 2) = 0, so eigenvalues are �1 = 1, �2 = 2. Eigenvectors are

v1 =

("
1

2

#)
$ �1; v2 =

("
1

1

#)
$ �2

General solution is x(t) = C1v1et + C2v2e2t. To satisfy the initial data

x(0) = C1v1e
t + C2v2e

2t = e1

we solve a system of two equations for C1 and C2:

C1

"
1

2

#
+ C2

"
1

1

#
=

"
1

0

#
or in matrix form

"
1 1

2 1

#"
C1

C2

#
=

"
1

0

#
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"
�1 0

2 1

#"
C1

C2

#
=

"
1

0

#
=) C1 = �1 and C2 = 2. Therefore the �rst

columnt in exp(At)

is: �v1et + 2v2e2t =
"
�1
�2

#
et +

"
2

2

#
e2t =

"
�et + 2e2t

�2et + 2e2t

#
Similarly we �nd the second column:

C1

"
1

2

#
+ C2

"
1

1

#
=

"
0

1

#
;

"
1 1

2 1

#"
C1

C2

#
=

"
0

1

#
;"

�1 0

2 1

#"
C1

C2

#
=

"
�1
1

#
=) C1 = 1 and C2 = �1.

The second column in exp(At) is: v1et � v2e2t =
"
1

2

#
et +

"
�1
�1

#
e2t ="

et � e2t

2et � e2t

#

and �nally exp(At) =

"
�et + 2e2t et � e2t

�2et + 2e2t 2et � e2t

#
An alternative but more complicated solution would be to represent

exp(At) as exp(At) = P

"
et 0

0 e2t

#
P�1, where the matrix P has columns

of eigenvectors: P = (v1; v2)=

"
1 1

2 1

#
and the inversion of P can be

calculated by Cramer�s formulas: P�1 =

"
1 1

2 1

#�1
=

"
�1 1

2 �1

#
: We

derive the �nal expression by multiplication of the three matrices:

exp(At) = P

"
et 0

0 e2t

#
P�1 =

"
1 1

2 1

#"
et 0

0 e2t

#"
�1 1

2 �1

#
="

et e2t

2et e2t

#"
�1 1

2 �1

#
=

"
�et + 2e2t et � e2t

�2et + 2e2t 2et � e2t

#
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11.1 A general way to calculate exponents of matrices.

(particularly useful for matrices having complex

eigenvalues)

We use here general solution to the equation x0 = Ax:

We clarify �rst in which way it can be used.

� For any matrix B the product Bek gives the column k in the matrix

B.

� Therefore the column k in exp(A) is the product exp(A)ek, where

vector ek is a standard basis vector, or colum with index k from the

unit matrix I.

� On the other hand exp(At)� is a solution to the equation x0 = Ax with
initial condition x(0) = �
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� The expressions xk(t) = exp(At)ek is a solution to the equation x0 = Ax
with initial condition x(0) = ek

� Therefore the value of the solution in time t = 1: xk(1) = exp(A)ek

gives the column k in the matrix exp(A)

� Having the general solution for example in the case of dimension 3:

x(t) = C1	1(t) + C2	2(t) + C3	3(t)

in terms of linearly independent solutions 	1(t), 	2(t), 	3(t); we can

for every k �nd a set of constants C1;k,C2;k,C3;k, corresponding to each

of the initial data ek: Namely we solve equations C1;k	1(0)+C2;k	2(0)+

C3;k	3(0) = ek ; k = 1; 2; 3

� that are equivalent to the matrix equation

[	1(0);	2(0);	3(0)]

264 C1;1 C1;2 C1;3

C2;1 C2;2 C2;3

C3;1 C3;2 C3;3

375 = [e1; e2; e3] = I
� Values at t = 1 of corresponding solutions:

xk(1) = C1;k	1(1) + C2;k	2(1) + C3;k	3(1) = exp(1 � A)ek

will give us columns exp(1 � A)ek in exp(A).

� In the matrix form this result can be expressed as264 C1;1 C1;2 C1;3

C2;1 C2;2 C2;3

C3;1 C3;2 C3;3

375 = [	1(0);	2(0);	3(0)]�1
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exp(A) = [	1(1);	2(1);	3(1)]

264 C1;1 C1;2 C1;3

C2;1 C2;2 C2;3

C3;1 C3;2 C3;3

375
= [	1(1);	2(1);	3(1)] [	1(0);	2(0);	3(0)]

�1

We demonstrate this idea using the result on the general solution
from the problem 859.

We can calculate exp

0B@
264 3 �3 1

3 �2 2

�1 2 0

375
1CA, eigenvalues: �1 = �1; �2 = 1� i;

�3 = 1 + i

General solution to the system x0 = Ax is:

x(t) = C1	1(t) + C2	2(t) + C3	3(t)

= C1e
�t

264 1

1

�1

375+ C2et
264 cos t� sin tcos t

sin t

375+ C3et
264 cos t+ sin tsin t

� cos t

375
introducing shorter notations for each term:

x(t) = C1	1(t) + C2	3(t) + C3	3(t):

We calculate initial data for arbitrary solution by

x(0) = C1	1(0) + C2	3(0) + C3	3(0)=C1

264 1

1

�1

375+ C2
264 11
0

375+ C3
264 1

0

�1

375
x(0) = [	1(0);	3(0);	3(0)]

264 C1C2
C3

375 =
264 1 1 1

1 1 0

�1 0 �1

375
264 C1C2
C3

375
exp(A) has columns that are values of x(1) for solutions that satisfy initial

conditions r(0) = e1, e2; e3 and therefore
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264 1 1 1

1 1 0

�1 0 �1

375
264 C1;1C2;1

C3;1

375 =
264 10
0

375 = e1;
264 1 1 1

1 1 0

�1 0 �1

375
264 C1;2C2;2

C3;2

375 =
264 01
0

375 = e2;
264 1 1 1

1 1 0

�1 0 �1

375
264 C1;3C2;3

C3;3

375 =
264 00
1

375 = e3;
We solve all three of these systems for

264 C1;kC2;k

C3;k

375 in one step as a matrix
equation264 1 1 1

1 1 0

�1 0 �1

375
264 C1;1 C1;2 C1;3

C2;1 C2;2 C2;3

C3;1 C3;2 C3;3

375 = I
It is equivalent to the Gauss elimination of the following extended matrix:264 1 1 1 1 0 0

1 1 0 0 1 0

�1 0 �1 0 0 1

375 : The result at the rigth half will be the inverted
matrix:

264 C1;1 C1;2 C1;3

C2;1 C2;2 C2;3

C3;1 C3;2 C3;3

375 =
264 1 1 1

1 1 0

�1 0 �1

375
�1

=

264 �1 1 �1
1 0 1

1 �1 0

375
It can also found by applying Cramer�s rule.

We arrive to the expression of the matrix exponent by collecting these

results through the matrix multiplication:
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exp(At) = [	1(t);	2(t);	3(t)]

264 C1;1 C1;2 C1;3

C2;1 C2;2 C2;3

C3;1 C3;2 C3;3

375

exp(At) =

264 e�t et (cos t� sin t) et (cos t+ sin t)

e�t et cos t et sin t

�e�t et sin t �et cos t

375
264 �1 1 �1
1 0 1

1 �1 0

375 =
=264 e

t (cos t+ sin t)� e�t + et (cos t� sin t) �et (cos t+ sin t) + e�t �e�t + et (cos t� sin t)
(cos t) et + (sin t) et � e�t � (sin t) et + e�t (cos t) et � e�t

� (cos t) et + (sin t) et + e�t (cos t) et � e�t (sin t) et + e�t

375
and �nally for t = 1 we get exp(A)

exp(A) = e

264 (cos 1 + sin 1)� e
�2 + (cos 1� sin 1) � (cos 1 + sin 1) + e�2 �e�2 + (cos 1� sin 1)

(cos 1) + (sin 1)� e�2 � (sin 1) + e�2 (cos 1)� e�2

� (cos 1) + (sin 1) + e�2 (cos 1)� e�2 (sin 1) + e�2

375
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A general way to calculate exponents of matrices. (par-
ticularly useful for matrices having complex eigenval-
ues)

We use here general solution to the equation x0 = Ax:
We clarify �rst in which way it can be used.

� For any matrix B the product Bek gives the column k in the matrix
B.

� Therefore the column k in exp(A) is the product exp(A)ek, where
vector ek is a standard basis vector, or colum with index k from the
unit matrix I.

� On the other hand exp(At)� is a solution to the equation x0 = Ax with
initial condition x(0) = �

� The expressions xk(t) = exp(At)ek is a solution to the equation x0 = Ax
with initial condition x(0) = ek

� Therefore the value of the solution in time t = 1: xk(1) = exp(A)ek
gives the column k in the matrix exp(A)

� Having the general solution for example in the case of dimension 3:

x(t) = C1	1(t) + C2	2(t) + C3	3(t)

in terms of linearly independent solutions 	1(t), 	2(t), 	3(t); we can
for every k �nd a set of constants C1;k,C2;k,C3;k, corresponding to each
of the initial data ek: Namely we solve equations C1;k	1(0)+C2;k	2(0)+
C3;k	3(0) = ek ; k = 1; 2; 3

� that are equivalent to the matrix equation

[	1(0);	2(0);	3(0)]

24 C1;1 C1;2 C1;3
C2;1 C2;2 C2;3
C3;1 C3;2 C3;3

35 = [e1; e2; e3] = I
� Values at t = 1 of corresponding solutions:

xk(1) = C1;k	1(1) + C2;k	2(1) + C3;k	3(1) = exp(1 � A)ek
will give us columns exp(1 � A)ek in exp(A).
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� In the matrix form this result can be expressed as24 C1;1 C1;2 C1;3
C2;1 C2;2 C2;3
C3;1 C3;2 C3;3

35 = [	1(0);	2(0);	3(0)]�1

exp(A) = [	1(1);	2(1);	3(1)]

24 C1;1 C1;2 C1;3
C2;1 C2;2 C2;3
C3;1 C3;2 C3;3

35
= [	1(1);	2(1);	3(1)] [	1(0);	2(0);	3(0)]

�1

We demonstrate this idea using the result on the general solu-
tion from the problem 859.

We can calculate exp

0@24 3 �3 1
3 �2 2
�1 2 0

351A, eigenvalues: �1 = �1; �2 =

1� i; �3 = 1 + i
General solution to the system x0 = Ax is:

x(t) = C1	1(t) + C2	2(t) + C3	3(t)

= C1e
�t

24 1
1
�1

35+ C2et
24 cos t� sin tcos t

sin t

35+ C3et
24 cos t+ sin tsin t

� cos t

35
introducing shorter notations for each term: x(t) = C1	1(t) +C2	3(t) +

C3	3(t):
We calculate initial data for arbitrary solution by

x(0) = C1	1(0)+C2	3(0)+C3	3(0)=C1

24 1
1
�1

35+C2
24 11
0

35+C3
24 1
0
�1

35
x(0) = [	1(0);	3(0);	3(0)]

24 C1C2
C3

35 =
24 1 1 1
1 1 0
�1 0 �1

3524 C1C2
C3

35
exp(A) has columns that are values of x(1) for solutions that satisfy ini-

tial conditions r(0) = e1, e2; e3 and therefore

24 1 1 1
1 1 0
�1 0 �1

3524 C1;1C2;1
C3;1

35 =

2



24 10
0

35 = e1;
24 1 1 1
1 1 0
�1 0 �1

3524 C1;2C2;2
C3;2

35 =
24 01
0

35 = e2;
24 1 1 1
1 1 0
�1 0 �1

3524 C1;3C2;3
C3;3

35 =24 00
1

35 = e3;
We solve all three of these systems for

24 C1C2
C3

35 in one step as a matrix
equation 24 1 1 1

1 1 0
�1 0 �1

3524 C1;1 C1;2 C1;3
C2;1 C2;2 C2;3
C3;1 C3;2 C3;3

35 = I
It is equivalent to the Gauss elimination of the following extended matrix:24 1 1 1 1 0 0
1 1 0 0 1 0
�1 0 �1 0 0 1

35 : The result at the rigth half will be the inverted
matrix:

24 C1;1 C1;2 C1;3
C2;1 C2;2 C2;3
C3;1 C3;2 C3;3

35 =
24 1 1 1
1 1 0
�1 0 �1

35�1 =
24 �1 1 �1
1 0 1
1 �1 0

35
It can also found by applying Cramer�s rule.
We arrive to the expression of the matrix exponent by collecting these

results through the matrix multiplication:

exp(At) = [	1(t);	2(t);	3(t)]

24 C1;1 C1;2 C1;3
C2;1 C2;2 C2;3
C3;1 C3;2 C3;3

35

exp(At) =

24 e�t et (cos t� sin t) et (cos t+ sin t)
e�t et cos t et sin t
�e�t et sin t �et cos t

3524 �1 1 �1
1 0 1
1 �1 0

35 =
=

24 et (cos t+ sin t)� e�t + et (cos t� sin t) �et (cos t+ sin t) + e�t �e�t + et (cos t� sin t)
(cos t) et + (sin t) et � e�t � (sin t) et + e�t (cos t) et � e�t
� (cos t) et + (sin t) et + e�t (cos t) et � e�t (sin t) et + e�t

35

3



and �nally for t = 1 we get exp(A)

exp(A) = e

24 (cos 1 + sin 1)� e�2 + (cos 1� sin 1) � (cos 1 + sin 1) + e�2 �e�2 + (cos 1� sin 1)
(cos 1) + (sin 1)� e�2 � (sin 1) + e�2 (cos 1)� e�2
� (cos 1) + (sin 1) + e�2 (cos 1)� e�2 (sin 1) + e�2

35
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April 25, 2020

1 Stability of equilibrium points by lineariza-

tion.

We consider in this chapter of the course properties of solutions of I.V.P to

nonlinear autonomous systems of ODEs

x0 = f(x); x(0) = � (1)

where f : G ! RN is locally Lipschitz with respect to x. J is and interval
and G � RN is a non-empty open set.
We will consider in this chapter of the course the stability of equilibrium

points x� of such nonlinear systems (f(x�) = 0) in connection with properties

of corresponding linearized systems in the form

y0(t) = Ay (2)

where A is a Jacoby matrix of the function f calculated in an equilibrium

point of interest.

De�nition. (p. 115, L.R.) A function f is called locally Lipschitz in G

if for any point y 2 G there is a neighborhood V (y) and a number L > 0
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(depending on V (y)) such that for any v; w 2 V (y)

kf(v)� f(w)k � L kv � wk

Example. Functions having continuous partial derivatives are locally

Lipschitz function. (Exercise)

De�nition: A solution x(t) : I ! RN is called maximal solution to an
I.V.P. if it cannot be extended to a larger time interval.

1.1 Peano existence theorem.

The theorem by Peano, states that if f : G ! RN is continuous, the the

I.V.P. (1) above has a solution (not unique!!!) for any � 2 G on some, might
be small time interval (��; �). (Theorems 4.2, p. 102; )
We will consider Peano theorem it at the end of the course.

1.2 Picard and Lindelöf�s existence and uniqueness

theorem.

The theorem by Picard and Lindelöf, states that if f : G ! RN is locally

Lipschitz, then the I.V.P. (1) above has a unique solution for any � 2 G on
some, might be small time interval (��; �). (Theorems 4.17, p. 118; Theorem
4.22, p.122.)

We will formulate it in a more general form and will prove it at the end

of the course.

1.3 De�nition of stable equilibrium points (repetition).

De�nition: A point x� 2 G is called an equilibrium point to the equation

(1) if f(x�) = 0:

The corresponding solution x(t) � x� is called an equilibrium solution.
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De�nition. (5.1, p. 169, L.R.)
The equilibrium point x� is said to be stable if, for any " > 0; there is

� > 0 such that, for any maximal solution x : I ! G to (1) such that 0 2 I
and kx(0)� x�k � � we have kx(t)� x�k � " for any t 2 I \ R+. Below a
picture is given in the case x� = 0.

De�nition. (5.14, p. 182, L.R.)
The equilibrium point x� of (1) is said to be attractive if there is � > 0 such

that for every � 2 G with k� � x�k � � the following properties hold: the

solution x(t) = '(t; �) to I.V.P. with x(0) = � exists on R+and '(t; �)! x�

as t!1.
De�nition. We say that the equilibrium x� is asymptotically stable

if it is both stable and attractive.

In the analysis of stability we will always choose a system of coordinates

so that the origin coincides with the equilibrium point. In the course book

this agreement is applied even in the de�nition of stability.

De�nition. The equilibrium point x� is said to be unstable if it is not

stable. It means that there is a "0 > 0; such that for any � > 0 there is point

x(0) : kx(0)� x�k � � such that for some t0 2 I we have kx(t0)� x�k > "0:(a
formal negation to the de�nition of stability)
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1.4 Stability and instability of the equilibrium point

in the origin for autonomous linear systems.

Origin is an equilibrium point for all linear systems of ODE. If the matrix A

is degenerate namely if det(A) = 0, there can appear lines or hyperplanes of

equilibrium points except the origin, corresponding to the non-trivial kernel

of the matrix A.

Reminder of classi�cation of phase portraits for autonomous
systems of ODEs in the plane:
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1.5 Stability and instability of the equilibrium in the

origin for arbitrary autonomous linear systems of

ODEs

General statement about stability and instability of the equilibrium in the

origin for arbitrary autonomous linear systems of ODEs follow immediately

from the Corollary 2.13 in L.&R.

Theorem. (Propositions 5.23, 5.24, 5.25, pp. 189-190, L.R.)
Let A 2 CN�N be a complex matrix.
Then three following statements are valid for the system x0(t) = Ax(t)

1. The origin is asymptotically stable equilibrium point if and only if

Re� < 0 for all � 2 �(A).

2. The equilibrium point in the origin is stable if and only if Re� � 0

for all � 2 �(A) and all eigenvalues � with Re� = 0 are semisimple

(the number of linearly independent eigenvectors to � is equal to the

algebraic multiplicity of �)

3. The equilibrium point in the origin is unstable if and only if there is at

least one eigenvalue � with Re� > 0 or an eigenvalue � with Re� = 0

that is not semisimple.

(3. is a direct consequence of the 1. and 2. )

Prof is a simple exrecise based on the de�nition and the Corollary 2.13

about the properties of kexp(At)k

De�nition. Matrix A with the property Re� < 0 for all � 2 �(A) is
called Hurwitz matrix.
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1.6 Inhomogeneous linear systems with constant coef-

�cients.

Corollary. Duhamel formula, autonomous case. (Corollary 2.17, p.
43)

Consider the inhomogeneous system

x0(t) = Ax+ g(t)

with continuous or piecewise continuous function g : R ! RN . Then the
unique solution to the I.V.P. with initial data

x(0) = �

is represented by the Duhamel formula:

x(t) = exp(At)� +

Z t

0

exp(A(t� �))g(�)d� (3)

Proof of the Corollary: check that the formula gives a solution and show
that it is unique.

x(t) = exp(At)� +

Z t

0

exp(A(t� �))g(�)d�

= exp(At)� + exp(At)

Z t

0

exp(�A�)g(�)d�

= exp(At)

�
� +

Z t

0

exp(�A�)g(�)d�
�

x0(t) = A exp(At)

�
� +

Z t

0

exp(�A�)g(�)d�
�
+ exp(At) exp(�At)g(t)

= Ax(t) + g(t)

for all points t where g(t) is continuous. Di¤erence z(t) = x(t)�y(t) between
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two solutions x(t) and y(t) satis�es the homogeneous systems z0(t) = Az(t)

and zero initial condition z(0) = 0 and the integral equation: z(t) =R t
0
Az(�)d�. The same reasoning as before, using the Grönwall inequality,

or just a reference to the uniqueness of solutions to homogeneous systems

implies that z � 0.

1.7 Stability of equilibrium points to linear systems

perturbed by a small right hand side.

Theorem (Theorem 5.27, p. 193, L.R.) Let G � RN be a non-empty open
subset with 0 2 G. Consider the di¤erential equation

x0(t) = Ax+ h(x) (4)

x(0) = � (5)

where A 2 RN�N and h : G! RN is a continuous function satisfying

lim
z!0

h(z)

kzk = 0: (6)

If A is Hurwitz, that is Re� < 0 for all � 2 �(A), then 0 is an asymptotically
stable equilibrium of 4.

Moreover, there is � > 0 and C > 0 and � > 0 such that for k�k < �
the solution x(t) to the initial value problem with initial data

x(0) = �

satis�es the estimate

kx(t)k � C k�k e��t

Proof. (This proof is required at the exam)
If Re� < 0 for all � 2 �(A) then there is � > 0 such that Re� < ��

7



(strictly smaller!) for all � 2 �(A) and

kexp(At)k � Ce��t (7)

for some constant C > 0.

We can choose " > 0 such that C" < � and using (6) choose �" such that

for kzk < �", z 2 G

kh(z)k
kzk < " (8)

kh(z)k < " kzk (9)

It follows from properties of h :limz!0
h(z)
kzk = 0:

We know from Peano theorem or from Picard - Lindelöf theorem in case f

is Lipschitz, that the solution to the equation (4) exists on some time interval

t 2 [0; �) (another �!!!)
We apply Duhamel formula (3) for solutions to (4):

x(t) = exp(At)� +

Z t

0

exp(A(t� �))h(x(�))d�

As long as x(�) under the integral, belongs to the ball fx : kxk < �"g � G,

we apply the triangle inequality for integrals and estimates (7) and (8):

kx(t)k = kexp(At)k k�k+
Z t

0

kexp(A(t� �))k kh(x(�))k d�

kx(t)k � Ce��t k�k+
Z t

0

Ce��(t��)" kx(�)k d�

Introduce the function y(t) = kx(t)k e�t. Then multiplying the last inequality

by e�t we arrive to

8



y(t) � C k�k+
Z t

0

(C") y(�)d�

The Grönwall inequality implies that

ky(t)k � C k�k e(C")t

and

kx(t)k � C k�k e�(��C")t (10)

It is valid as long as kx(t)k < �". Now we can choose � = � � C" > 0, by
choosing " small enough, � = 1

2
�"=C and k�k < �: This choice of initial

conditions implies that

kx(t)k � �"; (11)

as long as this solution exists (!!!)

(Important theoretical argument! Check similar argument in
Lemma 4.9, p. 110 in LR )
The last estimate implies in fact an important conclusion that the solution

must exist in fact on the whole R+, because supposing the opposite, namely
that there is some maximal existence time tmax; leads to a contradiction.

Let consider this important argument. It consists of two steps.

1) We use the continuity and boundedness of the solution x(t) on [0; tmax)

together with the integral form of the equation

x(t) = � +

Z t

0

Ax(�)d� +

Z t

0

h(x(�))d�

The set fx(t) : t 2 [0; tmax)g (that is the orbit of the solution), is bounded
according to (11). The closure C of this set is therefore compact. The

function h(x) is continuous on G and is therefore bounded on the compact

set C.

9



For any sequence ftkg1k=1 such that tk ! tmax the sequence of integrals

fx(tk)g1k=1is a Cauchy sequence and therefore has a limit limk!1 x(tk) = �,

because

kx(tm)� x(tk)k �

Z tm

tk

Ax(�)d� +

Z tm

tk

h(x(�))d�

 ������
Z tm

tk

kAk kx(�)k d�
�����+

�����
Z tm

tk

kh(x(�))k d�
����� � C jtm � tkj ! 0; m; k !1

This limit is unique and independent of the sequence ftkg1k=1 by a similar
estimate. Therefore we can extend x(t) up to the point tmax as

x(tmax) = � = lim
t!tmax

x(t)

2) Now using an existence theorem (Peano or Picard-Lindelöf) for non-

linear systems of ODEs, we conclude that there is a solution y(t) to the

equation

y0(t) = Ay + h(y)

on the time interval [tmax; tmax + �) with the initial condition y(tmax) = � at

time tmax. This solution is evidently an extension of the original solution x(t)

to a larger time interval, that contradicts the our supposition.

Therefore the solution x(t) can be extended to the whole R+ and satis�es
the estimate (11). It in turn implies that this solution must satisfy the desired

estimate

kx(t)k � C k�k e��t

and implies the asymptotic stability of the equilibrium point in the origin.�
This theorem implies immediately the following result on the stability of

equilibrium points by linearization.

10



Theorem.On stability of equilibrium points by linearization. (Corol-
lary 5.29, p. 195)

Let f : G ! RN , G � RN be a non empty open set with 0 2 G , f be

continuous and f(0) = 0:Let f be di¤erentiable in 0 and A be the Jacoby

matrix of f in the point 0; A = D(f)(0):

Aij =
@fi
@xj

(0); i; j = 1; :::N

If A is a Hurwitz matrix (all eigenvalues � 2 �(A) have Re� < 0), then
the equilibrium point of the system

x0(t) = f(x(t))

in the origin is asymptotically stable.

Proof. Consider the function h(z) = f(z)� Az. Then by the de�nition
of derivatives h(z)= kzk ! 0 as z ! 0. An application of the theorem

about stability of a small perturbation of a linear system to the function

f(z) = Az + h(z) proves the the claim. �
The following general theorem by Grobman and Hartman that we for-

mulate without proof is a strong result on connection between solutions to a

nonlinear system

x0(t) = f(x(t)); (12)

x(0) = � (13)

with right hand side f(x) close to an equilibrium point x�, f(x�) = 0 and

solutions to the linearized system

y0(t) = Ay (14)

y(0) = � � x� (15)

11



with constant matrix A that is Jacobi matrix of the right hand side f in the

equilibrium point x�, A = D(f)(x�):

Aij =
@fi
@xj

(x�); i; j = 1; :::N

�
De�nition. An equilibrium point x� of the system (12) is called hyper-

bolic if for all eigenvalues � 2 �(A) it is valid that Re� 6= 0.
Theorem. (Grobman-Hartman) A formulation and a (di¢ cult!)

proof can be found as Th. 9.9 at the page 266, in the book by
Teschl: http://www.mat.univie.ac.at/%7Egerald/ftp/book-ode/index.html

Consider an I.V.P. for a autonomous system of di¤erential equations

x0(t) = f(x(t)); (16)

x(0) = � (17)

Let f 2 C1(B), in BR(x�) = f� : k� � x�k < R g � G and x� 2 G be a
hyperbolic equilibrium point of (12): f(x�) = 0:

Then there are neighborhoods U1(x�) and U2(x�) of x� and an invertible

continuous mapping R : U1(x�)! U2 (x�) such that R maps shifted solutions

x�+e
At(��x�) to the linearized system (14) onto solutions x(t) = '(t; R(�))

of the non-linear system (12) with initial data

� = R(�); � = R�1 (�)

R
�
x� + e

At(� � x�)
�
= '(t; R(�))

and back

R�1 ('(t; �)) = x� + e
At(R�1 (�)� x�)

12



as long as x� + eAt(R�1 (�)� x�) 2 U1(x�).�

Various classes of topologically equivalent equilibrium points in the plane:

a) asymptotically stable, b) center, c) saddle point, d) unstable:

In higher dimensions there is a larger variety of topologically di¤erent

con�gurations of phase protraits around equilibrium points.

Example on application of the Grobman - Hartman theorem

13



Consider the system

x01 = �1
2
(x1 + x2)� x21

x02 =
1
2
(x1 � 3x2)

It has two equilibrium points: one in the origin (0; 0) and the second one

is (�2=3;�2=9):We �nd them by expressing x1 = 3x2 , from the equation
1
2
(x1 � 3x2) = 0, substituting to the equation �1

2
(x1 + x2) � x21 = 0, and

solving the quadratic equation �1
2
(3x2 + x2)� 9x22 = 0 for x2.

�1
2
(3x2 + x2)� 9x22 = �x2 (9x2 + 2) = 0:

and its linearization in the origin:

x01 = �1
2
(x1 + x2)

x02 =
1
2
(x1 � 3x2)

The linearized system has matrix A =

"
�1
2
�1
2

1
2

�3
2

#
, characteristic polyno-

mial: �2 + 2� + 1 = 0, eigenvalues: �1;2 = �1. The only eigenvector is"
1

1

#
. The origin is a stable for both systems. This equilibrium point is

asymptotically stable.

On the other hand we see that another equilibrium (�2=3;�2=9) of the
non-linear system seems to be a saddle point.

We check it now. For an arbitrary point we need �rst to calculate the

Jacoby matrix of the right hand side in the system x0 = f(x) in an arbitrary

point x 2 R2

14



[Df ]ij (x) =
@fi
@xj

(x)

[Df ] (x) =

"
@f1
@x1
(x) @f1

@x2
(x)

@f2
@x1
(x) @f2

@x2
(x)

#
=

"
�1=2� 2x1 �1=2

1=2 �3=2

#

Calculating the Jacoby matrix in the second equilibrium point (�2=3;�2=9)
we get the matrix for the linearization of the right hand side in this point:

A =

"
�1=2� 2(�2=3) �1=2

1=2 �3=2

#
=

"
5
6
�1
2

1
2
�3
2

#

The characteristic polynomial is p(�) = �2 � �tr(A) + det(A). tr(A) =

5=6� 3=2 = �2
3
. det(A) = 5

6

�
�3
2

�
� 1

2

�
�1
2

�
= �1: Therefore p(�) = �2 +

2
3
��1. Eigenvalues are real and have di¤erent signs because the determinant
of A is negative. We do not need to calculate them to make these conclusions.

Therefore the linearized system

y0 = Ay

has a saddle point in the origin. The non-linear system also has a sad-

dle point con�guration in the phase portrait close to the equilibrium point

(�2=3;�2=9) according to the Grobman-Hartman theorem. This equilib-
rium point is unstable. If we like to sketch a more precise phase portrait

for the linearized system we can calculate eigenvalues and eigenvectors. But

we can only guess the global phase portrait for the non-linear system (how

local phase portraits connect with each other). We give below phase por-

traits for the non-linear system and for the linearized system around each of

equilibrium points.
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Phase plane for the linearized system around the equilibrium point

(�2=3;�2=9)

Counterexample to the Grobman - Hartman theorem.
A system such that the linearized system has a center (stable) but the

non-linear has an unstable equilibrium point.
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Consider the system

dx1
dt

= x2 + (x
2
1 + x

2
2)x1

dx2
dt

= �x1 + (x21 + x22)x2

The origin (0; 0) is an equilibrium point and the linearized system in this

point has the form

x0 =

"
0 1

�1 0

#
x

The origin is a center that is a stable equilibrium point.

Consider the equation for r2(t) = x21(t)+x
2
2(t):We derive it by multiplying

the �rst equation by x1 and the second by x2 and considering the sum of the

equations leading to

x1
dx1
dt
+ x2

dx2
dt

=
1

2

d (x1)
2

dt
+
1

2

d (x2)
2

dt
=
1

2

d

dt

�
r2(t)

�
=
�
r2(t)

�2
We see that the solution to this equation z = r2

1

2

dz

dt
= z2

dz

z2
= 2dtZ

dz

z2
=

Z
2dt

�1
z
= 2t+ C

�1
z(0)

= C

�1
z
= 2t+

�1
z(0)

z = r2

17



with separable variables with arbitrary initial data r(0) is

r2(t) =
r2(0)

1� 2r2(0)t

The solution r2(t) is increasing with time and tends to in�nity with t rising

and blows up in �nite time.

The equilibrium (0; 0) to the nonlinear system is unstable. The phase

portraits of the nonlinear system and the linearized system are qualitatively

di¤erent in this example when eigenvalues to the Jacoby matrix of the right

hand side of the nonlinear system in the equilibrium point have real parts

equal to zero.

Example on application of the Grobman - Hartman theorem
Find for which values of the parameter a the origin is an asymptotically

stable equilibrium, stable equilibrium, unstable equilibrium of the following

system:(
x0 = y

y0 = �ay � x3 � a2x
(4p)

Solution. Consider the Jacoby matrix of the right hand side in the

equatiuon.

A(x; y) =

"
0 1

�a2 � 3x2 �a

#
. It�s value in the origin is A(0; 0) ="

0 1

�a2 �a

#
, with characteristic polynomial: p(�) = �2 + a�+ a2.

Eigenvalues are �1;2 = �a
2
�
q

a2

4
� a2 = �a

2
� i
q

3a2

4

The Grobman - Hartman theorem about stability by linearization imples

that the origin is asymptotically stable when a > 0 and is unstable when

a < 0. For a = 0 linearization does not give any information about sta-

bility because in this case Re� = 0. In this case the system is reduced to(
x0 = y

y0 = �x3
and we can �nd an equation for orbits of the system from an

18



ODE with separable variables:

dy

dx
=

dy=dt

dx=dt
=
�x3
y

ydy = �x3dxZ
ydy = �

Z
x3dx

y2

2
= �x

4

4
+ C

x4

4
+
y2

2
= C

1.2510.750.50.250-0.25-0.5-0.75-1-1.25

1.25

1

0.75

0.5

0.25
0

-0.25

-0.5

-0.75

-1

-1.25

x

y

x

y

Example. Stability by linearization for the pendulum with fric-
tion.

x01(t) = x2(t)

x02(t) = � 
m
x2(t)�

g

l
sin(x1(t))

Linearized equation around (0; 0) is

19



x01(t) = x2(t)

x02(t) = � 
m
x2(t)�

g

l
x1(t)

The matrix of the system is

A =

"
0 1

�g
l
� 
m

#

tr(A) = � 
m
< 0; det(A) = g

l
> 0. Therefore the Re� < 0 for all

� 2 �(A). For small friction coe¢ cient  the equilibrium will be focus,

for large friction it will be a stable node. An intermediate case with stable

improper node is also possible.

Point out that the case with zero friction:  = 0 cannot be treated by

linearization, because the linearized system has a center in the origin. The

non-linear system has in fact also a center in the origin, but we cannot prove

it by means of linearization. We will consider this case later by di¤erent

means.
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The linearization of the equation around (�; 0).

Linear approximation for sin around �. Let (x1 � �) = y1(t):

sin(x1) = sin(�) + cos(�)(x1 � �) +O(x1 � �)2 � �(x1 � �) = �y1(t)

y1(t) = x1(t)� �; y01(y) = x01(t)

therefore

x1(t) = y1(t) + �; x
0
1(y) = y

0
1(t)

x2(t) = x01 = y
0
1(t)

Introducing y2 = y01 = x2; we get x2 = y2

sin(x1) = sin(�) + cos(�)y1 +O(� � x1)2

;

x01(t) = x2(t)

x02(t) = � 
m
x2(t)�

g

l
sin(x1)

y01(t) = y2(t)

y02(t) = � 
m
y2(t)�

g

l
(�y1)

The linearized equation around (�; 0)

y01(t) = y2(t)

y02(t) =
g

l
y1(t)�



m
y2(t)
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The matrix of the system is

A =

"
0 1
g
l
� 
m

#

Characteristic polynomial: p(�) = �2 �
�
� 
m

�
�� g

l
.

tr(A) = � 
m
< 0; det(A) = �g

l
< 0. The equilibrium is always a saddle

point (instable).

Example on application of the Grobman - Hartman theorem

Find all stationary points of the system of ODE

(
x0 = ey � ex

y0 =
p
3x+ y2 � 2

and

investigate their stability by linearization.

1. Solution.

We �nd stationary points by pointing out that the �rst equation implies

y = x and then
p
3x+ x2� 2 = 0 implies 3x+ x2� 4 = (x+ 4) (x� 1)

= 0 and therefore two roots x1 = 1 and x2 = �4 follow.

We have two stationary points: (1; 1) and (�4;�4).

The Jacobi matrix is J(x; y) =

24 �ex ey

3

2
p
3x+y2

yp
3x+y2

35
J(1; 1) =

"
�e e
3

2
p
3+1

1p
3+1

#
=

"
�e e
3
4

1
2

#
The trace of J(1; 1) is tr (J(1; 1)) =

1=2� e < 0

det (J(1; 1)) = e(�1=2� 3=4) = �5
4
e < 0 it implies that the stationary

point (1; 1) is has one negative and one postive eigenvalue and therefore

is a saddle point and is unstable by the Grobman Hartman theorem.

The characteristic equation for a 2x2 matrix A is �2�tr(A)��det(A) =
0:

In this particular situation it is �2 +
�
e� 1

2

�
�� 5

4
e = 0:
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Eigenvalues are: �1 = �1
2
e + 1

4
� 1

4

p
16e+ 4e2 + 1, �2 = �1

2
e + 1

4
+

1
4

p
16e+ 4e2 + 1.

J(�4;�4) =
"
�e�4 e�4

3
4

�4
2

#
=

"
�e�4 e�4

3
4

�2

#
.

The trace of J(�4;�4) is tr (J(�4;�4)) = �2� e�4 < 0.

det (J(�4;�4)) = e�4
�
2� 3

4

�
= 5

4
e�4 > 0: Therefore the the real parts

of eigenvalues are negative and the stationary point (�4;�4) is an
asymptotically stable node by the Grobman Hartman theorem.

The characteristic equation is �2 + (e�4 + 2)�+ 5
4
e�4 = 0.

Eigenvalues are : �1 = �1
2
e�4 � 1� 1

2

q
1
e8
� 1

e4
+ 4; �2 = �1

2
e�4 � 1 +

1
2

q
1
e8
� 1

e4
+ 4

Example on the application of the Grobman - Hartman theorem(
x0 = y

y0 = �y � x� x2
Equilibrium points are (0; 0) and (�1; 0):

Jacobi matrix is A(x; y) =

"
0 1

�1� 2x �1

#

Jacobi matrix at the origin is

"
0 1

�1 �1

#
,

characteristic polynomial is p(�) = �2+�+1, eigenvalues are �1
2
i
p
3�

1
2
; 1
2
i
p
3 � 1

2
. Real parts of eigenvalues are negative and therefore the origin

is stable focus, asymptotically stable equilibrium.

Jacobi matrix at the point (�1; 0) is
"
0 1

1 �1

#
,

characteristic polynomial is p(�) = �2 + � � 1;eigenvalues are �1
2

p
5 �

1
2
; 1
2

p
5 � 1

2
. One is negative, another is positive, the equilibrium point is a

saddle point and is unstable.
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1 Stability by linearization for the pendulum

with friction.

x01(t) = x2(t)

x02(t) = � 
m
x2(t)�

g

l
sin(x1(t))

Linearized equation around (0; 0) is

x01(t) = x2(t)

x02(t) = � 
m
x2(t)�

g

l
x1(t)

The matrix of the system is

A =

�
0 1
� g
l � 

m

�
tr(A) = � 

m < 0; det(A) = g
l > 0. Therefore the Re� < 0 for all � 2 �(A).

For small friction coe¢ cient  the equilibrium will be focus, for large friction it
will be a stable node. An intermediate case with stable improper node is also
possible.

Point out that the case with zero friction:  = 0 cannot be treated by
linearization, because the linearized system has a center in the origin. The non-
linear system has in fact also a center in the origin, but we cannot prove it by
means of linearization. We will consider this case later by di¤erent means.
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The linearization of the equation around (�; 0).

Linear approximation for sin around �. Let (x1 � �) = y1(t):

sin(x1) = sin(�) + cos(�)(x1 � �) +O(x1 � �)2 � �(x1 � �) = �y1(t)

y1(t) = x1(t)� �; y01(y) = x01(t)

therefore

x1(t) = y1(t) + �; x
0
1(y) = y

0
1(t)

x2(t) = x01 = y
0
1(t)

Introducing y2 = y01 = x2; we get x2 = y2

sin(x1) = sin(�) + cos(�)y1 +O(� � x1)2

;

x01(t) = x2(t)

x02(t) = � 
m
x2(t)�

g

l
sin(x1)

y01(t) = y2(t)

y02(t) = � 
m
y2(t)�

g

l
(�y1)

The linearized equation around (�; 0)

y01(t) = y2(t)

y02(t) = � 
m
y2(t) +

g

l
y1

The matrix of the system is

A =

�
0 1
g
l � 

m

�
Characteristic polynomial: p(�) = �2 �

�
g
l

�
�+

�
1
m
�
.

tr(A) = � 
m < 0; det(A) = � g

l < 0. The equilibrium is always a saddle
point (unstable).
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Lecture notes on general and periodic linear ODEs

Plan

1. Transition matrix function, existence and equations. Lemma 2.1, p.24, Cor. 2.3, p.26.

2. Grönwall inequality. General case. Lemma. 2.4, p. 27 (skiped)

3. Uniqueness of solutions and dimenstion of solution space. Th. 2.5, p. 28, Prop. 2.7(1), p.30

4. Group properties of transition matrix function and transition mapping.

(Chapman - Kolmogorov relations) Cor. 2.6, p. 29

5. Fundamental matrix solution and its connection with transition matrix function. Prop. 2.8, p.33

6. Inhomogeneous linear systems. Variation of constant formula (Duhamels formula), general case.

Th. 2.15, p.41,Cor. 2.17.

7. Transition matrix function for periodic linear systems. Formula. 2.31, p. 45.

8. Monodromy matrix and properties of transition matrix function for periodic systems. Th. 2.30, p.

53.

9. Logarithm of a matrix. Prop. 2.29, p. 53.

10. Floquet multipliers and exponents.

11. Boundedness and zero limits for solutons to periodic linear systems. Th. 2.31, p.54. Cor. 2.33, p-

59

12. Existence of periodic solutions to periodic linear systems. Prop. 2.20, p. 45

13. Abel-Liouville�s formula. Prop. 2.7(2)., p.30.

14. Conditions for existence of unbounded solutions based on the Abel-Liouvilles formula

15. Hill equation and Kapitza pendulum. pp. 55-57.

0.1 Transition matrix function, existence and equations.

The subject of this chapter of lecture notes is general non - autonomous linear systems of ODEs and in

particular systems with periodic coe¢ cients and Floquet theory for them.

The general theory for non - autonomous linear systems (linear systems with variable coe¤cients) is

very similar to one for systems with constant coe¢ cients. The existence is established through the solution

of the integral form of equations by iterations. Uniqueness is based on a general form of the Grönwall

inequality that is also proved here in a very similar fashion. These results lead to the fundamental result

on the dimension of the space of solutions that is based on the uniqueness result similarly to the proof for
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systems with constant coe¢ cients. The essential di¤erence from the case with constant coe¢ cients is that

in the case with variable coe¢ cients one cannot �nd analytical solutions except some particular cases as

systems with triangular matrices.

We consider the I.V.P. in the di¤erential

x0 = A(t)x(t); x(�) = � (1)

or in the integral form

x(t) = � +

Z t

�

A(s)x(s)ds (2)

with matrix valued function A : J ! RN�N (or CN�N) that is continuous or piecewise continuous on the
interval J . Here it is important that the initial time � is an arbitrary real number from J , not just zero.

The solution is de�ned as a continuous function x(t) on an interval I that includes point � acting into

RN or CN satisfying the integral equation (2). By a version of Calculus main theorem (Newton-Leibnitz

theorem) the solution de�ned in such a way will satisfy the di¤erential equation (1) in points t where A(t)

is continuous.

We remind the following lemma considered in the beginning of the course.

Lemma. The set of solutions Shom to (2) is a linear vector space.
�
It motivates us to search solution in the form �(t; s)� where �(t; s) is a continuous matrix valued

function on J � J and � is an arbitrary initial data at t = s : x(s) = �. It implies also that �(s; s) = I.

Substituting the expression x(t) = �(t; s)� into the integral form of the i.V.P. we arrive to the vector

equation

�(t; s)� = � +

Z t

s

A(�)�(�; s)�d� =)

�(t; s)� =

�
I +

Z t

s

A(�)�(�; s)d�

�
�

with arbitrary � 2 RN that implies the matrix equation for �(t; s):

�(t; s) = I +

Z t

s

A(�)�(�; s)d� (3)

or the same equation in di¤erential form valid outside points of disconituity of A(t):

d

dt
�(t; s) = A(t)�(t; s); �(s; s) = I:

We will solve the equation (3) by means of iterational approximations Mn(t; s) to �(t; s) introduced in the

following way:

M1(t; s) = I; Mn+1(t; s) = I +

Z t

s

A(�)Mn(�; s)d�; 8n 2 N (4)

Lemma 2.1 , p. 24 and Corollary 2.3, p. 26 in L&R
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For any closed and bounded interval [a; b] � J the sequence fMn(t; s)g converges uniformly on [a; b]�
[a; b] to a continuous on [a; b]� [a; b] matrix valued function �(t; s) that satis�es the integral equation (3).
Proof.
The classical idea of the proof is instead of considering Mn(t; s) to consider telescoping series with

elements fn+1(t; s) =Mn+1(t; s)�Mn(t; s), f1 =M1 = I, with partial sum that is equal to Mn:

Mn =

nX
k=1

fk

where fk(t; s) is represented as a repeated integral operator from (4):

M1(t; s) = I; M2(t; s) = I +

Z t

s

A(�)M1(�; s)d�;

M3(t; s) = I +

Z t

s

A(�1)M2(�1; s)d�1 =

= I +

Z t

s

A(�1)

�
I +

Z �1

s

A(�2)M1(�2; s)d�2

�
d�1

I +

Z t

s

A(�1)Id�1 +

Z t

s

A(�1)

Z �1

s

A(�2)M1(�2; s)d�2d�1

f3 = M3 �M2 =

Z t

s

A(�1)

Z �1

s

A(�2)M1(�2; s)d�2d�1

fn+1(t; s) =Mn+1(t; s)�Mn(t; s) =

Z t

s

A(�1)

Z �1

s

A(�2):::

Z �n�1

s

A(�n)d�n:::d�2d�1

for all (t; s) 2 J�J; 8n 2 N. Since A(t) is piecewise continuous on J , it�s norm is bounded on any compact
subinterval [a; b] � J :

kA(t)k � K 8t 2 [a; b]

We observe using triangle inequality for integrals several times, and the last estimate, that

kfn+1(t; s)k = kMn+1(t; s)�Mn(t; s)k � Kn

Z t

s

Z �1

s

:::

Z �n�1

s

d�n:::d�2d�1

and after calculating the integral
R t
s

R �1
s
:::
R �n�1
s

d�n:::d�2d�1 =
1
n!
(t � s)n, based essentially on

R
skds =

sk+1

k+1
:

kfn+1(t; s)k = kMn+1(t; s)�Mn(t; s)k �
Kn

n!
(t� s)n � Kn

n!
(b� a)n

The number series
P1

n=0
Kn

n!
(b � a)n is convergent to exp(K(b � a)): Therefore by the Weierstrass�

criterion the functional series
P1

n=1 fn(t; s) converges uniformly on [a; b]� [a; b] to the limit denoted here
by �(t; s). It implies by construction, that the sequence Mn(t; s) converges uniformly on [a; b] � [a; b] to
the limit denoted by �(t; s): Going to the limit in the relation de�ning iterations (4), we observe that the

limit functional matrix �(t; s) satis�es the equation (3).�
Since the interval [a; b] 2 J is arbitrary we may de�ne the function � : J = J � J ! RN�N (or CN�N)
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as the (pointwise) limit:

Mn(t; s)! �(t; s); n!1

for all (t; s) 2 J � J .
De�nition. The matrix �(t; �) is called transition matrix function.
Point out that �(t; t) = I. The product x(t) = �(t; �)� gives the solution to I.V.P. to the equation

x0(t) = A(t)x(t) with initial data x(�) = �. In the case when A(t) is only piecewise continuous, x(t) will be

continuous and satify the corresponding integral equation. It will satify the di¤erential equation outside

discontinuities of A(t).

Example. For an autonomous linear system with constant matrix A the transition matrix function is

�(t; �) = exp(A(t� �)):

0.2 Grönwalls inequality. Uniqueness of solutions.

Grönwall �s lemma. Lemma 2.4., p. 27 in L&R.
(We skip it for now. A simpler version was considered before)
Let I � R, be an interval, let � 2 I, and let g; h : I ! [0;1) be continuous nonnegative functions. If

for some positive constant c > 0,

g(t) � c+
����Z t

�

h(�)g(�)d�

���� 8t 2 I

then

g(t) � c exp
�����Z t

�

h(�)d�

����� 8t 2 I

Proof.
The proof uses the idea of integrating factor similar to the simpler case with constant h = kAk consid-

ered before. Introduce G;H : I ! [0;1) by

G(t) = c+

����Z t

�

h(�)g(�)d�

����
H(t) =

����Z t

�

h(�)d�

����
By the hypothesis in the lemma, 0 � g(t) � G(t):
We consider �rst the case � < t. Then integrals in the expressions for G and H are nonnegative:

G(s) = c+

Z s

�

h(�)g(�)d�; H(s) =

Z s

�

h(�)d�; 8s 2 [� ; t]

Di¤erentiation and the Newton - Leibnitz theorem imply

G0(s) = h(s)g(s) � h(s)G(s) = H 0(s)G(s); 8s 2 [� ; t]
G0(s)�H 0(s)G(s) � 0; 8s 2 [� ; t]

4



Multiplying the inequality by exp(�H(s)) and observing that

(G0(s)�H 0(s)G(s)) exp(�H(s)) = (G(s) exp(�H(s)))0

we arrive to

(G(s) exp(�H(s)))0 � 0; 8s 2 [� ; t]

Integrating the last inequality from � to t we arrive to

(G(t) exp(�H(t))) � (G(�) exp(�H(�))) = c

Therefore we arrive to the Grönwalls inequality:

(G(t)) � c exp(H(t)) = c exp
�Z t

�

h(�)d�

�
The case when t < � is considered similarly by observing that for t < �

G(t) = c+

Z �

s

h(�)(�)d�; H(t) =

Z �

s

h(�)d�; 8s 2 [t; � ]

Do it as an exercise!

Uniqueness of solutions to I.V.P.

Theorem 2.5, p. 28 L&R
Let (� ; �) 2 J �RN(J �CN). The function x(t) = �(t; �)� is a unique solution to the I.V.P. (1):If y :

Jy ! RN or (CN) is a another solution to (1): then y(t) = x(t) for all t 2 Jy.
Proof.
The fact that x(t) = �(t; �)� is a solution to I.V:P. follows by construction and from the properties of

the transition matrix function. Only uniqueness must be proved. Consider function e(t) = x(t)� y(t) on
the interval Jy � J . By linearity it satis�es the equation

e(t) =

Z t

�

A(�)e(�)d�; 8t 2 Jy

Applying the triangle inequality for integrals we conslude that

ke(t)k �
Z t

�

kA(�)k ke(�)k d�; 8t 2 Jy

Point out that on an arbitrary bounded closed (compact) interval [a; b] � Jy the piecewise continuous A(�)
matrix valued function has a bounded norm kA(�)k < K:Therefore for any � ; t 2 [a; b]

ke(t)k �
Z t

�

K ke(�)k d�; 8t; � 2 [a; b]
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and by the simple variant of Grönwall �s inequality that we proved before, ke(t)k = 0 for all t 2 [a; b] and
therefore y(t) = x(t) for all t 2 Jy:

0.3 Solution space.

We have considered a particular variant of the following theorem in the case of linear systems of ODEs

with constant coe¢ cients. The formulation and the proof we suggested are based only on the fact that the

set of solutions Sh is a linear vector space and on the property of the uniquness of solutions. We repeat
this argument here again with some corollaries about the structure of the transition matrix �(t; �).

Proposition 2.7 (1), p.30, L&R.
Let b1; :::; bN be a basis in RN (or CN) and let � 2 J .
Let �(t; �) be a transition matrix to the equation

x0 = A(t)x

with A(t) being a matrix valued function A : J ! RN�N (or CN�N), piecewise continuous on the interval
J .

Then functions yj : J ! RN (or CN) de�ned as solutions

yj(t) = �(t; �)bj

with j = 1; :::; N to , the equation above form a basis of the solution space Sh of the equation.
In particular Sh is N -dimensional and for every solution x(t) : J ! RN (or CN) there exist scalars

1; :::N such that

x(t) =
NX
j=1

jyj(t)

for all t 2 J .
Proof
We can just repeat here the proof that we gave earlier. Point out that it is more general than one given

in the book.

Suppose that at some time t solutions yj(t) are linearly dependent. It means that there are constants

fajgNj=1 not all zero such that
NX
j=1

ajyj(t) = 0

at this time. On the other hand there is a solution that satis�es this condition. It is zero solution x�(t) = 0

for all t:

But then these two solutions must coinside because solutions are unique!!! Namely
PN

j=1 ajyj(t) = 0

for all times including t = � .Therefore
PN

j=1 ajyj(�) =
PN

j=1 ajbj = 0 because bj are initial conditions at

t = � for yj. It is a contradiction because vectors bj , j = 1; :::; N are linearly independent. Therefore yj(t)

with j = 1; :::; N are linearly independent for all t in J . �
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Example.
Calculate the transition matrix function �(t; s) for the system of equations(

x01 = t x1

x02 = x1 + t x2

x0 = A(t)x; A(t) =

"
t 0

1 t

#
x(�) = �

x(t) = �(t; �)�

Here the matrix A(t) is triangular.

The system of ODE above has triangular matrix and can be solved recursively starting from the �rst

equation.

The fundamental matrix �(t; �) sati�es the same equation, namely

d

dt
�(t; �) = A(t)�(t; �)

�(� ; �) = I

�(t; �) has columns �1(t; �) and �2(t; �) that at the time t = � have initial values [1; 0]T and [0; 1]T ,

because �(� ; �) = I =

"
1 0

0 1

#
:

We will use a general solution to the scalar linear equation x0 = p(t)x+g(t) with initial data x(�) = x0
calculated using the primitive function P(t; �) of p(t) :

x(t) = exp fP(t; �)gx0 +
Z t

�

exp fP(t; s)g g(s)ds
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A derivation of this formula using the integrating factor idea follows.

x0 = p(t)x+ g(t); x0 = x(�)

P(t; �) =

Z t

�

p(s)ds

exp f�P(t; �)gx0 = exp f�P(t; �)g p(t)x+ exp f�P(t; �)g g(t)
exp f�P(t; �)gx0 � p(t) exp f�P(t; �)gx = exp f�P(t; �)g g(t)
exp f�P(t; �)gx0 + (exp f�P(t; �)g)0 x = exp f�P(t; �)g g(t)

[exp f�P(t; �)gx]0 = exp f�P(t; �)g g(t)Z t

�

[exp f�P(s; �)gx(s)]0 ds =

Z t

�

exp f�P(s; �)g g(s)ds

exp f�P(t; �)gx(t)� exp f�P(� ; �)gx0 =

Z t

�

exp f�P(s; �)g g(s)ds

exp f�P(t; �)gx(t)� exp f0gx0 =

Z t

�

exp f�P(s; �)g g(s)ds

x(t) = exp fP(t; �)gx0 +
Z t

�

exp fP(t; �)g exp f�P(s; �)g g(s)ds

x(t) = exp fP(t; �)gx0 +
Z t

�

exp fP(t; �)� P(s; �)g g(s)ds

P(t; �)� P(s; �) =

Z t

�

p(z)dz �
Z s

�

p(z)dz =

Z t

�

p(z)dz +

Z �

s

p(z)dz =Z t

s

p(z)dz = P(t; s)

x(t) = exp fP(t; �)gx0 +
Z t

�

exp fP(t; s)g g(s)ds;

x(�) = x0

In the equation

x01 = t x1

the coe¢ cient p(t) = t, therefore P(t; �) =
R t
�
s ds =

�
1
2
s2
���t
�
= 1

2
(t2 � � 2) and the solution

x1(t) = exp(
1

2

�
t2 � � 2

�
)x1(�):

The second equation

x02 = t x2 + x1

is similar but inhomogeneous:

x2(t) = exp(P(t; �))x2(�) +
Z t

�

exp(P(t; s))x1(s)ds:
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Substituting P(t; �) = 1
2
(t2 � � 2) we conclude that= exp(1

2
(t2 � � 2))x2(�) +

R t
�
exp(1

2
(t2 � � 2))x1(�)ds

x2(t) = exp(
1

2

�
t2 � � 2

�
)x2(�) +

Z t

�

exp(
1

2

�
t2 � s2

�
) exp(

1

2

�
s2 � � 2

�
)x1(�)ds

= exp(
1

2

�
t2 � � 2

�
)x2(�) +

Z t

�

exp(
1

2

�
t2 � � 2

�
)x1(�)ds

And

x2(t) = exp(
1

2

�
t2 � � 2

�
)x2(�) + exp(

1

2

�
t2 � � 2

�
)(t� �)x1(�):

The fundamental matrix solution �(t; �) has columns that are solutions to x0 = A(t)x with initial data -

that are columns in the unit matrix:

"
1

0

#
and

"
0

1

#
,

Taking x1(�) = 1 and x2(�) = 0 we get x1(t) = exp(12 (t
2 � � 2)) with x2(t) = exp(12 (t

2 � � 2))(t� �)
Taking x1(�) = 0 and x2(�) = 1 we get x1(t) = 0 with x2(t) = exp(12 (t

2 � � 2)) and the fundamental
matrix solution in the form

�(t; �) = exp(
1

2

�
t2 � � 2

�
)

"
1 0

t� � 1

#

0.4 Group properties of transition matrix. Chapman - Kolmogorov rela-

tions.

remeber that in the case with autonomous systems the transition matrix �(t; �) = exp ((t� �)A) :
Therefore in this case

�(t; �) = exp f(t� �)Ag = exp f(t� �)Ag exp f(� � �)Ag
= exp f(t� �)A+ (� � �)Ag = �(t; �)�(�; �)

�(t; �) = �(t; �)�(�; �)

The transition matrix �(t; �) de�nes a transition mapping '(t; � ; �); that maps initial data � at time
� into the state '(t; � ; �) = x(t) = �(t; �)� of the system at time t.

Let us consider two consequtive solutions of the equation x(t) = �(t; �)� and y(t) = �(t; �) (�(�; �)�)

that continue each other in the time point t = � where the second solution y(t) attains the initial state

that is the point where the the �rst solution x(t) arrives at time t = �. Together with the uniquness

of solutions, this consideration leads to the group property of the transition mapping and the transition

matrix. The group property means that moving the system governed by the equation x0(t) = A(t)x(t)

from time � to time t is the same as to move it �rst from time � to time � (blue curve) and then to move

it without break from time � to time t (red curve)

�(t; �)� = �(t; �) [�(�; �)�]
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Point out that these two "movements" do not need to go both in the positive direction in time as it is

in the picture. One of these movements (or both) can go backward in time. Another observation is that

the linearity of the system was not essential for this reasoning, only the uniqueness of solutions. We will

use a similar argument later for non-linear systems.

We have proven (almost) the following theorem.

Corollary 2.6, p.29 L&R (Chapman - Kolmogorov relations)
For all t, �, � 2 J

�(t; �) = �(t; �)�(�; �); (5)

�(t; t) = I;

�(� ; t)�(t; �) = �(� ; �) = I

�(� ; t) = (�(t; �))�1 (6)

Proof.
The �rst statement has been proven already. The second follows from the integral equation for the

transfer matrix. The third one follows from the �rst two. We apply the �rst statement �(t; �) �(� ; t) =

�(t; t) = I therefore �(� ; t) is the right inverse of �(t; �). The same argument for this expression with t

and � changed their roles leads to that �(� ; t) is the left inverse of �(t; �).�

0.5 Fundamental matrix solution.

Introducing the transition matrix function �(t; �) for non-autonomous system of equations was similar to

considering exp(A (t� �)) for autonomous linear systems. We have got a solution to an arbitrary I.V.P.
by multiplying arbitrary initial data x(�) = � with the the transition matrix function: x(t) = �(t; �)�.

On the other hand we could construct a general solution to an autonomous linear system just by taking
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a linear combination of N linearly independent solutions to the system, because the dimension of the

solution space is equal to N .

The situation is exactly the same for non-autonomous linear systems with the di¤erence that we in

general cannot �nd a basis for the space of solutions analytically. It is possible only in some particular

cases, for example for a triangular matrix A(t).

De�nition.
The functon t 7�! 	(t) 2 Rn�nis called the fundamental matrix solution for the system x0 = A(t)x,

x 2 Rn if it�s columns 	k(t), k = 1; :::; N are linearly independent solutions to the system (and therefore

build a basis to the solution space): 	0k(t) = A(t)	k(t)

It follows from the de�nition of the matrix product that

	0(t) = A(t)	(t)

General solution to the system is a linear combination of these vector valued functions:

x(t) = 	(t)C

with an arbitrary constant vector C 2 RN .
The fundamental matrix solution 	(t) is an invertible matrix for all t because it�s columns are linearly

independent for all t.

There is a simple connection between an arbitrary fundamental matrix solution 	(t) and the transition

matrix �(t; �).

Proposition 2.8 , p. 33

�(t; �) = 	(t)	�1(�)

Proof.
The product X(t; �) = 	(t)	�1(�) satis�es the equation

X 0(t; �) = A(t)X(t; �)

in all points t 2 J where A(t) is continuous, because each column in 	(t) does it. On the other hand
	(�)	�1(�) = I. Therefore X(t; �) = 	(t)	�1(�) satis�es the integral equation

X(t; �) = I +

Z t

�

A(�)X(�; �)d�

in all points t 2 J because each column in 	(t) does it. The same equations are satis�ed by �(t; �). By
the uniqueness of solutions to linear systems �(t; �) = X(t; �) = 	(t)	�1(�).

This proposition shows another way to calculate the transition matrix solution, because sometimes it

is easier to �nd some basis for the space of solutions and to put it into a matrix 	(t) instead of solving

the matrix equation for �(t; �).

Point out that it is easy to �nd a solution to the equation for 	�(t) with initial data 	�(�) = I. For
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such a solution the formula connecting �(t; �) simpli�es to �(t; �) = 	�(t) because 	�1� (�) = I.

0.6 Abel - Liouville�s formula.

Lemma about the derivative of a determinant of a matrix valued function.
Let B : J ! RN�N be di¤erentiable. Then the derivative of it�s determinant satis�es the following

formula

(det(B(t))0 =
NX
k=1

det (Uk(B))

where matrices Uk(B) have the same columns bk(t) as the matrix B(t) = [b1(t); :::; bN(t)] except the k -th

column exchanged by the column of derivatives of the k-th column in B(t):

Uk(B) =

�
b1(t); :::;

�
d

dt
bk(t)

�
; :::; bN(t)

�
A similar relation can be written for rows instead of columns.

An elementary proof can be carried out using the de�nition of derivative as a limit of a �nite di¤er-

ence and repeated application of the addition formula for determinants. Prove it as an exercise on
properties of determinants!
Consider a homogeneous linear system of ODEs x0(t) = A(t)x(t) and N solutions y1(t); y2(t),...,yN(t)

to it. Consider the matrix Y (t) having these solutions as it�s columns:

Y (t) = [y1(t); y2(t); :::; yN(t)]

De�nition.
The determinant

w(t) = detY (t) = det [y1(t); y2(t); :::; yN(t)]

is called Wronskian associated with solutions y1(t); y2(t); :::; yN(t).

Proposition 2.7 part (2) - Abel - Liouville�s formula
Wronskian w(t) associated with solutions y1(t); y2(t),...,yN(t) to the system x0(t) = A(t)x(t) satis�es

the following relations:

w(t) = w(�) det�(t; �)

In points t where A(t) is continuous it satis�es the di¤erntial equation

w0(t) = tr(A(t))w(t)
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and therefore with initial value for w(�) at time � :

w(t) = w(�) exp

�Z t

�

tr(A(s))ds

�
(7)

for all t 2 J .�

Proof.
We use here that yk(t) = �(t; �)yk(�) and therefore Y (t) = �(t; �)Y (�). It implies that

w(t) = detY (t) = detY (�) det�(t; �) = w(�) det�(t; �)

giving the �rst statement of the Proposition.

We denote by 'k(t) columns in �(t; �), so that �(t; �) = ['1(t); '2(t); :::; 'N(t)].Then we apply the

Lemma about the derivative of a determinant of a matrix valued function to the case B(t) =
�(t; �). A direct substitution implies that

@

@t
(det�(t; �)) =

NX
k=1

det (Uk(�(t; �))) =
NX
k=1

det

��
'1(t); :::;

@

@t
('k(t)) ; :::; 'N(t)

��

where the k-th column in Uk(�(t; �)) is @
@t
('k(t)) and other columns are columns 'j(t), j 6= k, j = 1; :::N

from �(t; �):
@
@t
('k(t)) = A(t)'k(t), because 'k(t) are solutions to the system x0(t) = A(t)x(t). We assume here

that � is not a point of discontiuity for A(t). It leads to the more explicit expression:

@

@t
(det�(t; �)) =

NX
k=1

det (Uk(�(t; �))) =
NX
k=1

det (['1(t); :::; A ('k(t)) ; :::; 'N(t)])

Setting t = � , into the last formula for we arrive to

@

@t
(det�(t; �))

����
t=�

=
NX
k=1

det ([e1; :::; A(�)ek; :::; eN ])

because�(� ; �) = I = [e1; :::; ek; :::; eN ]. Observe thatA(�)ek = [A(�)]k - is the k-th column inA(�):Matrices

under the determinant sign in the last formula are diagonal with all elements equal to one except one equal

to [A(�)]k. Its determinant is the product of diagonal elements det ([e1; :::; A(�)ek; :::; eN ]) =A(�)kk:Therefore

@

@t
(det�(t; �))

����
t=�

=
NX
k=1

det ([e1; :::; [A(�)]k ; :::; eN ]) =
NX
k=1

Akk(�) = trA(�)
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det [e1; :::; [A(�)]k ; :::; eN ] = det

26666664
1 0 A13 0 0

0 1 A23 0 0

0 0 A33 0 0

0 0 A43 1 0

0 0 A53 0 1

37777775 ; k = 3

= 1� 1� A33 � 1� 1 = A33

Therefore

w0(�) = w(�)trA(�)

The argument given here applies to any � 2 J that is not a point of discontinuity for A(t). The expression

w(t) = w(�) exp

�Z t

�

tr(A(s)ds

�
w(t) = detY (t)

follows by integration of the di¤erential equation for w(t) using method of integrating factor applied to a

scalar �rst order linear equation.�

Interesting observations with application of Abel - Liouville�s formula.
The geometric meaning of determinant det(C) of the matrix C = [c1; :::cN ] with columns c1; :::cN is

volume of the parallelepiped V build on vectors c1; :::cN :

jdet(C)j = vol (V )

One can de�ne V formally as V =
n
x 2 RN : x =

PN
k=1 ak ck; ak 2 [0; 1]; k = 1; :::; n

o
:

It implies that the Abel - Liouvilles formula gives an exact description of how for example the volume

of a unique cube build on standard basis vectors e1; :::; eN given at the initial time � is changing by the

"�ow" described by the transition matrix function �(t; �).

0.7 Non-homogeneous linear systems and Duhamel�s formula in general case.

We consider the I.V.P. for non-homogeneous linear system

x0(t) = A(t)x(t) + b(t); x(�) = �; (� ; �) 2 J � RN(J � CN)

We suppose here that A : J ! RN�N (or CN�N) is continuous or piecewise continuous and denote
by �(t; �) the transition matrix function generated by A(t). We rewrite the I.V.P. for the system also in

integral form

x(t) = � +

Z t

�

(A(�)x(�) + b(�)) d�;

that allows to consider continuous solutions in the case when A is only peacewie continuous. In this case

solutions satisfy the di¤erential form of the problem in time points outside of discontinuties of A.
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Theorem 2.15, p. 41 L&R
Let (� ; �) 2 J � RN :The function

x(t) = �(t; �)� +

Z t

�

�(t; �)b(�)d�;

is a unique solution to the I.V.P. above.

Proof. A simpler proof can be given for points t outside the discontinuties of A.
Apply the Chapman-Kolmogorov relation to the transition matrix under the integral: �(t; �) =

�(t; 0)�(0; �) and calculate derivative of the integral in the expression for the solution.

d

dt

�Z t

�

�(t; �)b(�)d�

�
=

d

dt

�Z t

�

�(t; 0)�(0; �)b(�)d�

�
=
d

dt

�
�(t; 0)

Z t

�

�(0; �)b(�)d�

�
=

�
d

dt
�(t; 0)

�Z t

�

�(0; �)b(�)d� +

�
�(t; 0)

d

dt

�Z t

�

�(0; �)b(�)d�

��
= A�(t; 0)

Z t

�

�(0; �)b(�)d� + �(t; 0)�(0; t)b(t)

Observe that by Chapman -Kolmogorov relation �(t; 0)�(0; t) = �(t; t) = I, and �(t; 0)�(0; �) =

�(t; �): It implies simpli�cations in the last formula and �nally

d

dt

�Z t

�

�(t; �)b(�)d�

�
= A

�Z t

�

�(t; �)b(�)d�

�
+ b(t)

Therefore
R t
�
�(t; �)b(�)d� is the solution to the inhomogeneous equation with initial condition zero.

Together with the solution �(t; �)� to the homogeneous equation, satisfying the initial condition �(� ; �)� =

� we conclude that x(t) = �(t; �)� +
R t
�
�(t; �)b(�)d�; is a solution to the I.V.P. above. The uniqueness

follows if we consider di¤erence between two solutions x(t) and y(t) with the same initial condition:

z(t) = x(t) � y(t) that evidently satis�es the homogeneous equation z0(t) = A(t)z(t) and the zero initial
condition z(�) = 0. The known result for homogeneous linear systems based on Grönwall�s inequality

implies that z(t) = 0 on J .

Another proof based on the integral formulation of the problem and on the explicit checking that x(t)

expressed as in the formulation of the theorem satis�es it, is given in the book on the page 41.

1 Systems with periodic coe¢ cients: Floquet theory

We consider here linear homogeneous systems of ODE�s with J = R and a continuous or piecewise contin-

uous matrix A : R! RN�N (or CN�N); with period p > 0:

x0(t) = A(t)x(t); A(t+ p) = A(t); 8t 2 R
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Let � be a transition function generated by a periodic A(t).

Shifting invariance property.(formula 2.31, p. 45 in L.R.)
We are going to prove an important shifting invariance property of this transition matrix function,

namely that

�(t+ p; � + p) = �(t; �) (8)

Structure of the transition matrix for a time interval including a �nite number of periods.
(formula 2.32, p. 45 in L.R.)
(Motivation to introducing the monodromy matrix)
Another property specifying further how the periodicity of the system in�uences properties of solutions.

�(t+ p; �) = �(t; 0)�(p; 0)�(0; �) (9)

�(t+ n p; �) = �(t; 0) [�(p; 0)]n�(0; �) (10)

for any (t; �) 2 R� R.
De�nition of the Monodromy matrix
The matrix �(p; 0) for a periodic linear system with period p is called the monodromy matrix (this

standard notion is not used in the book)

Proof of the shifting invariance property.
This �rst property is untuitively clear.

The matrix �(t; �) satis�es the equation

@

@t
�(t; �) = A(t)�(t; �)

with initial condition ;�(t; �)jt=� = I.
The matrix �(t+ p; � + p) satis�es the equation

@

@t
�(t+ p; � + p) = A(t+ p)�(t+ p; � + p)

with initial condition ; �(t+ p; � + p)jt=� = I :
Now we observe that A(t) = A(t+ p). Substituting it in the second equation we get the equation

@

@t
�(t+ p; � + p) = A(t)�(t+ p; � + p)

with the same initial condition;�(� + p; � + p) = I on the interval t 2 [� ; t):
It implies that �(t; �) and �(t+p; �+p) satisfy in fact the same equation with the same initial conditions

�(t+ p; � + p)jt=� = I . The uniquness of solutions implies that they must be equal: �(t + p; � + p) =

�(t; �):

A prove using the integral form of the equation is presented in the course book.�
Proof of the structure of the transition matrix for periodic system
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The proof is based on a combination of the shifting property with the Chapman-Kolmogorov relations.

�(t+ p; �)
Ch:�Kol:
= �(t+ p; � + p)�(� + p; �)

Shift
= �(t; �)�(� ; � � p)

Ch:�Kol:
= �(t; �)�(� ; 0)�(0; � � p) Ch:�Kol:_and_Shift= �(t; 0)�(p; �)

Ch:�Kol:
= �(t; 0)�(p; 0)�(0; �)

The second equality for the shift n p in n periods p in time is derived by the repetition of the last

argument and induction

�(t+ np; �)
Ch:�Kol:
= �(t+ np; � + np)�(� + np; �)

Shift
= �(t; �)�(� ; � � np)

Ch:�Kol:
= �(t; �)�(� ; 0)�(0; � � np) Ch:�Kol:= �(t; 0)�(np; �)

Ch:�Kol:
= �(t; 0)�(np; 0)�(0; �)

and from the observation that �(np; 0) = �(np; np � p):::�(kp; kp � p):::�(2p; p)�(p; 0) = [�(p; 0)]n that
follows from the Chapman-Kolmogorov relation and from the fact that �(t; 0) satis�es the same equation

on each interval [kp; (k + 1) p], (shift invariance property) because A(t) = A(t + p) is a periodic matrix

with period p.

�
Example illustrating ideas of Floquet theory on a scalar linear equation.
Consider the following scalar linear equation with periodic coe¢ cient A(t) = (sin(4t)� 0:1) with period

p = 0:5�:

dx

dt
= (sin(4t)� 0:1)x;

We will �nd the monodromy matrix for this simple equation and demonstrate all objects related to the

Floquet theorem.

The exact general solution is:

x(t) = C exp (�0:25 cos (4t)� 0:1t)

with arbitrary constant C; can be found by the method with integrating factor.

To �nd the solution equal to 1 at t = 0 that is the transfer "matrix" in the scalar case, we calculate

the expression exp (�0:25 cos (4:0t)) e�0:1tjt=0 = 0:778 8 and choose C = 1
0:778 8

in the expression for the

general solution x(t).

The transfer "matrix" is:

�( t; 0) =
1

0:778 8
exp (�0:25 cos (4:0t)) e�0:1t

The period of the coe¢ cient in the system is p = 0:5� and the monodromy matrix is �( p; 0) =
�( 0:5�; 0):
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�( p; 0) = 1
0:778 8

exp (�0:25 cos (4:0t)) e�0:1t
��
t=0:5�

= 0:854 64

The eigenvalue � of the (1x1) "monodromy matrix" �( p; 0) coinsides with it�s value: � = 0:854 64 < 1

and is strictly less than 1.

Consider the logarithm G = ln (�( p; 0)) of the monodromy matrix �( p; 0):

G = ln (�( p; 0)) = ln(
1

0:778 8
exp (�0:25 cos (4:0t)) e�0:1t)

����
t=0:5�

= �0:157 08

F = G
p
= �0:157 08

0:5�
= �0:1 < 0

Therefore the eigenvalue � = �0:1 of the "matrix" F = 1
p
G is negative.

The transfer matrix to the system

y0(1) = Fy(t)

is

exp(Ft) = exp(t
G

p
) = exp(�0:1t):

Compare black and green graphs for exp(tG
p
) and for �( t; 0) = 1

0:778 8
exp (�0:25 cos (4:0t)) e�0:1t . Observe

that exp(tG
p
) and �( t; 0) coinside in points t = pn = (0:5�)n, n = 1; 2; 3:::

Introduce a "corrector" multiplicator �(t) introduced so that

�( t; 0) = �(t) exp(t
G

p
)

Observe that

�(t) =
1

0:778 8
exp (�0:25 cos (4:0t))

is a p = 0:5� - periodic function equal to 1 in all points t = pn = (0:5�)n, n = 1; 2; 3:::(red graf).

302520151050

1.5

1.25

1

0.75

0.5

0.25

x

y

x

y

We are going to observe soon that a similar representation of the transfer matrix �( t; 0) is possible for

an arbitrary periodic linear systems of ODEs and for it�s transfer matrix �( t; 0):
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The main idea of the Floquet theory.
The monodromy matrix �(p; 0) is a particular transition matrix that maps initial data at time � = 0

to the state of the system after one period p. A particular property of this matrix in the case of periodic

systems is that similar the mapping to the state at the time t = np equal to n periods is just

�(n � p; 0) = [�(p; 0)]n

This property is similar to properties of autonomous linear systems where �(t; 0) = exp(At) and

therefore

�(n � p; 0) = exp(A(n � p)) = [exp(A(p))]n = [�( p; 0)]n (11)

that follows from the factorisation property of the exponent of two commuting matrices:

exp(A+B) = exp(A) exp(B)

In the case of periodic systems this factorisation applies only for shifts in time that are integer numbers

of periods. But it is still a remarkable property. The behaviour of solutions is described by a repeated

multiplication by a constant matrix in certain time points: p, 2p, 3p, ...:

x0(t) = A(t)x(t); x(0) = �:

x(np) = [�( p; 0)]n � ; n = 0; 1; 2; :::

The �rst idea of the Floquet theory is to represent x(np) at times t = np similarly as for autonomous

systems, namely with the help of an exponent of some constant matrix F times the time argument: t = np.

x(np) = [�( p; 0)]n � = exp(npF )� = [exp(pF )]n �

It means that the matrix F in such representation must satisfy the relation

�( p; 0) = exp(pF ):

Therefore the matrix pF must be something like the logarithm of the monodromy matrix:

pF = log(�( p; 0))

De�nition. A matrix G 2 CN�N is called a loragithm of the matrix H 2 CN�N if

H = exp(G)

We write in this case G = log(H).

We are going to prove soon that for any non-singular matrix H there is a logarithml log(H) in this

sense. Point out that the monodromy matrix �( p; 0) is always non-singular, because columns in a transfer
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matrix �( t; 0) are always linearly independent.

The logarithm of a matrix is not uniquely de�ned in the same way as it is not unique for complex and

real numbers z:

ln(z) = ln(jzj) + i arg(z) (12)

because the argument arg(z) of a complex number is de�ned only up to 2�k, k = �1;�2; ::::
One can choose a unique branch for the logarithm function, called the principle logarithm or Log (z)

by choosing the argument in the last formula (12) only in the interval [0; 2�).

We will suspend the discussion of matrix logarithm now and will consider �rst an application of it to

the analysis of solutions to periodic linear systems of ODEs.

The main idea in the Floquet theory is the "approximation" of the transfer matrix �( t; 0) for a periodic

linear system with matrix A(t) = A(p+ t) by the transfer matrix exp (t F ) for an autonomous system

y0(t) = [F ] y(t)

with the constant matrix F =
h
1
p
G
i
where

G = log(�( p; 0)) (13)

exp(G) = �( p; 0) (14)

exp(pF ) = �( p; 0) (15)

exp(npF ) = [�( p; 0)]n = �(np; 0) (16)

These two transfer matrices coinside in points t = 0; p; 2p; 3p; :::

�(np; 0) = [�( p; 0)]n = exp ((np) [F ]) (17)

The deviation of �( t; 0) from exp (t F ) in intermediate points within one period can be expressed by a

factor �(t) so that

�( t; 0) = �(t) exp (tF )

The matrix function �(t) must be equal to the unit matrix I in the points t = 0; p; 2p; ::: because in these

points these two transfer functions coinside by construction, see (17).

The exact formulation of the properties of such factorization is given in the following Theorem by

Floquet.
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Theorem 2.30 , p. 53. Floquet theorem
Let G 2 CN�N be a logarithm of the monodromy matrix �( p; 0).

G = log(�( p; 0))

There exists a periodic with period p piecewise continuously di¤erentiable function �(t) : R ! CN�N ,
with �(0) = I and �(t) non-singular (invertible, all eigenvalues are non-zero) for all t, such that

�( t; 0) = �(t) exp

�
t

p
G

�
, 8t 2 R (18)

Proof.
We remind the main property (9) of the monodromy matrix for � = 0:

�( t+ p; 0) = �( t+ p; p)�( p; 0) = �( t; 0)�( p; 0)

where we applied �rst the Chapman Kolmogorov relation (5) and then the shift invariance (8) of the

transfer matrix function �( t; �) for a periodic linear system

We denote 1
p
G by F for convenience, so that G = pF , and de�ne the function �(t) after the desired

relation (18)

�(t) = �( t; 0) exp

�
� t
p
G

�
= �( t; 0) exp (�tF )

The function �(t) is well de�ned in such a way. The problem is to show that it has desired properties:

p - periodicity and satis�es initial conditions.

We remind that �(0) = I and even �(np)= I for all n = 0; 1; 2; 3; :::

�( t; 0) is piecewise contiuously di¤erentiable or contiuously di¤erentiable depending on if A(t) is piece-

wise continuous or continuous. Therefore �(t) has the same property because exp
�
� t
p
G
�
is continously

di¤erentiable. �(t) is also invertible for all t as a product of two invertible matrices �( t; 0) and exp (�tF ).
We check now that �(t) is p - periodic, namely that �(t+ p) = �(t) for all t 2 R.

�(t+ p) = �( t+ p; 0) exp (�(t+ p)F )

= �( t+ p; 0) exp (�pF ) exp (�tF ) = �( t+ p; 0)
�( 0;p)z }| {

exp (�G) exp (�tF )

We remind that exp(G) = exp(log(�( p; 0)) = �( p; 0), therefore exp (�G) = (exp (G))�1 = �( p; 0)�1 =
�( 0; p). Therefore, using the main relation for the monodromy matrix (??) �( t + p; 0) = �( t; 0)�( p; 0)
together with the relation exp (�G) = �( 0; p); we arrive to

�(t+ p) = �( t; 0)

�( p;p)=Iz }| {
�( p; 0)�( 0; p) exp (�tF ) = �( t; 0) (I) exp (�tF ) def= �(t);

where we also used that �( p; 0)�( 0; p) = I in the last step. Therefore �(t) is periodic with period p.�
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1.1 Logarithm of a matrix. Existence and calculation.

We will formulate a theorem and give a proof to it (simpler than in the book) about the existence of a

matrix logarithm.

De�nition
The matrix G is a logarithm of matrix H or G = log(H) if exp(G) = exp(log(H)) = H:

Consider a nonsingular matrix H and it�s a canonical Jordan form J :

H = TJT�1

where T is invertible matrix. Then if there is Q 2 CN�N , such that exp(Q) = J that means

Q = log(J); J = exp(Q)

then according to the properties of the exponent of similar matrices, and the de�nition of matrix logarithm

H = TJT�1 = T exp(Q)T�1 = T exp(log(J))T�1 =

= exp
�
T log(J)T�1

� def
= exp(log(H))

and

log(H) = T log(J)T�1

where we used that if A = TBT�1 then exp(A) = T exp(B)T�1:

It means that to calculate logarithm of an arbitrary matrix H it is enough to calculate the logarithm

of it�s Jordan canonical form. For H = TJT�1

log(H) = T log(J)T�1

De�nition.
We say that G is a principal logarithm G = Log(H) of the matrix H if G is a matrix logarithm of H

and

�(H) = fexp(�) : � 2 �(G)g
�(G) = fLog(�) : � 2 �(H)g

where Log(�) is the scalar principal logarithm:

z = eLog(z); arg(Log (z)) = Im(Log (z)) 2 [0; 2�):

This de�nition implies the explicit one to one correspondence between eigenvalues to H and eigenvalues

to G. Essentially the second relation is non-trivial.

Theorem:Proposition 2.29, p. 53.
If H 2 CN�N is invertible, then there exists a principle logarithm Log (H) :
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Proof.
We have established above that it is enough to investigate existence of logarithm for the similar canonical

Jordan form J of the matrix. So without loss of generality we may assume that H is canonical Jordan form

J . Exponent of a Jordan matrix consists of exponents of it�s blocks. Therefore it is enough to establish

the existence of logarithm for each Jordan block Jj in J , j = 1; :::; s where s is the number of distinct

eigenvectors to H and Jj has size nj � nj

Jj =

26666666664

�j 1 0 ::: 0 0

0 �j 1 ::: 0 0
...

...
...
. . .

...
...

0 0 0 ::: 1 0

0 0 0 ::: �j 1

0 0 0 ::: 0 �j

37777777775
Jj = �j

�
I + 1

�j
Nj

�
where

Nj =

26666666664

0 1 0 ::: 0 0

0 0 1 ::: 0 0
...
...
...
. . .

...
...

0 0 0 ::: 1 0

0 0 0 ::: 0 1

0 0 0 ::: 0 0

37777777775
From the classical Maclaurin series for log(1 + x) =

1P
p=1

(�1)p+1
p

xp valid for jxj < 1; and for exp we get

exp(log(1 + x)) = 1 + x

We formally write the Maclaurin series for log(1 + 1
�j
Nj) :

log

�
I +

1

�j
Nj

�
=

nj�1X
p=1

(�1)p+1
p

�
1

�j
Nj

�p

and observe that the Maclaurin series for log(1 + 1
�j
Nj) is a �nite sum because all larger powers of Nj in

the series cancel. We have therefore that

exp

�
log

�
I +

1

�j
Nj

��
= I +

1

�j
Nj

and

exp (log(�j)I) exp

�
log

�
I +

1

�j
Nj

��
exp

�
log(�j)I + log

�
I +

1

�j
Nj

��
= �j

�
I +

1

�j
Nj

�
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We de�ne

Gj
def
= log(�j)I +

nj�1X
p=1

(�1)p+1
p

�
1

�j
Nj

�p
Then we check that this expression Gj is actually a matrix logarithm log (Jj) for the Jordan block Jj by

checking that is satis�es the de�nition of the matrix logarithm. Point out that the diagonal matrix log(�j)I

commutes with any matrix. Therefore applying formula exp(log(1 + x)) = 1 + x for series for exp(x) and

log(1 + x) to similar converging series of commuting matrices we arrive to the desired relation.

exp(Gj) = exp

 
log(�j)I +

nj�1X
p=1

(�1)p+1
p

�
1

�j
Nj

�p !

= exp (log(�j)I)) exp

 
nj�1X
p=1

(�1)p+1
p

�
1

�j
Nj

�p !

= exp (log(�j)I) exp

�
log

�
I +

1

�j
Nj

��
= �j

�
I +

1

�j
Nj

�
= Jj

In the Jordan canonical form J eigenvalues stand on diagonal and are easy to control. All calculations

that we have carried out are correct because �j 6= 0. We can choose logarithms log(�j) in these calculations
as principle values of logarithm Log(�j). In this case the logarithm of Jj will be principal logarith, because

there will be one to one correspondence between eigenvalues �j to Jj and eigenvalues Log (�j) to Log (Jj)

that are diagonal elements in corresponding matrices. They will have the same algebraic multiplicity and

the same geometric multiplicity 1 (one linearly independent eigenvector for each Jordan block)

Therefore the existense of the principal logarithm is established also for J and for H; that is a matrix

similar to J . The same correspondence as above is valid for the eigenvalues to H and to Log(H) because

eigenvalues to similar matrices H and J are the same. The number of linearly independent eigenvectors

corresponding to each distinct eigenvalue (geometric multiplicity) will be also the same.�
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1.2 Floquet multiplicators and exponents and bounds of solutions to peri-

odic systems. equations.

De�nition.
Eigenvalues of the monodromy matrix �( p; 0) are called Floquet�s multipliers or characteristic

mutipliers.
A Floquet multiplier is called semisimple if it is semisimple as an eigenvalue to the monodromy matrix

�( p; 0):

De�nition.
Eigenvalues of the logarithm of the monodromy matrix are called Floquet�s exponents or characteristic

exponents.

Theorem 2.31, p.54 on boundedness and zero limits of solutions to periodic linear systems.
1) Every solution to a periodic linear system is bounded on R+ if and only if the abosolute value of each

Floquet multiplier is not greater than 1 and any Floquet multiplier with absolute value 1 is semisimple.

2) Every solution to a periodic linear system tends to zero at t!1 if and only if the absolute value

of each Floquet multiplier is strictly less than 1.

Proof.
By Floquet theorem any solution x(t) to system

x0(t) = A(t)x(t); A(t+ p) = A(t), 8t 2 R (19)

satisfying initial conditions

x(�) = �

is represented as

x(t) = �( t; �)� = �(t) exp(tF )�( 0; �)� = �(t)

y(t)z }| {
exp(tF )�

= �(t)y(t)

where

F =
1

p
Log(�( p; 0)); � = �( 0; �)�:

�(t) is a p - periodic continuous or piecewise continuous matrix valued function. �(t) is invertible for

all t.

We de�ne y(t) = exp(tF )� as a solution to the equation

y0(t) = F y; y(0) = � (20)

y(t) = ��1(t)x(t), and x(t) = �(t)y(t). The mapping �(t) determines a one to one correspondence

between solutions x(t) to the periodic system (19) and solutions y(t) to the autonomous system (20).The

25



periodicity and continuity properties of �(t) and ��1(t) imply that there is a constant M > 0 such that

k�(t)k �M and k��1(t)k �M for all t 2 R. It implies that kx(t)k �M ky(t)k and ky(t)k �M kx(t)k.
Therefore

1)kx(t)k is bounded on R+ if and only if corresponding ky(t)k = kexp(tF )�k is bounded on R+:
2) kx(t)k ! 0 when t!1 if and only if corresponding ky(t)k ! 0 when t!1:
Since Log (�( p; 0)) = G = pF , and �( p; 0) = exp(pF ) it follows that

� (�( p; 0)) = fexp(�p) : � 2 �(F )g

� (F ) =

�
1

p
Log(�) : � 2 �(�( p; 0))

�
and that algebraic and geometric multiplicities of each � 2 �(F ) coinside with those of exp(p�) 2
� (�( p; 0)) :We use now that

Log(z) = ln(jzj) + i arg(z)
exp(z) = exp(Re z)(cos(arg z) + i sin(arg z)

The following connections between properties of Floquet multipliers and propertis of corresponding

eigenvalues to the matrix F = 1
p
Log(�( p; 0)) are a direct consequence:

a) The Floquet multiplier � 2 �(�( p; 0));hasj�j < 1 if and only if ReLog(�) < 0 that is if the

corresponding eigenvalue � = 1
p
Log(�) to F has ReLog(�) < 0:

b) The Floquet multiplier � 2 �(�( p; 0));has j�j � 1 if and only if ReLog(�) � 0 that is if the

corresponding eigenvalue � = 1
p
Log(�) to F has ReLog(�) � 0:

c) The Floquet multiplier � 2 �(�( p; 0)); with j�j = 1 is semisimple if and only if the corresponding
eigenvalue � = 1

p
Log(�) to F having ReLog(�) = 0 is semisimple.

Known relations between properties of solutions to an autonomous system and the spectrum of corre-

sponding matrix applied to the system y0(t) = F y and to the spectrum �(F ) of the matrix F together

with statements 1),2), a),b),c) in the present proof imply the statement of the theorem.�
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Proposition 2.20. p. 45. On periodic solutions to periodic linear systems
The system x0(t) = A(t)x(t) with p - periodic A(t) = A(t + p) has a non-zero p - periodic solution if

and only if the monodromy matrix �(p; 0) has an eigenvalue � = 1. A more general statement is also valid.

The system has a non-zero n p - periodic solution for n 2 N if and only if the monodromy matrix �(p; 0)
has an eigenvalue � such that �n = 1.�
Proof. Consider an eigenvector v corresponding to this eigenvalue �. Then v 6= 0, �(p; 0)v = �v and

[�(p; 0)]n v = �nv = v

We will show that the solution to the system, with initial data x(0) = v has period np. This solution

is given by the transition matrix: x(t) = �(t; 0)v. Using this representation and applying the factorisation

property of transition matrices for periodic systems we arrive to

x(t+ np) = �(t+ np; 0)v = �(t; 0) [�(p; 0)]n v = �(t; 0)v = x(t); 8t 2 R

It shows that x(t) is periodic with period n p.

Supposting that there is a periodic solution x(t + np) = x(t) and repeating the same calculation

backwards we arrive that x(0) = v is an eigenvalue corresponding to an eigenvalue � such that �n = 1:

Carry out this backward argument as an exercise!
�
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Corollary 2.33, p. 59
We consider a periodic linear system x0(t) = A(t)x(t), A(t+ p) = A(t).

If
R p
0
tr(A(s)ds has a positive real part, then the equation has at least one solution x(t) that is un-

bounded, or formulating it more formally, the upper limit of it�s norm is in�nity: lim supt!1 kx(t)k =1�
Proof.
We remind that the transfer matrix �(t; �) sati�es the initial value problem:

d

dt
�(t; �) = A(t)�(t; �)

�(� ; �) = I

Arbitrary solution to the initial problem x0(t) = A(t)x(t); x(�) = � will be expressed as

x(t) = �(t; �)�

According to Abel - Liouville�s formula and considerations before

jdet(�(t; 0) )j =
����det(�(0; 0)) exp�Z t

0

tr(A(s)ds

����� =����exp�Z t

0

tr(A(s)ds

����� =

����exp�Re�Z t

0

tr(A(s)ds

������
Therefore, if Re

�R p
0
tr(A(s)ds

�
> 0 then

jdet(�(p; 0) )j =
����exp�ReZ p

0

tr(A(s)ds

����� > 1:
On the other hand det(�(p; 0)) is a product of eigenvalues �k to the monodromy matrix �(p; 0) with

multiplicities mk (it follows from the structure of similar Jordan matrix)

jdet(�(p; 0)j =
sY
k=1

j�kj
mk > 1

To have this product greater than 1 we must have at least one eigenvalue �p with
���p�� >1. There-

fore, according to one of Floquet theorems, there is a solution x(t) that is not bounded and therefore

lim supt!1 kx(t)k =1. �
For example we can choose the initial condition x(0) = vp with vp being the eigenvector to �(p; 0)

corresponding to the eigenvalue
���p�� > 1:Then the solution

x(t) = �(t; 0)vp

�(np; 0)vp = [�(p; 0)]n vp =
�
�p
�n
vp
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with
���p�� > 1. Therefore x(t) is unbounded and lim supt!1 kx(t)k =1.

We give also a geometric interpretation of this result. Consider a unite cube build on standard base

vectors e1; :::; eN at time t = 0. Consider how the volume Vol(t) of this cube changes under the action of the

linear transformation by the transfer matrix �(t; 0) of our periodic system. Point out that I = [e1; :::; eN ] :It

implies that the �gure of interest is the parallelepiped build on columns of the transfer matrix �(t; 0).One

of the main properties of periodic system is that �(np; 0) = [�(p; 0)]n. Therefore

Vol(np) = jdet([�(p; 0)]n )j = jdet([�(p; 0)] )jn =
�
exp

�
Re

�Z p

0

tr(A(s)ds

���n
If Re

�R p
0
tr(A(s)ds

�
> 0 then exp

�
Re
�R p
0
tr(A(s)ds

��
> 1. It implies that

lim
n!1

Vol(n p) =1

Therefore along the sequence of timesft = np; n = 1; 2; 3; :::g Vol(n p) is unbounded. It implies also
that

lim sup
t!1

kVol(t)k =1

The fact that limn!1Vol(n p) = 1 implies that the diameter D(n p) of the parallelepiped build on

columns of �(n p; 0) calculated at these discrete time points, is also unbounded sup limn!1D(n p) = 1:
It in turn means that there should be a solution that has the property lim supt!1 kx(t)k =1:
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May 11, 2020

Lecture notes on non-linear ODEs: existence, extension, limit sets, periodic

solutions.

Plan

1. Peano theorem on existence of solutions (without proof), Theorem. 4.2,

p. 102.

2. Existence and uniquness theorem by Picard and Lindelöf . Th. 4.17,

p. 118 (for continuous f(t; x), locally Lipschitz in x), (Proof comes in the last

week of the course)

Th.4.22, p.122 (for piecewise continuous f(t; x), locally Lipschitz in x).

3. Maximal solutions. Openness of the maximal existence interval. Prop.

4.4., p. 107.

4. Existence of Maximal solutions. Theorem 4.8.

5. Extensibility of bounded solutions to the boundary time point of the

interval. Lemma 4.9, p. 110.

6. Corollary 4.10, p. 111, on solutions enclosed in a compact, implying

"in�nite" maximal interval.

7. Properties of limits of maximal solutions. Theorem 4.11, p. 112 on

the property of solutions with "�nite" maximal interval Imax, to escape any

compact subset C in the space domain C �G.

8. On in�nite existence interval for systems with linear growth estimate

for the right hand side. Proposition 4.12, p. 114.

9. Transition map. De�nition p. 126. Transition property of the transition

map. Translation property for autonomous systems.
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Theorem 4.26, p. 126. (similar to Chapman - Kolmogorov relations for

transition matrix)

10. Openness of the domain and smoothness of transition map.Theorem

4.29, p. 129.

11. Autonomous systems. §4.6.1. Example 4.33., p. 139. of a transition

map.
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0.1 Non-linear systems. Existence and uniqueness of solutions.

Second half of the course deals with initial value problems for non-linear systems of ODE�s,

non-autonomous:

x0(t) = f(t; x); f : J �G! Rn; x(�) = � (1)

with J � R - an interval, G � Rn, open, � 2 J , � 2 G; f - continuous in J � G, and

autonomous systems of ODE�s:

x0(t) = f(x); f : G! Rn; x(�) = � (2)

that are a particular case of (1) with G � Rn, open, � 2 J = R, � 2 G, f - continuous in G;

where the right hand side f in the equation is independent of the time variable t running

over the whole R. The practical meaning of this kind of systems is that the "velocity" f

of the system depends only on the position x, but not on time t. So independently of the

starting time � the output x(t) of an evolution depends only on the shift in time t � � . It

lets to choose always � = 0 for autonomous systems.

In many situations the equivalent integral form of I.V.P. is convenient to use:

x(t) = � +

Z t

�

f(s; x(s))ds (3)

Another option for requirements to f that is considered in the book by Logemann Ryan

is that f is supposed to be piecewise continuous in t and locally Lipschitz with respect to

x. We will not consider this case systematically in this part of the course.

Fixed point problems

The existence of solutions to abstract non - linear equations in the form of a so called

�xed point problem

z = B fzg

for an operator B : H ! H de�ned on a complete vector space H (Banach space) is resolved

by one of two general methods.
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1. Compactness principles. One of examples of this scope of ideas is the theorem by

Schauder. For a continuous operator B : K ! K de�ned on a convex closed subset K of H

and mapping it to a compact set B fKg, there is at least one �xed point z in K that is a

solution to the equation z = B fzg :

2. Banach�s contraction principle. Convergence of successive approximations: zn+1 =

B fzng to a �xed point for a "small" operator B.

The fundamental question of existence of solutions is answered by the following Peano

theorem (with possibility of non-uniqueness of solutions)

Theorem 4.2, p. 102. Peano theorem.

For each (� ; �) in J � G there exists at least one solution to (1) de�ned on a (possibly

small) time interval I � J , � 2 I.

This result implies also the solvability of the problem (2) that is just a particular case.

The proof of this theorem is based on the compactness principle, one of two main ap-

proaches in analysis to the existence of solutions to non-linear equations. We do not give a

proof, but will sketch main ideas behind it.

i) One of characteristic properties of compact sets in complete normed spaces is, that

any sequence of points fzng1n=1 from a compact set C always has a converging subsequence

fznkg
1
k=1 with a limit limk!1 znk = z� that belongs to C: z� 2 C.

ii) One approximates solutions to (1) by the explicit Euler method;

x(t) = xk + (t� tk)f(tk; x(tk)); t 2 (tk; tk+1)

and considers a sequence fyn(t)g1n=1 of such approximations if steps (tk+1 � tk) in �nite

di¤erences tend uniformly to zero with n ! 1: Such an approximation in one dimensional

case has a graph in form of continuous peacewise linear broken line.

iii) Considering these approximations on a time interval I including � and choosing this

interval small enough (depending on the absolute value of f around (� ; �)), one can show

that the approximathions fyn(t)g1n=1 , are uniformly bounded and uniformly continuous on

I.

iv) Then basing on the property i) and on iii), one can choose a subsequence fynk(t)g
1
k=1
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converging uniformly on I; in the space of continuous vector valued functions on I , to a

continuous function y(t) that is a solution to (3) and therefore to (1).�
Remark. Choosing di¤erent converging subsequences in this construction can in general

lead to di¤erent limits and to non-unique solutions.

Exercise. Show that the I.V.P. x0= 3
p
x; x(0) = 0, has non-unique solutions.

The uniqueness of solutions to I.V.P. needs additional requirements on regularity of f(t; x)

with respect to x variable. A standard requirement is that f(t; x) is supposed to be locally

Lipschitz with respect to the space x variable.

We repeat here the de�nition of locally Lipschitz functions.

De�nition. Let A be any subset in a metric space X. The the set UA is called to be

relatively open in A if there is an open subset U � X such that UA = U \ A:

De�nition.(p. 115) Locally Lipschitz function

Let D � Rn be a non-empty set. A function g : D ! RM is said to be locally Lipschitz

if for any z 2 D there is a set U � D, realtively open in D; z 2 U; and a number L � 0

(which may depend on U) such that

kg(u)� g(w)k � L ku� wk ; 8u;w 2 U

If L is independent of the choice of U , the function is called globally Lipschitz.

Similarly one de�nes functions locally Lipschitz with respect to a part of variables.

De�nition.(p. 118)

Let G � R�n be a non-empty open set, J be an interval in R. A function f : J �G! Rn

is said to be locally Lipschitz with respect to x 2 G if for any (� ; x) 2 J � G there is a set

S�U � J �G, realtively open in J �G and a number L � 0 (which may depend on S�U)

such that

kg(s; x)� g(s; y)k � L kx� yk ; 8(s; x); (s; y) 2 S � U

A theorem that gives conditions for both existence and uniquness of solutions to (1) is

called the Picard-Lindelöf theorem

We will prove it in the last week of the course by applying the Banach contraction

principle, that is the second main approach in analysis to existence of solutions to non-linear
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equations.

Theorem. Picard-Lindelöf. Theorem 4.17, p. 118 (variant with continuous f):

Let with J � R - an interval, G � Rn, open, � 2 J , � 2 G; f be continuous in J � G.

If f is locally Lipschitz with respect to its second argument x 2 G, then there is a unique

maximal solution x : Ix ! Rn to the I.V.P. problem (1): Any other maximal solution with

the same initial conditions must coinside with x(t):

De�nition. By maximal solution we mean here the solution that cannot be extended to

a larger time interval.

A simpler version of this theorem states just that a "local" solution to (1) on a possibly

small time interval I � J ; � 2 I, exists and is unique in the sence that any two solutions

x and y must coinside on the intersection of the time intervals Ix and Iy where they are

de�ned.

Proof of local uniqueness uses the integral form of the problem and the ar-

gument with the Grönvall inequality that was in a similar fashion applied two

times earlier for lineary systems.

The same argument with the Grönvall inequality is used for proving well

posedness of the I.V.P., namely that solutions to initial value problem (1) consid-

ered as functions of three variables t, � , �: x(t) = '(t; � ; �) are continuous and in fact even

locally Lipschitz with respect to all three variables t, � , �.

The uniqueness proof.

Consider di¤erence of two solutions x(t) and y(t) to I.V.P. de�ned on a set S�U including

(� ; �)such that the local Lipschitz property is valid for f(t; x) on S � U:

x(t)� y(t) =

Z t

�

f(s; x(s))� f(s; y(s))ds

kx(t)� y(t)k =

Z t

�

f(s; x(s))� f(s; y(s))ds
 �

� 0 +

Z t

�

kf(s; x(s))� f(s; y(s))k ds � L
Z t

�

kx(s)� y(s)k ds
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The Grönvall inequality implies that solutions x(t) and y(t) mus coincide:

kx(t)� y(t)k � 0 � exp(L (t� �)) = 0

�

0.2 Extensions, maximal solutions and their properties.

The condition in the Proposition 4.12 is not necessary, but simple examples show solutions

that blow up in �nite time in future or in the past if this condition is not satis�ed, as for

example the equation x0 = x2:

We consider in this section the problem (1) with f continuous and satisfying conditions

in the Peano theorem implying existence (but not uniqueness) of "local solutions x : I ! Rn

on an interval I � J .

De�nition. p. 106.

An extension (proper extension) of the solution x is a solution ex : eI ! Rn to (1) such

that ex(t) = x(t) 8t 2 I, I � eI, eI 6= I.
De�nition. p. 106. Maximal solution and maximal interval of existence.

The interval I is a maximal interval of existence and x is called maximal solution if x

does not have an extension to a larger interval that is a solution to (1).

We suggest some simple examples of maximal solutions and maximal intervals that can

be calculated explicitely.

Exercise 4.6

J = [�1; 1]; G = R; f : J �G! R:

(� ; �) = (0; 1)

f(t; z) =
3z2
p
1� jtj
2

t 2 [0; 1]
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dz

dt
=

3z2
p
1� t
2

dz

z2
=

3
p
1� t
2

dt

�1
z

= � (1� t)3=2 + C

�1 = �1 + C; (� ; �) = (0; 1)

C = 0

z =
1

(1� t)3=2
; t 2 [0; 1)

t 2 [�1; 0];

dz

dt
=
3z2
p
1 + t

2

dz

z2
=

3
p
1 + t

2
dt

�1
z

= (1 + t)3=2 + C

�1 = 1 + C; (� ; �) = (0; 1)

C = �2
�1
z

= (1 + t)3=2 � 2

z =
1

2� (1 + t)3=2
; t 2 [�1; 0];

The maximal interval Imax = [�1; 1) - is relatively open in [�1; 1]
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Exercise 4.7

J = (�1; 1); G = (�1; 1):

f(t; z) =
1p

(1� t) (1� z)

dz

dt
=

1p
(1� t) (1� z)Z p

1� zdz =

Z
dtp
(1� t)

2

3
(z � 1)

�p
1� z

�
= �2

p
1� t+ C

2

3
(�1) (1) = �2 + C; t = 0; z = 0

4=3 = 2� 2=3 = C
2

3
(z � 1)

�p
1� z

�
= �2

p
1� t+ 4

3
2

3
(1� z)

�p
1� z

�
= 2

p
1� t� 4

3

(1� z)
�p
1� z

�
= 3

p
1� t� 2

(1� z)3=2 = 3
p
1� t� 2

(1� z) =
�
3
p
1� t� 2

�3=2
z = 1�

�
3
p
1� t� 2

�3=2

lim
t!5=9

x(t) = 1

Imax = (�1; 5=9)

Imax is open.
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Proposition 4.4. Openness of maximal intervals.

Let x : I ! G be a maximal solution to I.V.P. (1):The maximal interval I is relatively

open in J (just open if J = R).

It means that I = J \O for some open set O � R.

For example the interval [�1; 0:5) is relatively open in [�1; 1) and in [�1; 1] ;because

(�2; 0.5) \ [�1; 1) = [�1; 0:5)

Proof. Consider the case when J is an open interval J = (a; b). Suppose that the

maximal interval of a maximal solution to I.V.P. I � J is not open, for example is (�; !].

In this case the point (!; x(!)) 2 J�G and there is a solution to the di¤erential equation

with initial conditions (!; x(!)); existing on a small time interval [!; !+ "). This solution is

an extension of the original solution. It is a contradiction because we supposed that (�; !]

was a maximal interval for the maximal solution x(t). Other cases are considered similarly.�

Theorem 4.8. p. 108. Existence of maximal solutions.

Every solution to (1) can be extended to a maximal solution.

Idea of the proof( not required at exam)

In the case when solutions are unique (for example f is locally Lipschitz with respect

to x); one can build the maximal interval of existence just as a union of domains for all

extensions of a given solution. Because of the uniqueness of solutions, trajectories cannot

make branches in this case and this construction leads to a unique maximal solution that at

each time point t attains the value of one of the extensions de�ned at this time point. The

uniqueness of solutions makes that this de�nition is consistent.

In the general case when trajectories can create branches, the union of extensions can

have a tree like geometry, or even be an n-dimensional set. In this case the proof uses Zorn

lemma (see appendix in the course book) to choose a maximal solution. It has an existence

interval including all existence intervals of all extensions, but is possibly not unique.

The following technical lemma is the main tool in several arguments about maximal

solutions.

Lemma 4.9. On the extension to the boundary point of the open existence
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time interval for a bounded solution having the closure of the orbit in G;

Let x : I ! G be a solution to (1) and denote a = inf I; b = sup I.

(1) If b is in J and not in I (I is open in the right end), and the closure O+ of the orbit

O+ = fx(t) : t 2 [� ; b)g is a compact subset of G,

then there is a solution y : I [ fbg ! G to (1) that is an extension of x.

(2) a similar statement is valid for the "backward orbit" O� = fx(t) : t 2 (a; � ]g and

extension of x to the left end point a.

Comment. Compact sets are sets that are bounded and closed.

Proof. We prove (1). Let C be the closure of fx(t); t 2 [� ; b)g. Assume that b 2 JnI

and that C is a compact in G. The continuous function f(t; x) must be bounded on the

compact [� ; b]� C.

kf(t; x)k < M; (t; x) 2 [� ; b]� C

It implies that the limit

� = � + lim
t!b

Z t

�

f(s; x(s))ds

is well de�ned for continuous and uniformly bounded function under the integral. We get it

because for any sequence ftkg1k=1 ; tk < b, tk ! b, with k !1;
R tk
�
f(s; x(s))ds is a Cauchy

11



sequence:Z tp

�

f(s; x(s))ds�
Z tm

�

f(s; x(s))ds

 = Z tp

tm

f(s; x(s))ds

 �M jtp � tmj ! 0; p;m!1

that has a limit � independent of the sequence ftkg1k=1. Then the solution x(t) can be extended

to the closed interval [� ; b] by setting x(b) = �.�
The following Corollary is a direct consequence of the Lemma 4.9 and Proposition 4.4

and gives a su¢ cient condition for a maximal solution to have an in�nite maximal interval

(if J is in�nite) or a maximal interval "i�nite with respect to" J , which meaning is speci�ed

exactly below.

Corollary 4.10, p. 111. "Eternal life" of solutions enclosed in a compact.

Let x : Imax ! G be a maximal solution to (1).

Suppose that the "future" half - orbit O+ = fx(t) : t 2 Imax \ [� ;1)g of the maximal

solution x(t) is contained in a compact subset C of G.

Then the corresponding maximal interval of existence Imax is in�nite to the right (future)

if [� ;1) � J ), or "in�nite to the right with respect to J"meaning that the maximal solution

exists on [� ;1) \ I = [� ;1) \ J that is the whole part of J to the right of the initial time

� .

Similar statement is valid for the "backward orbit" O� = fx(t) : t 2 (a; � ]g. Suppose

that the "backward orbit" is contained in a compact subset C of G,

Then the corresponding maximal interval of existence Imax is in�nite to the left (past)

if (�1; � ] � J and is in�nite to the left (past) "with respect to" J , that means that the

maximal solution exists on (�1; � ] \ I = (�1; � ] \ J , that is the whole part of J to the

left of the initial time � .

If the whole orbit O = fx(t) : t 2 Imaxg of the maximal solution x(t) is contained in

a compact subset of G, then the corresponding maximal interval of existence Imax = J

(Imax = R if J = R). It means that the maximal solution x exists both in the whole past

and whole future for the equation.�
Proof. The proof is easy to carry out by a contradiction argument that follows from the

Lemma 4.9 and the fact that a maximal interval must be open (relatively to J).�
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How to show that a solution has the orbit inside a compact set?

De�nition. A set Q is called positively invariant for a system of di¤erential equations

if all trajectories of maximal solutions starting inside Q stay inside Q for all future t in it�s

maximal interval.

We consider here an idea how to show that solutions to a non-linear autonomous system

of di¤erential equations belong to a compact set.

A general idea that is used to answer many questions about behaviour of solutions (tra-

jectories) of the equations, is the idea of test functions.

We �nd a test function V (x) that has some simple level sets @Q = fx : V (x) = Cg that

are closed curves (or surfaces in higher dimensions) enclosing a bounded domain Q. Typical

examples are V (x; y) = x2+ y2=R2 - circle or radius R; or V (x; y) = x2

a2
+ y2

b2
=1 - ellipse, etc.

� To show that a particular level set @Q bounds a positively - invariant set Q we check the

sign of the directional derivative of V along the velocity in the equation: Vf (x) = (rV � f) (x)

for all points on the level set fV (x) = Cg for a particular constant C.

� rV (x) is a normal vector to the level set of V that goes through the point x:Therefore

the sign of Vf (x) = (rV � f) (x) shows if trajectories go to the same side of the level set as

the gradient rV (if V (x) > 0) or to the opposite side (if Vf (x) < 0).

� If all trajectories go inside a bounded set Q, then all trajectories starting inside Q will

stay inside Q forever.

Example.

Consider the following system of ODEs:

8<: x0 = 2y

y0 = �x� (1� x2)y
:

Find a compact around the origin that no trajectories escape.

Solution.

We try the test function V (x; y) = x2 + 2y2 that leads to cancellation of mixed terms in

the directional derivative along trajectories:
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Vf (x; y) =
d

dt
V (x(t); y(t)) = rV (x; y) �

24 x0(t)
y0(t)

35 =
=

�!
N � �!f =

=

24 2x
4y

3524 2y

�x� (1� x2)y

35
= �4y2(1� x2) � 0

rV (x; y) is a normal vector to level sets of the form:

x2 + 2y2 = C

Put y = 0, x = 1; we get C = 1;

x2 + 2y2 = 1

Vf (x; y) = 4xy � 4xy � 4y2(1� x2) = �4y2(1� x2) � 0 that is not positive for jxj � 1.

Trajectories starting inside tho compact bounded by this ellips stay inside it forever.
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The following Theorem describes the situation in a sense opposite to the previous Corol-

lary 4.10. It describes the the behaviour of maximal solutions having bounded maximal

interval Imax (if J is R), and in the case when the interval J has bounded endpoints it-

self, describes maximal solution with maximal interval that is "bounded with respect to J",

meaning that sup Imax < sup J or inf J < inf Imax.

Theorem 4.11, p.112. "Short living" maximal solutions escape any compact.

Let x : I ! G be a maximal solution to (1) with maximal interval of existence I � J

and assume that I is not the whole J : I 6= J . Denote endpoints of I as � = inf(I);

! = sup(I):Then one of endpoints does not belong to I: ! 2 JnI or � 2 JnI .

Statement of the Theorem:

1) In the �rst case ! 2 JnI for each compact C � G, there is an "escaping time moment"

� 2 I; � < !, such that x(t) "escapes" C at time � : x(t) =2 C for all t 2 (�; !).

This property can be further geometrically speci�ed. If G 6= Rn the trajectory x(t) tends

to the boundary @G of G with t ! ! (if G is bounded). It can also tend to in�nity if G

has "branches" going to in�nity in Rn. If G = Rn, then kx(t)k ! 1; as t ! !. This

statement is formulated formally as:

lim
t!!

min fdist(x(t); @G); 1= kx(t)kg = 0; for G 6= Rn (4)

kx(t)k ! 1; as t! !; for G = Rn

2) Similar statements are valid for limits of x(t) as t! � for the maximal solution having

maximal interval with the left end point � "in the past" belonging to J .

Proof.

We consider the case 1). The fact that the maximal solution must at some time leave

any compact C follows from the previous Corollary 4.10 by contradiction, because a solution

that stays in a compact must have a maximal interval in�nite to the right or [� ;1) \ I =

[� ;1)\J . It contradicts to the condition that ! 2 JnI that means that the given maximal

x(t) solution does not reach the maximal possible time in J .

A more so�sticated argument shows that in our situation the solution x(t) must at some

time � leave any compact C "forever". There is a "last visit" time � < !, such that x(t)
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never enters C again after this time.

Suppose the opposite, namely that there is a monotone sequence of times ftmg1m=1 such

that tm % ! with m ! 1 such that x(tm) 2 C. C is a compact, therefore there must

exist a subsequence (for which we will keep the same notation ftmg1m=1); such that with

m!1 tm % ! and x(tm)! x� 2 C .

Choose an r so small that the ball B((!; x�); r) with the center (!; x�) would belong to the

domain of the equation: B((!; x�); r) � J�G. Choose a smaller ball B � B((!; x�); 2") with

" = r=3. Then the closure B of B also belongs to the domain of the equation: B � J �G.

DenoteM = sup
�
kf(t; x)k : (t; x) 2 B

	
the supremum of the continuous function kf(t; x)k

on the compact B.

Using that tm % !; and the boundedness of kf(t; x)k on B, we will observe that the

index m can be chosen so large that the trajectory f(t; x(t) : t 2 [tm; !)g of the solution x(t)

for t 2 [tm; !), on the short time interval [tm; !; ) belongs to B.

It can be observed by considering the integral form of the di¤erential equation and using

the estimate M = sup
�
kf(t; x)k : (t; x) 2 B

	
for f on B:
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x(t) = x(tm) +

Z t

tm

f(s; x(s))ds

x(t)� x� = x(tm)� x� +
Z t

tm

f(s; x(s))ds

kx(t)� x�k � kx(tm)� x�k+ jt� tmjM

� "; m > m�

where kx(tm)� x�k ! 0 with m ! 1, and jt� tmjM � j! � tmjM ! 0 with m ! 1.

We can choose m > m� so large that the right hand side in the inequality will be smaller

than ".

Therefore kx(t)� x�k � ", jt� tmj � " and the trajectory f(t; x(t) : t 2 [tm; !)g belongs

to B � B((!; x�); 2") and is bounded:

Therefore the closure of this tajectory f(t; x(t) : t 2 [tm; !)g is compact and belongs to

B((!; x�); r) and to J �G:

Therefore according to the Lemma 4.9 the solution x(t) can be extended up to the time

! and also beyond it to an even larger time interval [tm; ! + �). This fact contradicts the

given condition that x(t) is the maximal solution with the maximal interval Imax having

sup Imax = !.

The property that x(t) tends to the boundary of G can be shown in the following way.
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If G is bounded, one can construct a rising sequence of compact sets fCng1n=1 ; Cn � Cn+1
� G like "blowing up ballons" tending to the boundary @G of G so that dist(Cn; @G) !

0 as n ! 1 . For each of these sets there is a time �n such that x(t) leaves Cn and

therefore has dist(x(t); @G) < dist(Cn; @G) for t > �n. This construction proves the fact

that dist(x(t); @G)! 0 as t! !.

In the case of G = Rn one can choose a sequence of test compact sets fCng1n=1 as balls

with centers in the origin and radii rn tending to in�nity with n!1 leading together with

the "escaping property" to conclusion that kx(t)k ! 1; as t! !.

The third case with unbounded G with non-empty boundary @G can be proven by a

combination of the above arguments.�

Proposition 4.12, p. 114 on "eternal" solutions for equations with linear

bound for the right hand side. (proof required at exam)

Consider the initial value problem

x0(t) = f(t; x(t)); x(�) = �

where f : J � RN ! RN ; continuous and locally Lipschitz in x:

Assume that for any compact interval K � J there is L > 0 such that for t 2 K the

following estimate holds for the right hand side:

kf(t; x)k � L(1 + kxk): (5)

If x : I ! RN is a maximal solution to the equation x0(t) = f(t; x(t)), then I = J . In

particular if J = R, the maximal solution is de�ned for all t.

Proof.

De�ne ! = sup I, � = inf I . We use proof by contradiction. Suppose that the statement

of the theorem is not true, for example that ! 2 J and ! =2 Iand that � < !.

Let choose the konstant L such that the (5) is valid for t 2 [� ; !].Then, using the integral
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form of the I.V.P. and the triangle inequality implies the following estimate

kx(t)k � kx(�)k+
Z t

�

kf(s; x(s))k ds � kx(�)k+ L
Z t

�

(1 + kx(s)k) ds

kx(�)k+ L(t� �) + L
Z t

�

kx(s)k ds

for all t 2 t 2 [� ; !) The Grönvalls inequality implies that kx(t)k bounded by a constant C

on [� ; !): It makes that the corresponding orbit fx(t); t 2 [� ; !)g is a bounded and therefore

has compact closure in RN : The Lemma 4.9 implies that the solution can be extended to the

closed interval [� ; !] and actually y existence theorem to an even larger interval beyond !.

It contradicts to the supposition that I is a maximal interval for x(t).�
Proof for the case when � 2 J and � =2 I; � < � is treated similarly.

0.3 Transition map

Existence theorems by Picard and Lindelöf (Theorems 4.17 and 4.22 ) imply that for any

point � ; � 2 J � G there is a unique maximal solution that is convenient to consider as

a function '(t; � ; �) : J � J � G ! G of three variables equal to the maximal solution x

of (1). It is a common situation in applications that one is interested not in properties of

one solution, but in a description of the family of solutions with all possible initial data

as a whole. This type of problems constitute modern theory of di¤erential equations and

dynamical systems and motivates introducing the following notion.

De�nition. p. 126. Transition map. The mapping '(t; � ; �) de�ned above is called

transition map.

Transition map for autonomous systems. In the case of autonomous systems there

is no meaning in considering di¤erent initial times � , because all solutions are functions of

the time shift t� � . In this case we consider transition mappings '(t; �) : J �G! G with

'(t; �) = x(t) being the maximal solution of (2) with initial condition x(0) = �.

Local �ow or local dynamical system corresponding to an autonomous system of

di¤erential equations.

In the modern theory of ODE and dynamical systems the mapping '(t; �) is often called

19



in the local �ow or the local dynamical system corresponding to the system of di¤erential

equations.

If the maximal interval I� corresponding to the initial point � coincides with R we say

that the solution '(t; �) is global. If I� = R for all � 2 G then '(t; �) is said to be a �ow or

a dynamical system on G.

Example 4.33 of a transition map.

G = R; f : G! R; f(x) = x2; for � = 0; x(t) � 0:

Initial data x(0) = �

dx

dt
= x2;

Z
dx

x2
=

Z
dt;

�1
x
= t+ C

�1
x
= t� 1

�
; �1

x
=
t� � 1
�

x =
�

(1� t�)

� = 0; x(t) � 0: � > 0, I� = (�1; 1=�): � < 0, I� = (1=�;1)

'(t; �) =
�

(1� t�) ; D(') = f(t; �) 2 R� R; t� < 1g

The domain D of ' is an open set. '(t; �) is continuous and even locally Lipschitz:

Proposition. Theorem 4.34, p.139 (consequence of Th. 4.29, p. 129)
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The domain D = f(t; �) 2 I� �G, � 2 Gg of the transition map '(t; �) is open and

'(t; �) is continuous and even locally Lipschitz in D:

Proof of the Lipschitz property with respect to each of the variables follows from the

integral form of the I.V.P. and for � variable - from an application of Grönwall inequality

similar to the proof of uniqueness of solutions to I.V.P:

Proposition. Translation invariance of the transition mapping for autonomous

systems

(a non-linear version of the Chapman-Kolmogorov relation) Theorem 4.35,

p. 140 -141.

The transition mapping '(t; �) has properties

(1) '(0; �) = � for all � 2 G

(2) if � 2 G and � 2 I� = Imax(�) - maximal interval for �, then

I'(�;�) = I� � �

'(t+ � ; �) = '(t; '(� ; �)); 8t 2 I� � �

Proof of this statement follows is similar to the proof of the Chapman Kolmogorov rela-

tions for linear systems.
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We consider �rst a trajectory '(:::; �) starting at the point � 2 G and �nishing at time �

at the point '(� ; �) (blue curve). Then we continue this movement from the last point '(� ; �)

during time t (red curve) coming �nally to the point '(t; '(� ; �)) in the right hand side of the

equation in the conclusion. The fact that the equation is autonomous and independent of

time makes that this movement is equivalent to just moving with the �ow starting from the

point � during the total time t+� , that is the left hand side in the equation. The illustration

is borrowed from the proof for the linear systems. The only di¤erence here is that we have a

superposition '(t; '(� ; �)) of transfer mappings in the non-linear case instead of the product

of transfer matrices in the linear case (that is also a superposition for linear mappings).
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May 13, 2020

1 Lecture notes on non-linear ODEs: limit sets (attractors), pos-

itively invariant sets, periodic solutions, limit cycles.

Plan (continuation after existence and maximal solutions)

� Semi - orbits. Limit sets. p. 142. Positively (negatively) invariant sets p. 142.

� Existence of an equilibrium point in a compact positively invariant set. Theorem 4.45,

p. 150.

� Planar systems. Periodic orbits. Poincare-Bendixson theorem. (only idea of the proof

is discussed) Theorem 4.46, p. 151.

� Examples on applications of Poincare-Bendixson theorem.

� Generalized Poincare-Bendixson theorem. (missed in the book, only formulation is

given)

1.1 Introduction to limit sets and their properties.

We consider �ows or dynamical systems corresponding to autonomous di¤erential equations

_x = f(x); f : G! RN ; x(0) = � (1)

with f locally Lipschitz and denote by '(t; �) the transition mapping or the local �ow

generated by f . For � 2 G let I� = (��; !�) denote the maximal interval - the interval of

existence of maximal solution to (1):
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De�nition. (Positive semi-orbit)

We denote by O(�) the orbit of the solution to (1); O(�) = fx(t) : t 2 (��; !�)g.

We de�ne the positive semi-orbit O+(�) = fx(t) : t 2 [0; !�)g of � - for future; and nega-

tive semi-orbit (for the past) O�(�) = fx(t) : t 2 (��; 0]g o /f � - for the past.

De�nition. (Limit point of �)

� A point z 2 RN is called an ! - limit point of � (or it�s positive semi-orbit O+(�) or

it�s orbit O(�)) if there is a sequence of times ftng 2 [0; !�) tending to the "maximal time

in the future", tn % !� such that '(tn; �)! z as n!1

� Similarly a point z 2 RN is called an � - limit point of � (or it�s negative semi-orbit

O�(�) or it�s orbit O(�)) if there is a sequence of times ftng 2 (��; 0] tending to the "minimal

time in the past", tn & �� such that '(tn; �)! z as n!1.

De�nition. (! - limit set)

The ! - limit set 
(�) of � (or it�s positive semi-orbit O+(�) or it�s orbit O(�)) is the set

of all it�s !- limit points (in future)

A trajectory approaching the ! - limit set of the Lorentz system
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x0 = ��(x� y)

y0 = rx� y � xz

z0 = xy � bz

for � = 10; r = 28, b = 8=7:

De�nition

The � - limit set 
(�) of � (or it�s negative semi-orbit O�(�) or it�s orbit O(�)) is the set

of all it�s �- limit points (in the past).

De�nition. (Positively invariant set)

A set U � G is said to be positively invariant under the local �ow ' generated by f if for

each starting point � 2 U from U the corresponding positive semi - orbit O+(�) is contained

in U .

It means that all trajectories x(t) starting in U stay in U as long as they exist in future:

One de�nes sets negatively invariant similarly, but with respect to the past.

De�nition

One also says that the set U is just invariant with respect to the �ow '(t; �) if O(�) � U

for all � 2 U . It means that all trajectories going through � belong to U both in the "whole

past" and in the "whole future".

Remark

We know that compact positively invariant sets include trajectories that have "in�nite"

maximal existence time in the future: J \ [0;1). It makes it meaningfull to investigate limit

sets of trajectories that are contained especially in compact positively invariant sets.

The �rst step in this kind of investigation is to identify possibly small positively invariant

sets, that localize solutions. The second step is to classify and to identify ! - limit sets that

can be contained there. It particular one is interested in �ning ! - limit sets for particular

given systems.
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1.2 Methods of hunting positively - invariant sets (there is a sep-

arate pdf �le with this text)

A system of ODEs has naturally many positively - invariant sets, for example the whole

domain G is always a positively - invariant set, but it is not very interesting. We like to

�nd possibly narrow positively invariant sets showing more precisely where trajectories or

solutions to the equation tend when t tends to the upper bound of the maximal time interval.

How to �nd a positively - invariant set?

Method 1. A general idea that is used to answer many questions about behaviour of

solutions (trajectories) to ODEs, is the idea of test functions. One checks if the velocities

f(x) are directed inside or outside with respect to the sets like Q = fx 2 U : V (x) � Cg or

Q = fx 2 U : V (x) � Cg de�ned by some simple test functions V : U ! R, U � G: The

advantage of the idea with test functions is that one does not need to solve the equation to

use it.

� It is convenient to �nd a test function V (x) that has a level set @Q = fx : V (x) = Cg

that is a closed curve (or surface in higher dimensions) enclosing a bounded domain Q.

Typical examples are V (x; y) = x2 + y2=R2 - circle or radius R; or V (x; y) = x2

a2
+ y2

b2
=1

- ellipse, or more complicated ones as V (x; y) = x6 + ay4 - smoothed rectangle shape or

squeezed ellipse, V (x; y) = x2 + xy + y2 = C - ellipse rotated in �=4 and having axes A and

B related as A=B =
p
3etc.

� To show that a particular level set @Q bounds an positively - invariant set Q we check

the sign of the directional derivative of V along the velocity f(x) in the equation x0 = f(x):

dV (x(t))=dt = Vf (x) = (rV � f) (x)

for all points on the level set fV (x) = Cg for a particular constant C.

� Point out that the gradient rV (x) is the normal vector to the level set fV (x) = Cg

that goes through the point x. Therefore the sign of Vf (x) shows if the trajectories towards

the same side of the level set as the gradient rV (if Vf (x) > 0) or towards the opposite side

(if Vf (x) < 0).
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� Then if V (x) is rising for x going out of Q, and Vf (x) < 0 then the domain Q inside

this level set @Q (curve in the plane case) will be positively - invariant. Similarly if V (x) is

decreasing out of this level set, and Vf (x) < 0 on the level set @Q then the domain Q inside

this level set will be positively - invariant.

In the opposite case the complement to Q that is RNnQ will be positively - invariant

and trajectories '(t; �) starting in this complement: � 2 RNnQ will never enter Q.

First integrals. A very particular case of test functions are functions that are constant

on all trajectories '(t; �) of the system. It means that d
dt
V ('(t; �)) = Vf (x) � 0. In this

case all level sets of the �rst integral are invariant sets, because velocities f(x) are tangent

vectors to the level sets in this case. Such functions are called �rst integrals and represent

conservation laws in ODEs. Usually but not always, such test functions have the meaning

of the total energy in the system.

Method 2. If it is sometimes di¢ cult to guess a simple test function giving one closed

formula for the boundary of an positively - invariant set as in the Method 1, then one can

try to identify a boundary for a positively - invariant set as a curve (or a surface in higher

dimensions) consisting of a number of simple peaces, for example straight segments.

The simplest positively - invariant set of such kind would be a rectangle (a rectangular

box in higher dimensions) with sides parallel to coordinate axes. Then a simple check that

this rectangle is a positively - invariant is just to check the sign of x1 or x2 - components of

f(x) on these segments, showing that trajectories go inside or outside of the rectangle. A

bit more complicated analysis is to show that no trajectories can approach these segments

in �nite time (if one of the segments belongs to the boundary @G of G where the equation

is not de�ned). We have such an example in the second home assignment.

Application to Poincare Bendixson theorem

One searches often positively - invariant sets with special properties. For example to apply

the Poincare-Bendixson theorem for systems in the plane formulated later in the course, one

needs to �nd a positively - invariant set that does not contain any equilibrium points.
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Example of �nding positively - invariant sets and ! - limit sets with help of a simple

test function.

Consider the system

x0 = �ay + f(r)x

y0 = ax+ f(r)y

where r =
p
x2 + y2: We will try to �nd an explicit expression for the corresponding

�ow by introducing polar coordinates x = cos(�)r, y = sin(�)r. We di¤erentiate r(t) using

expressions for r and for x0, y0 in the equation, and arrive to following formulas:

�
r2
�0

= 2rr0 = (x2 + y2)0 = 2xx0 + 2yy0

= 2x(�ay + f(r)x) + 2y (ax+ f(r)y) = 2f(r)
�
x2 + y2

�
= 2f(r)r2

Therefore:

r0 = f(r)r

The equation for the polar angle � can be derived by di¤erentiating tan(�(t)):

(tan (�))0 = �0
�

1

cos2(�)

�
=
�y
x

�0
=
y0x� x0y
x2

=
ax2 + f(r)xy � (�ay2 + f(r)xy)

x2
=
ax2 + ay2

x2
=

a

cos2 �

Therefore

�0 = a

The equation for r(t) can be solved by integration:Each positive root r� to f(r) corre-

sponds to a periodic trajectoty r(t) = const = r(0) = r�, �(t) = �(0) + at

This periodic orbit will attract trajectories, that start nearby if df
dr
(r�) < 0 (will be an !

- limit set 
(�) for points � close to the circle r = r�). If r� is a root of f where the �rst

term in Taylor series is c(r � r�)2 with c > 0, then nearby trajectories will be attracted to

the periodic orbit from inside, and will run away from the periodic orbit from the outside of

6



it.

Example with tree periodic solutions, orbits of two of them with r = 1 and r = 3 (red)

are ! - limit sets, the orbit of one with r = 2 (blue) is an � - limit set:

f(r) = (1� r2)(3� r)(4� r2)

a = �10

We have dr=dt = f(r)r

7



In the following example such kind of system is considered for one more particular function

f(r).

Exercise 4.16, p. 140.

Solution. The equations in polar form follow from the general argument above.

We solve the equation for r :

dr

dt
= r(1� r2)

dr

r(1� r2) = dt

1

r(1� r2) =
1

r
� 1

2 (r + 1)
� 1

2 (r � 1)

8



Z
dr

r(1� r2) = ln r � 1
2
ln
�
r2 � 1

�
ln r � 1

2
ln
�
r2 � 1

�
= t+ C

C = ln j�j � 1
2
ln
�
j�j2 � 1

�
ln r � 1

2
ln
�
r2 � 1

�
�
�
ln j�j � 1

2
ln
�
j�j2 � 1

��
= t

exp(t) = exp

�
ln r � 1

2
ln
�
r2 � 1

�
� ln j�j+ 1

2
ln
�
j�j2 � 1

��
rp
r2 � 1

q
j�j2 � 1
j�j = exp(t)

(r2 � 1)
r2

j�j2�
j�j2 � 1

� = exp(�2t)�
r2 � 1

�
j�j2 = r2

�
j�j2 � 1

�
exp(�2t)

r2(j�j2 +
�
1� j�j2

�
exp(�2t)) = j�j2

r2 =
j�j2

(j�j2 +
�
1� j�j2

�
exp(�2t))

r =
j�jq

(j�j2 � 1� j�j2 exp(�2t))

Example 4.37. p. 142. Do it as exercise.

Let f : R2 ! R2 be as in the Exercise 4.16, the generator of a local �ow considered

above.

Let � be an open unit disc in R2; namely � = f(z1; z2) 2 R2 : z21 + z22 < 1g :

Show that sets �, @�;R2n� are invariant and �nd for every � 2 R2 the corresponding

! and � limit set.

Remark. In the case k�k > 1 solutions '(t; �) have the maximal interval I� that is not

the whole R, but is bounded in the past I� = (��;1):

9



The calculation of �� using the explicit solution found in the exercise 4.16 is given here:

k�k2 +
�
1� k�k2

�
e�2t = 0

k�k2

k�k2 � 1
= e�2t

ln

0@
q�
k�k2 � 1

�
k�k

1A = t = �� < 0

The phase portrait is the following:

10



1.3 Dynamical systems in plane. Poincare Bendixson theorem,

periodic solutions and more positively invariant sets.

Theorem. Poincare-Bendixson theorem.

Suppose that � 2 G � R2 is such that the closure of the positive orbit O+(�) is compact

and is contained in G and the ! - limit set 
(�) does not contain equilibrium points.

Then the ! - limit set 
(�) is an orbit of a periodic solution.�

Counterexample: an annulus containitn no periodic orbits, because it is a

region of attraction containing an attracting equilibrium.

De�nition

A periodic orbit  (an orbit corresponding to a periodic solution) is called an ! - limit

cycle (or often just a limit cycle) if  = 
(�) for some start point � 2 Gn: namely that 

is an !-limit set for some point � outside .

This de�nition excludes the case of phase portraits completely �lled periodic orbits, as

the system x0 = �y, y0 = x, having all orbits being circles arund the origin corresponding to

periodic solutions.

Hint to applications. It is di¢ cult to check conditions in the Poincare-Bendixson

theorem as they are. It is easier to check that there is a compact positively invariant set

C � G � R2 such that � 2 C. Then the ! - limit set 
(�) � C is not empty. If C contains

11



no equilibrium points, then the closure of 
(�) cannot contain equilibrium points either and

by the Poincare-Bendixson theorem 
(�) is an orbit of a periodic solution.

One fundamental fact about positively invariant sets is the following.

Theorem 4.45. p. 150, L&R (slightly generalised, without proof)

Suppose that C � G � R2 is non-empty and compact and is homeomorphic to a circular

disc (has no holes). If C is positively invariant under the �ow '(t; �), then C contains at

least one equilibrium point for the corresponding ODE.

Proof of this theorem is based in the Bohl-Brouwer �xed-point theorem about the exis-

tence of �xed points x = F (x) of a continuous mapping F : C ! C for a compact C � Rn

homeomorphic to a ball. See an Appendix in L.R.

De�nition. Two sets A and B in Rn are homeomorphic if there is a continuous invertible

mapping (homeomorphism) � : A! B;and ��1 : B ! A.

The Theorem 4.45 has an important practical consequence for application of the Poincare

Bendixson theorem.

Remark. Considering any periodic orbit in the plane R2 we see that it encloses a

compact positively invariant set Q homeomor�c to a round disc (it follows from Jordan�s

lemma). Theorem 4.45 suggests that Q includes at least one equilibrium point. It means

that any periodic orbit in plane must urround at least one equilibrium point. It makes that

typical compact positively - invariant set C considered for applying the Poincare-Bendixson

theorem should be a closed ring shaped set with at least one hole in the middle including an

equilibrium point.

12



Check list for application of the Poincare-Bendixson theorem.

� One starts with applying one of the two methods above to �nd a compact positively -

invariant set Q:

� Then we consider if Q has an equilibrium inside. Usually there is one such if our

intuition is not wrong. Therefore the set Q does not satisfy conditions in the Poincare-

Bendixson theorem yet. It is only the �rst step to the goal.

� Suppose there is just one equilibrium point x� insideQ. It might be that this equilibrium

is asymptotically stable and attracts all trajectories starting in Q: Then there is no periodic

orbit inside Q.

� To have a periodic orbit in Q we need to �nd a "hole" H around the equilibrium

x� such that no trajectories enter it. Then the closure of the set QnH without the hole

will be a compact ring - shaped set (annulus) that is positively invariant and contains no

equilibrium points. Then all trajectories x(t) starting in QnH will have a non-empty ! -

limit set that according to the Poincary Bendixson theory is a periodic orbit. There can be

13



several periodic orbits in QnH that are ! - limit sets for di¤erent trajectories. There an

also be some periodic orbits that are not ! - limit sets!

� The "hole"H that repells trajectories can be found using the method of test functions,

sometimes using the same test function V as one used to identify Q, just choosing di¤erent

level sets for Q and for H.

� Alternatively one can use the linearization to show that this equilibrium is repeller

and therefore trajectories cannot enter some small neighbourhood of the equilibrium in the

middle of the set Q. This method is convenient in the case when the equilibrium is not the

origin

� One must check at the end that the positively invariant annulus (closed ring shaped

domain) does not include equilibrium points (no at the boundary either!).

It is often simpler to do it after carrying out estimates for Vf by �rst checking zeroes of

Vf (x) = 0 that contain naturally all equilibrium points but is a scalar equation, and then

checking zeroes of the system f(x) = 0.

14



Examples on Poincare-Bendixson�s theorem

Example. Show that the following system has a periodic solution.

x0 = y

y0 = �x+
�
1� x2 � 2y2

�
y

The test function is chosen as V (x; y) = 1
2
(x2 + y2)

Amore geometric analysis would be to consider the the test function V (x; y) = (x2+y2)=2

15



nd its particular level set - the ellipse with the equation

x2 + 2y2 = 1

that separates points (x; y) where Vf (x; y) > 0 and Vf (x; y) < 0:

Vf (x; y) =
d

dt
V (x(t); y(t)) = rV (x; y) �

24 x0(t)
y0(t)

35 =
rV (x; y) � f(x; y) = �

�
x2 + 2y2 � 1

�
y2 � (�)0

The negative sign of Vf (x; y) says that trajectories go inside the level set of V (a circle

in this case) going through the point (x; y).

The positive sign of Vf (x; y) says that trajectories go outside the level set of V going

through the point (x; y).

The half axes of ellipse x2 + 2y2 = 1 are expressed from the transformed equation

x2

12
+

y2�
1=
p
2
�2 = 1

We �nd the largest level set (circle) of V (x; y) inside this ellipse (red) and the smallest level

set of V (x; y) outside this ellipse (blue) to get the smallest positive invariant set that includes

a periodic orbit.

By chance they coinside with boundaries of the annulus found earlier by analytical means.
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As Theorem 4.45 and examples considered before suggest, the positively invariant set we

look for applying the Poincare Bendixson theorem must have a shape of annulus with a hole

in the middle that contains at least one equilibrium point. The next Proposition gives a

particular hint how to �nd the "hole" for such an annulus domain with less e¤ort by using

the Grobman-Hartman theorem that we studied earlier.

Proposition 4.56. p. 165.

Let C � G be a compact set that is positively invariant under the local �ow ' fgenerated

by the equation x0(t) = f(x): Assume that an interior point x� is the interior point in C

and is the only equilibrium point in C: Assume that f is di¤erentiable in x�. Let A be the

Jacoby matrix of f in x�:
Df
Dx
(x�) = A: Let eigenvalues of A have Re�1;2 > 0.

Then there exists at least one ! - limit cycle in C.

Proof is an exercise.

17



Exercise. Rectangular positively invariant set and application of the Poincare

Bendixson theorem.

Consider the following system of ODEs :8<: x0 = 10� x� 4xy
1+x2

y0 = x
�
1� y

1+x2

�
a) show that the point (x�; y�) with coordinates x� = 2 and y� = 5 is the only equilibrium

point and is a repeller;

b) �nd a rectangle [0; a]� [0; b] in the �rst quadrant x > 0, y > 0 bounded by coordinate

axes and by two lines parallel to them, that is a positively invariant set. Explain why the

18



system must have at least one periodic orbit in this rectangle.

1. Solution.

a) x� = 2 and y� = 5 is an equilibrium point:
�
1� 5

1+22

�
= 0; and 10 � 2 � 4�2�5

5
=

10� 2� 8 = 0.

The Jacobi matrix is A =

24 �4 y
x2+1

+ 8x2 y

(x2+1)2
� 1 �4 x

x2+1

� y
x2+1

+ 2x2 y

(x2+1)2
+ 1 � x

x2+1

35 . It is calculated as:
r
�
10� x� 4xy

1+x2

�
=

24 �4 y
x2+1

+ 8x2 y

(x2+1)2
� 1

�4 x
x2+1

35������
x=2; y=5

=

24 �455 + 8 (4) 5
25
� 1

�4 � 2
5

35 =
24 �4 + 32

5
� 1

�8
5

35 =
24 1: 4

�1: 6

35
r
�
x
�
1� y

1+x2

��
=

24 � y
x2+1

+ 2x2 y

(x2+1)2
+ 1

� x
x2+1

35������
x=2; y=5

=

24 �5
5
+ 2(4) 5

25
+ 1

�2
5

35
=

24 �1 + 8
5
+ 1

�2
5

35 =
24 1: 6

�0:4

35
The Jacobi matrix in x�, y� is A =

24 1:4 �1:6

1:6 �0:4

35, characteristic polynomial: �2��+
2 = 0,

trace(A) = 1 > 0, det(A) = 2 > [trace(A)]2

4
= 1

4
that corresponds to an unstable

spiral and it is a repeller, eigenvalues are: �1 = 0:5 +
p
0:25� 2 = 0:5 + i

p
1:75,

�2 = 0:5�
p
0:25� 2 = 0:5� i

p
1:75.

It implies by the Grobman-Hartman theorem, that trajectories cannot enter a small

open ball B((x�; y�); ") with the center in the equilibrium point (2; 5) and some small

radius ": We do not need to specify " here.

b) Observe that the �rst quadrant is a positively invariant set. For y = 0 we have

_x = 10 > 0 and for y = 0 and x > 0 we have y0 = x > 0:

Observe also that _y < 0 for y > 1+x2 and x > 0; and that _x < 0 for x > 10 and y > 0.
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It implies that the rectangle [0; 10]� [0; 101] is a positively invariant compact set. Ex-

cluding a small open set H" containing the equilibrium point (2; 5) and small diameter

" we get a positively invariant compact set [0; 10] � [0; 101] nH" without equilibrium

points that according to the Poincare Bendixson theorem must include at least one

periodic orbit because each trajectory starting in this set has a non-empty ! - limit set

that is a periodic orbit. So in principle there can be several periodic orbits surrounding

this equilibrium point.
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Example. 3.9.1 (from A-P) One can instead of the analytical approach shown below,

use a more geometric argument, based on considering the curves const = 3x21 + 2x
2
2. It is

demonstrated later for the Exercise 4.21.

Show that the following equation has a limit cycle (a periodic orbit that is an ! - limit

set of at least one solution)

x01 = x2

x02 = �x1 + x2
�
1� 3x21 � 2x22

�
write the system in polar coordinates:

r = r sin2 �
�
1� 3r2 cos2 � � 2r2 sin2 �

�
�0 = �1 + 1

2
sin(2�)

�
1� 3r2 cos2 � � 2r2 sin2 �

�
a) Observe that with r = 1=2

r0 =
1

4
sin2 �

�
1� 1

2
cos2 �

�
� 0

with equality only at � = 0 and � : Thus fx : r > 1=2g is positively invariant (trajectories

do not enter the circle r < 1=2.

b) The same equation for r0 implies that

r0 � r sin2 �
�
1� 2r2

�
Thus the annulus C =

�
x : 1=2 < r < 1=

p
2
	
is positively invariant. The only �xed point

to the system is outside this annulus. Therefore here is at least one periodic orbit in C that

is an ! limit set for all trajectories starting in C (and therefore is a limit cycle).
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Exercise 4.21, p. 158

Consider the system z0 = f(z1; z2) :

z01 = z2 + z1g(z1; z2)

z02 = �z1 + z2g(z1; z2)

g(z1; z2) = 3 + 2z1 � z21 � z22

Prove that the system has at least one periodic solution.

Solution.

Consider the test function V (z1; z2) =
�
z21+z

2
2

2

�
.

rV � f(z1; z2) =

24 z1
z2

35 �
24 z2 + z1g(z1; z2)

�z1 + z2g(z1; z2)

35
=

�
z21 + z

2
2

�
g(z1; z2) =

�
z21 + z

2
2

� �
3 + 2z1 � z21 � z22

�
= r2(4� (1� z1)2 � z22)

The circle 4 = (1� z1)2 + z22 has center in the point (1; 0) and radius 2:

32.521.510.50-0.5-1-1.5-2-2.5-3
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y

Inside this circle rV � f(z1; z2) > 0 outside this circle rV � f(z1; z2) < 0. Therefore as

it is easy to see from the picture, rV � f(z1; z2) � 0 on the circle z21 + z
2
2 = 1 with center

in the origin, and rV � f(z1; z2) � 0 on the circle z21 + z22 = 9 with center in the origin: The
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ring shaped set C: 1 � r � 3 is a positively invariant compact set. The origin is the only

equilibrium point fo the system, because from the expression rV � f(z1; z2) = r2g(z1; z2) it

follows that other equilibrium points must be on the circle g(z1; z2) = 0 = 4 � (1� z1)2 �

z22 . Substitution g(z1; z2) = 0 into the system leads to the conclusion that there are no

equilibrium points on this circle.

Therefore the Poincare Bendixson theorem implies that there exists at least one periodic

orbit contained in the ring shaped set C.

Exercise. 3.8.2.

Solve a similar problem for the function g(z1; z2) = 3 + z1z2 � z21 � z22 :

1.
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Generalized Poincare-Bendixson�s theorem.

The following theorem gives a more complete description of the types of ! - limit sets in

the plane R2:

Theorem (generalized Poincare-Bendixson)

Let M be an open subset of R2 and f : M ! R2 and f 2 C1. Fix � 2 M and suppose

that 
(�) 6= ;, compact, connected and contains only �nitely many equilibrium points.

Then one of the following cases holds:

(i) 
(�) is an equilibrium point

(ii) 
(�) is a periodic orbit

(iii) 
(�) consists of �nitely many �xed points fxjgand non-closed orbits  such that !

and � - limit points of  belong to fxjg.
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1.4 More remarks about hunting ! - limit sets

1.5 How to �nd an ! - limit set?

We put here this user guide about ! - limit sets that refers to some notions that will be

discussed later in the course. You can come back to this text when corresponding notions

26



will be introduced.

! - limit sets live naturally inside ! - invariant sets. In case one can �nd a very small ! -

invarinat set the position and the size of the ! - limit set inside it will be rather well de�ned.

Description properties of ! - limit sets is the main and the most complicated problem

in the theory of dynamical systems. Even numerical investigation of limit sets in dimension

higher then 2 is rather complicated and needs advanced mathematical tools.

In autonomous systems the plane R2 limit sets can be only of three types: a) equilibrium

points, b) periodic orbits, and c) closed curves consisting of �nite number of

equilibrium points connected by open orbits. It is an extension of the Poincare-

Bendixson theorem.

The analytic identi�cation or at least e¤ective localization of ! - limit sets is possible with

help of La Salle�s invariance theorem that will be studied later. It states that ! - limit sets

are subsets of zero level sets of Vf (x) = (rV � f) (x) for appropriate test function (Lyapunov

function) V (x) satisfying Vf (x) � 0.

This theorem helps in particular to �nd ! - limit sets that are asymptotically stable

equilibrium points, by a rather simple check of the behaviour of the velocity f(x) on the zero

level set where Vf (x) = 0.

One can also investigate asymptotically stable equilibrium points with help of so called

"strong" Lyapunov functions V that satisfy Vf (x) < 0 for x 6= 0.

It is di¢ cult in practice to �nd analytically ! - limit sets in plane of two other types. It

is possible if one can �nd analytically a zero level set V �1f (0) of a test function V that is

a closed curve in plane. Then this level set belongs to one of the two other types: periodic

orbit or a chain of equilibrium points connected by open orbits.

Such an analytic construction is not known for the equation with periodic orbit in the

second home assignment, despite the fact that special techniques were developed to show

that the periodic orbit there is unique.

If a system has �rst integrals: test functions having Vf (x) = 0 everywhere, then level sets

of �rst integrals give a good tool to identify ! - limit sets because these level sets consist of

orbits and are because of that very narrow invariant sets. The existence of �rst integrals is

usually a sign that the energy of the system is preserved, that is a rather special situation.
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Observations above show that in many practical situations we can �nd ! - limit sets that

are asymptotically stable equilibrium points.

For systems in plane we can with help of Poincare Bendixson theorem also show that in

certain situations ! - limit sets are orbits of periodic solutions but cannot give a formula for

them and cannot state how many they are.

! - limit sets in the plane that are more complicated than equilibrium points, is possible

to describe analytically in the case when for a Lyapunov test function V (x) the zero level

set V �1f (0) is a closed curve in the plane and the corresponding equation can be investigated

analytically.
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1 User Guide to hunting positively - invariant sets and

! - limit sets.

We consider �ows or dynamical systems corresponding to autonomous di¤erential equations

_x = f(x); f : G! RN

A system has naturally many positively - invariant sets, for example the whole domain G is always

an positively - invariant set, but it is not very interesting. We like to �nd possibly narrow invariant sets

showing more precisely where trajectories or solutions to the equation tend when t tends to the upper

bound of the maximal time interval (usually t!1 if the trajectory is bounded and has compact closure).

A general idea that is used to answer many questions about behaviour of solutions (trajectories) of

the equations, is the idea of test functions. One checks if the velocities f(x) are directed inside or outside

with respect to the sets like Q = fx 2 U : V (x) � Cg or Q = fx 2 U : V (x) � Cg de�ned by some simple
test functions V : U ! R, U � G: A more re�ned variant of this idea by Lyapunov is to �nd test a

function that is monotone along the trajectories '(t; �) of the equation. The advantage of the idea with

test functions is that one does not need to solve the equation to use it.

How to �nd an positively - invariant set?

Method 1. We �nd a test function V (x) that has some level sets @Q = fx : V (x) = Cg that are
closed curves (or surfaces in higher dimensions) enclosing a bounded domain Q. Typical examples are

V (x; y) = x2 + y2=R2 - circle or radius R; or V (x; y) = x2

a2
+ y2

b2
=1 - ellipse, or more complicated ones as

V (x; y) = x6 + ay4 - smoothed rectangle shape or squeezed ellipse, V (x; y) = x2 + xy + y2 = C - ellipse

rotated in �=4 and having axes A and B related as A=B =
p
3etc.

� To show that a particular level set @Q bounds an positively - invariant set Q we check the sign of the
directional derivative of V along the velocity in the equation: Vf (x) = (rV � f) (x) for all points on the
level set fV (x) = Cg for a particular constant C.
� The sign of Vf (x) shows if the trajectories go to the same side of the level set as the gradient rV (if

V (x) > 0) or to the opposite side (if Vf (x) < 0).

� Then if V (x) is rising for x going out of Q, and Vf (x) < 0 then the domain Q inside this level set @Q
(curve in the plane case) will be positively - invariant. Similarly if V (x) is decreasing out of this level set,

and Vf (x) < 0 on the level set @Q then the domain Q inside this level set will be positively - invariant.

In the opposite case the complement to Q that is RNnQ will be positively - invariant and trajectories
'(t; �) starting in this complement: � 2 RNnQ will never enter Q.
First integrals. A very particular case of test functions are functions that are constant on all trajec-

tories '(t; �) of the system. It means that d
dt
V ('(t; �)) = Vf (x) � 0. Usually but not always, such test

functions have the meaning of the total energy in the system. In this case all level sets of the �rst integral

are invariant sets, because velocities f(x) are tangent vectors to the level sets in this case.

Method 2. If it is di¢ cult to guess a simple test function giving one closed formula for the boundary
of an positively - invariant set as in the Method 1, then one can try to identify a boundary for an positively
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- invariant set as a curve (or a surface in higher dimensions) consisting of a number of simple peaces, for

example straight segments.

The simplest positively - invariant set of such kind would be a rectangle (a rectangular box in higher

dimensions) with sides parallel to coordinate axes. Then to check that this rectangle is an positively -

invariant one needs just to check the sign of x or y - components of f(x) on these segments, showing that

trajectories go inside or outside of the rectangle.

Application to Poincare Bendixson theorem
One searchs often positively - invariant sets with special properties. For example to apply the Poincare-

Bendixson theorem one needs to �nd an positively - invariant set without equilibrium points. On the other

hand it is known that any periodic orbit in plane encloses at least one equilibrium point. It means that a

typical positively - invariant set for applying the Poincare-Bendixson theorem should be ring shaped with

at least one hole in the middle including a repelling non stable equilibrium point.

Check list for application of the Poincare-Bendixson theorem.

� One starts with applying one of the two methods above to �nd a compact positively - invariant set
Q with at least one equilibrium point inside it. Such set Q does not satisfy conditions in the Poincare-

Bendixson theorem yet.

� To identify holes around the equilibriums in the middle (one must �nd all such equilibrium points at
the end !), one needs often to �nd one more test function for each of them, to show that trajectories do

not enter a neighbourhood of each of the equilibriums.

� Alternatively one can use the linearization to show that this equilibrium is repeller and therefore

trajectories cannot enter some small neighbourhood of the equilibrium in the middle of the set Q.

� One must check at the end that the found positively invariant annulus (closed ring shaped domain)
does not include equilibrium points (not at the boundary either!) It is often simpler to do after carrying

out estimates for Vf .

How to �nd an ! - limit set?

! - limit sets live naturally inside ! - invariant sets. In case one can �nd a very small ! - invarinat set

the position and the size of the ! - limit set inside it will be rather well de�ned.

Description properties of ! - limit sets is the main and the most complicated problem in the theory

of dynamical systems. Even numerical investigation of limit sets in dimension higher then 2 is rather

complicated and needs advanced mathematical tools.

In autonomous systems the plane R2 limit sets can be only of three types: a) equilibrium points,
b) periodic orbits, and c) closed curves consisting of �nite number of equilibrium points
connected by open orbits. It is an extension of the Poincare-Bendixson theorem.
The analytic identi�cation or at least e¤ective localization of ! - limit sets is possible with help of La

Salle�s invariance theorem. It states that ! - limit sets are subsets of zero level sets of Vf (x) = (rV � f) (x)
for appropriate Lyapunov functions V (x) satisfying Vf (x) � 0.
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This theorem helps in particular to �nd ! - limit sets that are asymptotically stable equilibrium points,

by a rather simple checking the behaviour of the velocity f(x) on the zero level set where Vf (x) = 0.

One can also investigate asymptotically stable equilibrium points with help of so called "strong" Lya-

punov functions that satisfy the strict inequality Vf (x) < 0 for x 6= 0.
It is di¢ cult in practice to �nd analytically ! - limit sets of two other types. It is possible if one can

�nd analytically a zero level set V �1f (0) that is a closed curve in plane. Then this level set belongs to one

of the two other types: periodic orbit or a chain of equilibrium points connected by open orbits.

Such an analytic construction is not known for the equation with periodic orbit in the second home

assignment, despite the fact that special techniques were developed to show that the periodic orbit there

is unique.

If a system has �rst integrals, then level sets of �rst integrals give a good tool to identify ! - limit sets

because these level sets consist of orbits and are very narrow invariant sets themself. The existence of �rst

integrals is usually a sign that energy of the system is preserved, that is a rather special situation.

The observations above show that in many practical situations we can �nd ! - limit sets that are

asymptotically stable equilibrium points.

For systems in plane we can with help of Poincare Bendixson theorem also show that in certain

situations ! - limit sets are periodic orbits but cannot give a formula for them and cannot state how many

they are.

! - limit sets in the plane that are more complicated then equilibrium points, is possible to describe

analytically in the case when for a Lyapunov function V (x) the zero level set V �1f (0) is a closed curve in

the plane and the corresponding equation can be investigated analytically.
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1 Bendixson�s citerium for nonexistence of pe-

riodic solutions in plane.

Theorem. Let x0 = f(x) with f : G! R2, G � R2 be open, f 2 C1(G); and
let D � G be a simply connected domain (domain without "holes" even
without point holes). It is enough to require that f is locally Lipschitz in G

with more knowlege of integration theory.

Suppose that div(f) = @f1
@x1

+ @f2
@x2

is strictly positive (or strictly negative)

in D, where f = [f1; f2]
T .

Then the equation has no periodic solutions with orbits inside D:

Proof 1. Carry out a proof by contradiction. Suppose that there is a

periodic trajectory x(t) with period T > 0 in D. x(t+ T ) = x(t) and

x01(t) = f1(x(t)); x02(t) = f2(x(t))

Denote orbit of x(t) by L =fx(t) : t 2 [0; T ]g. It will be a closed curve.
Denote the domain inside L by 
. Then the boundary @
 = L because D � 

is simply connected and has no holes. Consider the integral of div(f) over 


and apply Gauss theorem:

I =

Z



div(f)dx1dx2 =

Z
@


f � n dl

where n is the outward normal to the boundary @
. Point out that f(x(t)) =

x0(t) on @
 = L because L is the orbit of the periodic solution x(t) that

we supposed to be existing. Therefore f(x(t)) is the tangent vector to @


and therefore scalar product of it woth the normal vector is zero f � n = 0.

Therefore

I =

ZZ



div(f)dx1dx2 =

Z
@


f � n dl = 0

with the curve integral over @
 = L in the right hand side. On the other
hand div(f) > 0 (or strictly negative) in the whole D � 
:Therefore the inte-
gral I =

R


div(f)dx1dx2 over a bounded domain 
 must be strictly positive

(negative):We arrived to a contradiction: 0 > 0. Therefore our supposition
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was wrong and the system cannot have a periodic orbit in D.�
Proof 2. starts similarly with the supposition that there is a periodic

trajectory x(t) with period T in D, x(t+ T ) = x(t) and

x01(t) = f1(x(t)); x02(t) = f2(x(t))

Denote the orbit of x(t): by L =fx(t) : t 2 [0; T ]g. Denote the domain
inside L by 
. Then the boundary @
 = L becauseD � 
 is simply connected
and has no holes.

We apply the Greens formula:I
@


Pdx1 +Qdx2 =

ZZ



�
@Q

@x1
� @P

@x2

�
dx1dx2

instead of Gauss theorem.

Choose P = �f2, Q = f1 and express the contour integral in the left side
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of the Greens formula using the de�nition of the contour integral:I
@


f1dx2 � f2dx1 =
Z T

0

(f1x
0
2 � f2x01) dt

Point out that x01(t) = f1(x(t)) and x
0
2(t) = f2(x(t)) and substitute these

expressions into the integral:I
@


f1dx2 � f2dx1 =
Z T

0

(f1f2 � f2f1) dt = 0

Apply the Greens formula substitute expressions for P and Q; and conclude

that in the case
�
@f1
@x1
+ @f2

@x2

�
= div(f) > 0:

0 =

I
@


f1dx2 � f2dx1 =
ZZ




�
@f1
@x1

+
@f2
@x2

�
dx1dx2 > 0

that is contradiction: 0 > 0. In the case if div(f) < 0 in D we arrive to the

contradiction < 0. �
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1. Example.

Show that the following system of ODE has no periodic solutions.

1.

(
x0 = x3 � y2x+ x
y0 = �0:5y + y3 + x4y

We consider divergence of the right hand side of the system.

div(f) = 3x2 � y2 + 1� 0:5 + 3y2 + x4 = x4 + 3x2 + 2y2 + 0:5 > 0

Therefore divergence of the right hand side of the equation is positive

everywhere in the plane that is a simply connected set (does not have holes,

even point-holes). According to Bendixson�s criterium the system cannot have

periodic solutions anywhere in the plane.

Example.
Show that the following system of ODE has no periodic solutions.

1.

(
x0 = 1

7
+ x2 � yx+ y2

y0 = �1
5
� y2

Solution

y0 is always strictly negative. It implies that y(t) must be monotone

function of time. It contradicts to possibility of having periodic solutions

that are always bounded.
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1 Lyapunov stability theory (§5.1 in L.R.)

The pioneering work by Lyapunov on stability theory where both the idea of linearization and the idea of test

functions were introduced and developed, was his Ph.D thesis published in 1892 and translated to French

in 1907.

Consider an autonomous system x0 = f(x) with f : G! RN , G � RN open. We suppose that f is a

locally Lipschitz continuous function, so the existence and uniqueness of maximal solutions to I.V.P. are

valid.

We repeat for convenience de�nitions of stable and unstable equilibrium points

(Equilibrium points are considered here at the origin to make it simpler to apply the construction with

Lyapunov functions)

De�nition
An equilibrium point 0 2 G of the system x0 = f(x) is said to be stable if for each " > 0, there is � > 0

such that for any � taken in the ball B(�; 0)=
�
� 2 RN ; j�j < �

	
the maximal solution x(t) = '(t; �) :

I� ! G on the maximal interval I� with initial data x(0) = � and 0 2 I� will stay in the ball B("; 0):

k'(t; �)k < " for all t 2 I� \ R+. In fact R+ � I� in this case.

De�nition
The function V : U ! R , U - open, containing the origin 0 2 U , is said to be positive de�nite in U ,

if V (0) = 0 and V (z) > 0 for 8z 2 U , z 6= 0:

Lyapunov�s theorem on stability

Theorem. Th.5.2, p.170
Let 0 be an equilibrium point for the system above and there is a positive de�nite continuously di¤er-

entiable, C1(U) function V : U ! R ; such that U � G; 0 2 U and Vf (z) = rV � f(z) � 0 8z 2 U ,
then 0 is a stable equilibrium point.

Remark.
A function V with these propertie is usually called the Lyapunov function of the system.
Proof.
Take an arbitrary " > 0 such that B("; 0) � U . Let � = minz2S(";0) V (z) be a minimum of the

continuous function V on the boundary of B("; 0); that is the sphere S("; 0) = fz : jzj = "g and is a
compact set (closed and bounded). Then � > 0 because V (z) > 0 outside the equilibrium point 0.

By continuity of the function V and the fact thatV (0) = 0 one can �nd a 0 < � < " such that

8z 2 B(�; 0) we have V (z) < �=2.

On the other hand for any part of the trajectory x(t) = '(t; �), inside U the function V ('(t; �)) is

non-increasing because d
dt
V ('(t; �)) = (rV � f) (x(t)) � 0. Therefore all trajectories '(t; �) with initial

points � 2 B(�; 0) satisfy V (�) < �=2 . Therefore V ('(t; �)) < �=2 and '(t; �) cannot reach the sphere

S("; 0) where V (z) � � = minz2S(";0) V (z). Therefore any such trajectory stays within the ball B("; 0) and

by the de�nition, the origin 0 is stable. It implies also that R+ � I� , where I� is the maximal interval for

initial point �, because the trajectory stays inside a compact set. �

1



Remark. The de�nition of stability and proofs of the theorems are exactly the same if we take an
arbitrary equilibrium point x0 instead of the origin and use balls B("; x0) around x0.
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Example.
Investigate stability of the equilibrium point in the origin for the following system:

x01 = x2

x02 = �x1 � x32

that follows from the second order equation x00 + (x0)3 + x = 0.

Try the simple test function V (x1; x2) = x21 + x22. It is positive de�nite.

We check the sign of the derivative of V along trajectories of solutions: Vf (x1; x2) = (rV � f) (x1; x2) =
2x1x2 + 2x2 (�x1 � x32) = �4x42 � 0.
Point out that Vf (x1; x2) = 0 along the x1 axis where x2 = 0, not only in the origin!!!

Example. One dimensional Newton equation. First integrals
Consider a similar example

mx00 + g(x) = 0;

xg(x) > 0; x 6= 0; g(0) = 0. Suppose that
R x
0
g(s)ds!1 as x!1:

It describes a spring with non-linear force �g(x). It can be rewritten as a system of ODE�s of the �rst

order.

x1 = x

x0 = x01 = x2;

mx02 = �g(x1)

Consider the test function V (x1; x2):

V (x1; x2) =
m

2
(x2)

2 +

Z x1

0

g(s)ds

representing the energy of the system, consisting of two terms: the kinetic energy m
2
(x0)2 and the potential

energy G(x) =
R x
0
g(s)ds:

Point out that V is positive de�nite because of the limitation xg(x) > 0; x 6= 0.
Consider the derivative Vf of V along trajectories

(rV � f) (x1; x2) =

�
@

@x1
V

�
f1 +

�
@

@x2
V

�
f2

= g(x1)x2 +mx2

�
�
�
1

m

�
g(x1)

�
= 0 !!!!

The Lyapunov stability theorem implies that the origin is a stable equilibrium point.

We point out also that (rV � f) (x1; x2) = 0 is zero everywhere and therefore V (x) is constant along
trajectories of the system. Such function is called �rst integral of the system.
De�nition
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Functions that satisfy the relation (rV � f) (x1; x2) = 0 and are therefore constant on trajectories of

the system x0 = f(x) are called �rst integrals of the system.

Property of level sets of �rst integrals.
Level sets of a �rst integral V have the property that velocities f(x) of the system are tangent or zero

on all level sets of V: It implies that these level sets are unions of orbits of the system.

We can express level sets V (x1; x2) = h of the �rst integral V in the example above as

x2 = �
r
2

m
(h�G(x1))

that is valid in points where the expression under the root is non-negative.

Proposition. 4.54, p. 161
If the �rst integral V has level sets that are closed curves that do not contain equilibrium points, these

curves are orbits of periodic solutiuons.

This idea is almost the only constructive method to calculate periodic orbits for non-linear systems in

plane.

Pointing out that G(x1) =
R x1
0
g(s)ds in the example above is monotone with respect to jx1j ; we

conclude that those level sets of V (x1; x2) that are closed curves and contain no equilibrium points must

be orbits of periodic solutions, according to Poincare-Bendixson theorem. It implies in particular that the

origin is not asymptotically stable equilibrium point in this example.
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Example. Non-linear pendulum without friction.
A particularly interesting example in the form similar to the last one is the equation for pendulum that

we considered earlier by using method with linearization.

�00 = �g
l
sin �

Let k2 = g
l

�0 =  

 0 = �k2 sin �

The function V (�;  )

V (�;  ) =
 2

2
+G(�)

V (�;  ) =
 2

2
+ k2(1� cos �)

with G(�) = k2(1� cos �) is the �rst integral of the system describing the pendulum.

Level sets of the function V (�;  ) = h consist of the orbits of the system

 = �
p
2 (h�G(�))

. For 0 < h < 2k2 level sets are periodic orbits. For h > 2k2 level sets are wave-looking orbits of trajectories

corresponding to the pendulum rotating around the pivot. There are also level sets corresponding to

h = 2k2 and consisting of unstable equilibrium points and orbits connecting them and corresponding to

trajectories that tend to the upper non-stable equilibrium and not rotating further.

We draw several level sets for the function y2

2
+ 1� cos(x) = h:

543210-1-2-3-4-5

2

1.5

1

0.5
0

-0.5

-1

-1.5

-2

x

y

x

y
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Theorem. Asymptotic stability by Lyapunovs functions. Cor. 5.17, p.185,
Let 0 be an equilibrium point for the system above and let V be a positive de�nite, continuously

di¤erentiable functionV : U ! R ; such that U � G; U - open, 0 2 U; and Vf (z) = rV � f(z) < 0 (strict
inequality outside the origin!) 8z 2 U; z 6= 0,
then 0 is an asymptotically stable equilibrium point.

De�nition. Lyapunov functions satisfying conditions in this theorem are often called strong Lyapunov
functions.

Proof.
In the course book this theorem is considered as a corollary to a more general LaSalle�s invariance

principle. We give here an independent proof to asymptotic stability. By the Lyapunov�s stability theorem

the origin is a stable equilibrium and therefore for any ball B(R; 0) there is a ball B(r; 0) � U such that

for any � 2 B(r; 0), '(t; �) 2 B(R; 0) for any time t 2 I� ; and R+ � I�, where I� is the maximal interval

for initial point �.

Therefore we need only to show that the origin is an attractor. Namely we need to show that there is

a ball B(r; 0) � U , such that for any � 2 B(r; 0) it follows that '(t; �)! 0 as t!1.
It su¢ ces to show that limt!1 V ('(t; �)) = 0 because V is continuous and is positive outside the origin,

where V (0) = 0. It will imply that '(t; �)! 0 as t!1.
It is easy to proof by the following contradiction argument. If '(t; �) does not tend to the origin, then

there is a sequence of times tk !1 as k !1 such that k'(tk; �)k > " > 0. It implies that V ('(tk; �)) >

q > 0 for some positive q. But it is not compatible with supposition that limt!1 V ('(t; �) = 0.�

Now we continue proving limt!1 V ('(t; �) = 0. By conditions of the theorem d
dt
V ('(t; �) < 0, therefore
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0 � V ('(t; �) is a monotone strictly decreasing function of t and must have a limit

lim
t!1

V ('(t; �) = �; t!1:

Suppose that this limit is not zero: � > 0. Then V ('(t; �) > � > 0 for all t � 0 because V ('(t; �) is
stricly monotone decreasing.

Now we like to �nd a ball B(�; 0), � < r around the origin so small that the trajectory '(t; �) cannot

reach it. The idea is that outside this ball (where our trajectory '(t; �) is situated) the decreasing rate for

V ('(t; �) along the trajectory is never close to zero. This fact would lead us to a contradiction with out

supposition.

Continuity of V and the fact that V (0) = 0 imply that there is a ball B(�; 0), � < r such that

0 � V (z) < �=2 for all z 2 B(�; 0). Hence '(t; �) cannot reach it: k'(t; �)k � � for all t � 0; because

V ('(t; �) > � > 0 for all t � 0 by our supposition that V ('(t; �))& � as t!1.
Now we will estimate the smalles rate of decrease for V ('(t; �) that follows from our conclusions.

Consider the closed spherical slice S = fz : � � kzk � Rg where the trajectory '(t; �) is situated, and
point out that  = minz2S (�Vf (z)) > 0 exists because S is compact and Vf is continuous.

 > 0 by the condition of the theorem that Vf < 0 outside the origin. Therefore

� d

dt
V ('(t; �)) �  = min

z2S
(�Vf (z))

and
d

dt
V ('(t; �)) � �

By integration from 0 to t we arrive to

V ('(t; �))� V (�) � �t! �1

as t!1 that contradicts to the supposition that V (z) � 0.
It implies that our supposition that limt!1 V ('(t; �) = � > 0 was wrong and that limt!1 V ('(t; �) =

0:As we pointed out at the beginning of the proof, the last fact implies, that limt!1 '(t; �) = 0 and

therefore the origin is an attractor and is an asymptotically stable equilibrium point.�
Remark.
This theorem on asymptotic stability has a (very di¢ cult!) inversion (proven in 1949,1956) by José

Luis Massera, Uruguay, stating that for any system with an asymptotically stable equilibrium point, there

is a "strong" Lyapunov function V such that Vf (z) < 0 in a neighborhood of this equilibrium point (outside

the point z = 0 itself).

De�nition. Region of attraction for an asymptotically stable equilibrium point.
A domain U � G is called the region of attraction for an asymptotically stable equilibrium point x� 2 U

if for any � 2 U ; the maximal existence interval I� of the the solution x(t) = '(t; �) contains R+ � I� and

'(t; �)! x� as t!1.
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Example. Consider the system of equations

x0 = �x+ 2xy2

y0 = �(1� x2)y3

Investigate stability of the equilibrium in the origin and �nd possible region of attraction.

Point out that for the right hand side in the equation the Jacoby matrix J in the origin is degenerate

J =

"
�1 0

0 0

#
and the linearization of the system does not give any information about stability of the

equilibrium in the origin.

Consider the simplest test function V (x; y) = x2 + y2:

Vf (x; y) = (rV � f) (x; y) =
"
2x

2y

#
�
"
�x+ 2xy2

�(1� x2)y3

#
= 2x

�
�x+ 2xy2

�
+ 2y

�
�(1� x2)y3

�
= 4x2y2 � 2y4 � 2x2 + 2x2y4

= �2x2(1� 2y2)� 2y4(1� x2)

Vf (x; y) < 0 in the rectangle (�1; 1) �
�
�1=

p
2; 1=

p
2
�
, (x; y) 6= 0: Therefore the origin is the asymp-

totically stable equilibrium with the region of attraction - the largest circle around the origin that �ts into

this rectangle: x2 + y2 < 1=2.

This region of attraction is just one we could �nd using this particular Lyapunov function, it can exist

a larger region of attraction.

Example. Consider the system of equations

y01 = �y31 � 2y1y22
y02 = y21y2 � y32
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Investigate stability of the equilibrium point in the origin �nding a suitable Lyapunov function. Consider

the following test function:

V (y1; y2) = y21 + y21y
2
2 + y42

The test function V is positive de�nite. We draw several level sets for V (x; y) = x2 + x2y2 + y4 = h, for

h = 1; 20; 30:

53.752.51.250-1.25-2.5-3.75-5
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We choose the form of the test function in such a way that on the level set curves of this function

velocities f(y1; y2) point inward: (rV � f) (y1; y2) < 0. We have chosen the term y42 having
@
@y2
(y42) =

4y32 that after multiplication with the term �y32 from f2 gives a "good" negative term �4y62. Similarly
@
@y1
(y21) = 2y1 multyplied by the term �y31 from f1 gives a good negative term �2y41. The tricky step is to

play with "bad" inde�nite mixed products in such a way that they (in the best case!) give no terms in

(rV � f) (y1; y2) with inde�nite sign.

Vf (y1; y2) = (rV � f) (y1; y2) =�
2y1 + 2y1y

2
2

� �
�y31 � 2y1y22

�
+

+
�
2y21y2 + 4y

3
2

� �
y21y2 � y32

�
= �2y41 � 4y21y22 � 2y41y22 � 4y21y42 + 2y21y42 � 4y62 + 2y41y22
= �2y41 � 4y62 � 4y21y22 � 2y21y42
=

�
�y41 � 2y62 � 2y21y22 � y21y

4
2

�
2

�
�
�y41 � 2y62

�
2 < 0; (y1; y2) 6= (0; 0)

Therefore according to the last theorem, the origin (0; 0) is an asymptotically stable equilibrium point. The

test function tends to ini�nity with k(y1; y2)k ! 1. It implies that the equilibriuh has the whole plane
R2 as the region of attraction. All trajectories '(t; �) tend to the origin with t!1: '(t; �) �!

t!1
(0; 0):

Remark
One can arrive to inde�nite terms after calculation of Vf . :It is still not the end of hope. One can

check that these inde�nite terms are not large and might be compensated by negative de�nite terms in the

expression for Vf . . For example the expression �x2�y2+xy < 0 for (x; y) 6= (0; 0) because 2 jxyj � x2+y2.
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One can also use known criteria for positive and negative de�nite quadratic forms in such problems.
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Lyapunov�s theorem on instability

We give here a slightly weaker variant of the instability theorem comparing with one in the book. An

advantage of the variant here is that it suggests a more constructive proof.

Students are free to choose any of these two variants at the examination.

De�nition.
An equilibrium point 0 2 G of the system is said to be unstable if it is not stable.

Explicit version of the same de�nition.
There is a ball B(R; 0) � G such that for any � > 0 there is a point � 2 B(�; 0)
such that for the trajectory '(t; �) starting in � there is time t� 2 I� such that '(t; �) =2 B(R; 0).

Another reformulation of this de�nition is possible.

Another explicit version of the same de�nition
There is a ball B(R; 0) � G and a sequence of points fxng1n=1 such that limn!1 xn = 0 such that for

each maximal solution '(t; �) with initial data � = xn there is time t� 2 I� such that '(t; �) =2 B(R; 0).

Theorem. On a criterium of instability of an equilibrium using test functions.
Let the origin 0 - be the equilibrium point of the system x0 = f(x): Assume that there is a neighbour-

hood U � G, 0 2 U and a continuously di¤erentible C1(U) function V : U ! R satisfying the following

hypotheses.

1) Vf (z) = rV � f(z) > 0 for every z 2 U , z 6= 0
2) For every � > 0 there exists z 2 U with kzk < � and V (z) > 0

3) V (0) = 0:

Then the origin 0 is an unstable equilibrium.

Remark. The Theorem Th. 5.7, p. 174 formulted in the book is stronger. It has the same

conclusion with the condition 1) changed to a weaker one:

1) Vf (z) = rV � f(z) > 0 for every point z 2 U , where V (z) > 0; and 3) is not required.
Proof of the weaker variant of the Theorem
The idea of the proof is to show that any trajectory starting from a point � arbitrarily close to 0 where

V (�) > 0 will leave a �xed ball B(R=2; 0) such that a larger ball B(R; 0) � U .

We point out that for any part of the trajectory '(t; �) of the maximal solution in U the function

V ('(t; �)) is monotone increasing because d
dt
V ('(t; �)) = Vf ('(t; �)) > 0:

It means that '(t; �) stays outside the origin because Vf (z) is continuous and Vf (0) = 0. It in turn

means that (rV � f) ('(t; �)) = d
dt
V ('(t; �) � K > 0 for all t 2 I� \ R+:

To prove this inequality one can carry out a more formal argument that follows.

Let � 2 B(R; 0) be an arbitrary point where V (�) > 0. V is a continuous function and V (0) = 0. It

implies that there is 0 < " < R=2 such that V (z) < V (�)=2 for kzk < ".

Therefore the trajectory '(t; �) must stay outside the ball B("; 0) for all t 2 I� \R+.
The function (rV � f) (z) is continuous in U and must attaint its minumum K = minz2B(R;0)nB(";0) (rV � f) (z)

on the compact set B(R; 0)n B("; 0) that is a slab between two spheres. The number K is positive K > 0

because (rV � f) (z) > 0 for z 2 U outside the origin.
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Therefore

(rV � f) ('(t; �)) = d

dt
V ('(t; �)) � K > 0; 8t 2 I� \ R+

and by the integration of the left and right hand side over [0; t] we get

V ('(t; �) � Kt+ V (�); 8t 2 I� \ R+

There are two possibilities depending on if I�\R+ is a bounded interval or R+ � I�: In the �rst case the

trajectory '(t; �) must leave any compact in G in particlular the ball B(R; 0). In the second case having

possibility to take t arbitrary large in the inequality V ('(t; �) � Kt + V (�) leads to conclusion, that for

some time t� > 0 large enough V ('(t�; �)) will become larger than maxz2B(R=2;0) V (z) - the maximum of

V (z) over the half ball B(R=2; 0). It means that the point '(t�; �) of the trajectory must be outside the

ball B(R=2; 0) at such time t�.

Therefore according to the de�nition, the origin 0 is an unstable equilibrium, because there are trajec-

tories starting arbitrarily close to the equilibrium 0, such that they move outside the ball B(R=2; 0) � G

at some time t�.�
Remark. If we suppose in the formulation of the theorem above that Vf (z) > 0 for all z 2 U ,

z 6= 0; then the origin is a repeller, meaning that for some ball B(R; 0) around the origin, any solution

x(t) = '(t; �) with � 2 B(R; 0) will leave this ball in �nite time.

Example.
Consider the system

x0 = x3 + yx2

y0 = �y + x3

Show that the origin is unstable equilibrium by using the test function V (x; y) = x2

2
� y2

2
:

Point out that the linearization has matrix J =

"
0 0

0 �1

#
that is degenerate. Therefore the Grobman

- Hartman theorem cannot be applied.

Vf (x; y) =

"
x

�y

#
�
"
x3 + yx2

�y + x3

#
=

y2 + x4 � yx3 + x3y = y2 + x4 > 0

V (x; y) > 0 on the x-axis, arbitrary close to the origin. There is a ball B(0; R) around the origin

such that trajectories starting on the x-axis arbitrary close to the origin will leave it in �nite time by the

Lyapunov instability theorem.
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1 General properties of ! -limit sets and La

Salle�s invariance principle and it�s applica-

tions to asymptotic stability §5.2

Example. An elementary introduction to LaSalle�s invariance prin-
ciple.
We like to investigate stability of equilibrium poin tin the origin for the

system

x01 = x2

x02 = �x1 � x32

Using the simple test function V (x1; x2) = x21 + x
2
2 we observe that it is a

Lyapunov function for the system:

Vf (x1; x2) = rV � f(x1; x2) = 2x1x2 � 2x1x2 � 2x42 = �2x42 � 0

and the origin is a stable equilibrium point. On the other hand V is not a

strong Lyapunov function, because Vf (x1; x2) = 0 not only in the origin, but

on the whole x1 - axis where x2 is zero.

On the other hand considering the vector �eld of velocities of this system

on the x1 - axis, we observe that they are crossing the x1 - axis (even are

orthogonal to it in this particular example) in all points except the origin. It

means that all trajectories of the system cross and immediately leave the x1 -

axis that is the line where Vf (x1; x2) = 0 (the Lyapunov function is not strong).

This observation shows that in fact the Lyapunov function V ('(t; �)) is strictly

monotone along trajectories '(t; �) everywhere except discret time moments,

when '(t; �) crosses the x1 - axis. More explicitely in polar coordinates r and

�: �
r2
�0
= �2r4 sin4 �

We can therefore conclude that V ('(t; �)) & 0 as t ! 1 and therefore,

1



the origin is asymptotically stable equilibrium of this system of equations.

One can also get a more explicit picture of this dynamics by looking on the

equation for the polar angle �:

�
x2
x1

�0
= (tan(�))0 =

�0

cos2(�)

x02x1 � x01x2
x21

=
(�x1 � x32)x1 � (x2)x2

x21

=
(�x21 � x22 � x1x32)

x21
=
�r2 � cos � sin3 � r4

r2 cos2 �

�0 = �1� cos � sin3 � r2 = �1�
�
sin 2� sin2 �

�
r2

2

= �1� sin 2�(1� cos 2�)r
2

4
< 0, r < 2

We see that for r < 2 the trajectories tend to the origin going (non-uniformly)

as spirals clockwise around the origin.

This example demonstrates the main idea with applications of the LaSalles

invariance principle to asymptotic stability of equilibrium points.
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Proposition. Simple version of applying LaSalle�s invariance prin-
ciple for asymptotic stability of equilibrium points by using "weak"
Lyapunof functions.
( The complete version of LaSalle�s invariance principle is Theorem 5.15.

p. 183 that is considered a bit later)

We �nd a simple "weak" Lyapunov function Vf (z) � 0 for z 2 U in the

domain U � G, 0 2 U: This fact implies stability of the equilibrium. Then
we check what happens on the set V �1f (0) where Vf (z) = 0. If the set V �1f (0)

contains no other orbits except the equilibrium point, this equilibrium point

in the origin must be asymptotically stable.

Any trajectory starting in W will have a positive orbit with compact clo-

sure. We need this property for applying LaSalle�s invariant principle describ-

ing !- limit sets for positive orbits of solutions to ODEs.

Exercise.
Show that all trajectories of the system

x0 = y

y0 = �x� (1� x2)y

that go through points in the domain
[x; y]T < 1; tend to the origin. Or by

other words, show that the origin is an asymptotically stable equilibrium and

that the circle
[x; y]T < 1 is it�s domain of attraction.

Consider V (x; y) = x2 + y2:

Vf (x; y) = 2xy � 2xy � (1� x2)y2 = �(1� x2)y2 � 0
V �1f (0) = f(x; y) : y = 0g

The only invariant set is f0g, therefore for trajectories starting in
[x; y]T <

1 the origin is and attractor and it is asymptotically stable with
[x; y]T < 1

being the domain of attraction.
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More general formulation and a proof of the LaSalle�s invariance principle

use some general properties of transition mappings, and ! - limit sets. We

collect them here and give some comments about their proofs.

We consider I.V.P. and corresponding transition map '(t; �) for the system

x0 = f(x)

x(0) = �

with f : G! Rn, G - open, G � Rn, f is locally Lipschitz; � 2 G.

1.1 Main theorem on the properties of limit sets.

The next theorem on the properties of ! - limit sets collects properties of ! -

limit sets valid for systems of any dimension, in contrast with the Poincare -

Bendixson theorem and it�s generalization, that gives a

description of ! - limit sets only for systems in plane, or on 2-dimensional

manifolds.

Main theorem about properties of limit sets. Theorem 4.38, p.143
We keep the same limitations and notations for the autonomous system as

above.

Let � 2 G: Let the closure of the postive semi-orbit O+(�) be compact and
contained in G,

Then R+ � I� and the ! - limit set 
(�) � G is
1) non-empty

2) compact (bounded and closed)

3) connected

4) invariant (both positively and negatively) under the local �ow '(t; �)

generated by the ODE: namely for any ! - limit point � 2 
(�); the maximal
interval I� = R for initial data in �, and '(t; �) 2 
(�) for all t 2 R.
5) '(t; �) approaches 
(�) as t!1:

lim
t!1

dist('(t; �); 
(�)) = 0

4



Example. The Lorentz equation. Trajectory - blue, limit set 
(�)
- red

x0 = ��(x� y)
y0 = rx� y � xz
z0 = xy � bz

A trajectory for � = 10; r = 28, b = 8=7:

Remark
The most interesting statement in the theorem is statement 4). It means

that ! - limit sets consist of orbits of solutions to the system. Taking a starting

point � on the limit set 
(�) we get a trajectory '(t; �) that stays within this

set 
(�) in�nitely long both in the future and in the past.
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A simple tool to satisfy conditions in this theorem is to �nd a compact

positively invariant set for the system that contains the point �. It can be

done using one of two methods discussed earlier.

Proofs of statements in the Theorem 4.38, are based on: general proper-
ties of compact sets for 1) ,2), simple contradiction arguments and the de�ni-

tion of limit sets for 3) and the translation property of the transition mapping

'(t; �), together with continuity of '(t; �) for 4), and a contradiction argument

togehter with the de�nition of ! - limit sets for 5).

We will give a proof to 4).
Let � be a limit point for '(t; �): � 2 
(�). By de�nition there is a sequence

of times ftng, t!1 such that '(tn; �)! �.

Consider the trajectory '(t; �) starting at �. Denote by I� corresponding

maximal interval and consider an arbitrary t 2 I�, belonging o the maximal
interval I�. We like to show that '(t; �) 2 
(�) that a trajectory starting in a
limit point stays in the limit point forever in future and in the past.

For n large enough t + tn
def
= sn 2 I� - belongs to the maximal interval I�

of the solution '(t; �) for n large enough.

We apply the group relation for ' (similar to Chapmen-Kolmogorov rela-

tion for linear systems)

' (sn; �) = ' (t+ tn; �) = ' (t; '(tn; �))

It is possible since the domainD of '(:; :) is open, (t; �) 2 D therefore there
is a ball B around (t; �) such that (t; '(tn; �)) 2 B � D for n large enough

because '(tn; �)! �. Therefore t 2 I'(tn;�).
By continuity of ' it follows:

' (sn; �) = ' (t+ tn; �) = '

�
t;

lim=�

'(tn; �)

�
! '(t; �); n!1

It means that '(t; �) is a limit point for ' (t; �) for any t 2 I�.�

6



LaSalle�s invariance principle

We formulate now LaSalle�s invariance principle that generalizes ideas that

we discussed in the introductory example and gives a handy instrument for

localizing ! - limit sets of non-linear systems in arbitrary dimension.

Theorem 5.12, p.180
Assume that f is locally Lipschitz f : G ! Rn as before and let '(t; �)

denote the �ow generated by the corresponding system

x0 = f(x)

Let U � G be non-empty and open. Let V : U ! R be continuously

di¤erentiable and such that Vf (z) = rV � f(z) � 0. for all z 2 U . If � 2 U is
such that the closure of the semi-orbit O+(�) is compact and is contained in

U ,

i) then R+ � I� (maximal existence interval for �) and
ii) as t ! 1, '(t; �) approaches the largest invariant set contained in

V �1f (0) that is the set where Vf (z) = 0.

Proof.
Proof given in the solution of Exercise 5.9, on p. 312.

Set x(t) = '(t; �). By continuity of V and compactness of the closure

cl(O+(�)), V is bounded on O+(�) and therefore the function V ('(t; �)) is

bounded.

� Since
d

dt
(V (x(t))) = Vf (x(t)) � 0

for all t 2 R+; V (x(t)) is non-increasing. We conclude that the limit limt!1 V (x(t))

of the non-increasing function V (x(t)) must exist and is �nite. We denote it

by �:

lim
t!1

V (x(t)) = �

� Take an arbitrary an arbitrary point z 2 
(�) in the ! - limit set

(�). Then by the de�nition of ! - limit sets, there is a sequence ftng in R+
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such that limn!1 tn =1 and

x(tn) = '(tn; �) = x(tn) �! z; n!1

We apply V to the left and right hand side in this limit calulation.

For any continuous function F and any convergent sequence fgngit is valid
that

F ( lim
n!1

gn) = lim
n!1

(F (gn)

� By the continuity of V it follows that V (z) = limn!1 V (x(tn)) and

limn!1 V (x(tn)) = limt!1 V (x(t)) : Therefore

V (z) = lim
n!1

V (x(tn)) = lim
t!1

V (x(t)) = �:

This key point in the proof (!!!) implies that for all z in the omega limit

set 
(�) the test function V has the same value:

V (z) = �; 8z 2 
(�) (1)

� By the invariance of 
(�) with respect to '(t; :); if z 2 
(�), then '(t; z) 2

(�) for all t 2 R.(it is why the theorem is called the invariance ~prin-
ciple!!!)
Therefore V ('(t; z)) = � for all t 2 R is a constant function of time t. A

constant function must have zero derivative:

d

dt
V ('(t; z)) = Vf ('(t; z)) = 0

for all t 2 R. Since '(0; z) = z and z is an arbitrary point in 
(�) it follows
that

Vf (z) =
d

dt
V ('(t; z))

����
t=0

= 0; 8z 2 
(�) (2)

and therefore 
(�) � V �1f (0) :

� The statement of the theorem follows now from the Main theorem about
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limit sets (Theorem 4.38); that states: 
(�) is an invariant set under the action

of '(t; :); and '(t; �) apporachs 
(�) as t!1:�
Comment. It can be tempting to simplify the proof by concluding (1)

from the fact that (rV )(z) = 0 from all z 2 
(�) which would imply (2).
However this conclusion is not valid, because the set 
(�) is not open and

therefore V (z) = �; 8z 2 
(�) does not imply Vf (z) = 0; 8 2 
(�).
The invalidity of this conclusion is illustrated by the following simple ex-

ample: V (z) = kzk, 
(�) =
�
z 2 RN : kzk = 1

	
; then v(z) = 1 for all z 2


(�), but(rV ) (z) = 2z 6= 0 for all z 2 
(�):

The following theorem follows rather directly from LaSalle�s invariance

principle and gives a practical criterium for asympototically stable equilibrium

points using "weak" Lyapunov�s functions.

Theorem 5.15. p. 183.
Let U be an open domain U � G, such that 0 2 U and a continuously

di¤erentiable function V : U ! Rn such that

V (0) = 0; V (z) > 0;8z 2 Un f0g ; Vf (z) � 0;8z 2 Un f0g

and f0g is the only invariant set contained in V �1f (0), then 0 is an asymptoti-

cally stable equilibrium.�
Proof follows from LaSalle�s invariance principle and is a good exercise.

Theorem 5.22, p. 188. On global asymtotic stability

Assume that G = Rn. Let the hypothesis of the Theorem 5.15 hold with

U = G = Rn.
Namely for a continuously di¤erential function V : Rn ! R such that

V (0) = 0, V (z) > 0 for all z 2 Unf0g, Vf (z) � 0 for all z 2 Unf0g; the origin
f0g is the only invariant set contained in V �1f (0):

If in addition the Lyapunov function V is radially unbounded:

V (z)!1, kzk ! 1

9



then the origin 0 is a globally stable equilibrium that means that all solu-

tions k'(t; �)k ! 0, as t!1.
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Examples of using La Salle�s principle. Investigate stability of
equilibrium points in the origin.
Example.

Consider the following system of ODEs:

(
x0 = 2y

y0 = �x� (1� x2)y
:

Show the asymptotic stability of the equilibrium point in the origin and

�nd it�s domain of attraction. (4p)
Solution.
We try the test function V (x; y) = x2 + 2y2 that leads to cancellation of

mixed terms in the directional derivative Vf along trajectories:

Vf (x; y) = 4xy � 4xy � 4y2(1 � x2) = �4y2(1 � x2) that is not positive
for jxj � 1. Therefore the origin is a stable stationary point. Checking the

behavior of the system on the set of zeroes to Vf (x; y) inside the stripe jxj < 1
we consider (Vf )

�1 (0) = f(x; y) : y = 0; jxj < 1g. On this set y0 = �x and
the only invariant set in (Vf )

�1 (0) is the origin. LaSalle�s invariance principle

implies that the origin is asymptotically stable and the domain of attraction

is the largest set bounded by a level set of V (x; y) = x2+2y2 inside the stripe

jxj � 1. The largest such set will be the interior of the ellipse x2 + 2y2 = C
such that is touches the lines x = �1. Taking points (�1; 0) we conclude that
1 = C. and the boundary of the domain of attraction is the ellipse x2+2y2 = 1

with halfs of axes 1 and
p
0:5 :

10.80.60.40.20-0.2-0.4-0.6-0.8-1

0.625

0.5

0.375

0.25

0.125
0

-0.125

-0.25

-0.375

-0.5

-0.625

x

y

x

y

The next theorem gives a simple criterion for having the whole space as

the domain of attraction for an asymptotically stable equilibrium point.

Example. Investigate stability of the equilibrium point in the origin.
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x0 = �y � x3

y0 = x5

We try our simplest choice of the Lyapunov function: V (x; y) = x2 + y2 and

arrive to

Vf (x; y) = �2xy � 2x4 + 2yx5

It does not work because the expression Vf (x; y) includes two inde�nite terms:

2xy and 2yx5 that change sign around the origin. We try a more �exible

expression by looking on particular expressions in the right hand side of the

equation: V (x; y) = x6 + �y2 where @V=@x = 6x5 with the same power of x

as in the equation, and the parameter � that can be adjusted later. V is a

positive de�nite function: V (0) = 0 and V (z) > 0 for z 6= 0.The level sets

to V look as �attened in y - direction ellipses. The curve x6 + 3y2 = 0:5 is

depicted:

0.80.60.40.20-0.2-0.4-0.6-0.8

0.4
0.35

0.3
0.25

0.2
0.15

0.1
0.050

-0.05
-0.1

-0.15
-0.2

-0.25
-0.3

-0.35
-0.4

x

y

x

y

Vf (x; y) = 6x
5(�y � x3) + 2�yx5 = �6x5y + 2�x5y � 6x8
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We get again two inde�nite terms, but they are proportional and the choice

� = 3 cancels them:

Vf (x; y) = �6x8 � 0

Therefore the origin is a stable equilibrium point. Vf (x; y) = 0 on the whole

y�axis that in our "general" theory is denoted by V �1f (0).We check invariant

sets of the system on the set V �1f (0): We observe that x0 = �x3 (only this
fact is important) and y0 = 0 (it does not matter for V �1f (0) that is y�axis).
Therefore f0g is the only invariant set on the y - axis. Trajectories starting
on the y - axis go across it in all points except f0g. The LaSalle�s invariance
principle implies that all trajectories approach f0g as t tends to in�nity and
the origin is asymptotically stable.

The test function V (z) !1 as kzk ! 1. It implies that the whole plain
is a region or domain of attraction for the equilibrium point in the origin.�
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Example 1. Simple strong Lyapunov function.

Example 2. Stability by Linearization
For the following system of equations �nd all equilibrium points and inves-

tigate their stability and their type by linearization.(
x0 = ln(2� y2)
y0 = exp(x)� exp(y)

1. Solution. There are two equilibrium points: x1 = (1; 1)and x2 = (�1;�1).

The Jacobian of the right hand side is:

"
0 �2 y

�y2+2
ex �ey

#
. Its values in

x1 and x2 are A1 =

"
0 �2
e �e

#
, and A2 =

"
0 2

1=e �1=e

#
. The eigen-

values to A1 are � 1
2e �

1
2

p
e2 � 8e;and 1

2

p
e2 � 8e � 1

2e that are conjugate

complex numbers with negative real parts. Therefore we observe stable spi-

ral around the equilibrium point x1. The eigenvalues to A2 are , eigenvalues:
1
e

�
� 1
2

p
8e+ 1� 1

2

�
; 1e
�
1
2

p
8e+ 1� 1

2

�
, one postive and one negative. There-

fore we x2 is a saddle point and is unstable.

Example 3.

Consider the following system of ODEs:

(
x0 = 2y

y0 = �x� (1� x2)y
:

Show the asymptotic stability of the equilibrium point in the origin and �nd

it�s domain of attraction.

Solution.
We try the test function V (x; y) = x2 + 2y2 that leads to cancellation of

mixed terms in the directional derivative Vf along trajectories:

1



Vf (x; y) = 4xy � 4xy � 4y2(1 � x2) = �4y2(1 � x2) that is not positive
for jxj � 1. Therefore the origin is a stable stationary point. Checking the

behavior of the system on the set of zeroes to Vf (x; y) inside the stripe jxj < 1
we consider (Vf )

�1
(0) = f(x; y) : y = 0; jxj < 1g. On this set y0 = �x and the

only invariant set in (Vf )
�1
(0) is the origin. The LaSalles invariance principle

implies that the origin is asymptotically stable and the domain of attraction is

the largest set bounded by a level set of V (x; y) = x2 + 2y2 inside the stripe

jxj � 1. The largest such set will be the interior of the ellipse x2 + 2y2 = C

such that is touches the lines x = �1. Taking points (�1; 0) we conclude that
1 = C. and the boundary of the domain of attraction is the ellipse x2+2y2 = 1

with halfs of axes 1 and
p
0:5 :

10.80.60.40.20-0.2-0.4-0.6-0.8-1

0.625

0.5

0.375

0.25

0.125
0

-0.125

-0.25

-0.375

-0.5

-0.625

x

y

x

y
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How to �nd a Lyapunov function?

If the right hand side of the equation is a higher degree polynomial, then

it is often convenient to �nd to �nd Lyapunov�s function in a systematical way

in the form of polynomial with unknown coe¢ cients and unknown even degrees

like 2m.

Consider the system

x0 = �3x3 � y

y0 = x5 � 2y3

Try a test function V (x; y) = ax2m + by2n, a; b > 0.

Vf (x; y) = rV � f(x; y) =

= a2m(x)2m�1 �
�
�3x3 � y

�
+ b2n(y)2n�1

�
x5 � 2y3

�
= �6amx2m+2| {z }�

good<0

2ma(x)2m�1y| {z }
bad�indefinite

+ 2nby2n�1x5| {z }
bad�indefinite

�4nby2n+1| {z }
good<0

We choose �rst powers m and n so that inde�nit terms would have same

powers of x and y.

2m� 1 = 5;=) m = 3

2n� 1 = 1;=) n = 1

Then Vf (x; y) = �18ax8� 6x5y+2bx5y� 4nby4:We choose a = 1 and b = 3
to cancel inde�nite terms. Then

V (x; y) = x6 + 3y2

Vf (x; y) = �18x8 � 12y4 < 0; (x; y) 6= (0; 0)

Therefore V is a strong Lyapunov�s function in the whole plane and the equi-

librium is a globally asymptotically stable equilibrium point, because V (x; y) =

x6 + 3y2 !1 as k(x; y)k ! 1.
Example 4. Investigate stability of the equilibrium point in the origin.
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x0 = �y � x3

y0 = x5

We try our simplest choice of the Lyapunov function: V (x; y) = x2 + y2 and

arrive to

Vf (x; y) = �2xy � 2x4 + 2yx5

It does not work because the expression Vf (x; y) includes two inde�nite terms:

2xy and 2yx5 that change sign around the origin. We try a more �exible expres-

sion by looking on particular expressions in the right hand side of the equation:

V (x; y) = x6 + �y2 where @V=@x = 6x5 with the same power of x as in the

equation, and the parameter � that can be adjusted later. V is a positive def-

inite function: V (0) = 0 and V (z) > 0 for z 6= 0.The level sets to V look as

�attened in y - direction ellipses. The curve x6 + 3y2 = 0:5 is depicted:

0.80.60.40.20-0.2-0.4-0.6-0.8

0.4
0.35
0.3

0.25
0.2

0.15
0.1

0.050

-0.05
-0.1

-0.15
-0.2

-0.25
-0.3

-0.35
-0.4

x

y

x

y

Vf (x; y) = 6x
5(�y � x3) + 2�yx5 = �6x5y + 2�x5y � 6x8

We get again two inde�nite terms, but they are proportional and the choice

4



� = 3 cancels them:

Vf (x; y) = �6x8 � 0

Therefore the origin is a stable equilibrium point. Vf (x; y) = 0 on the whole

y�axis that in our "general" theory is denoted by V �1f (0).We check invariant

sets of the system on the set V �1f (0):We observe that x0 = �x3 (only this fact is
important) and y0 = 0 (it does not matter for V �1f (0) that is y�axis). Therefore
f0g is the only invariant set on the y - axis. Trajectories starting on the y -
axis go across it in all points except f0g. The LaSalle�s invariance principle
implies that all trajectories approach f0g as t tends to in�nity and the origin is
asymptotically stable.

The test function V (z) !1 as kzk ! 1. It implies that the whole plain is
a region or domain of attraction for the equilibrium point in the origin.

How to �nd a strong Lyapunov�s function?

Example 4.
It is theoretically possible to �nd a strong Lyapunov function for the same

system as in the Example 3.

Looking on the previous week Lyapunovs function x6 + 3y2 we see that it�s

"weekness" followed from the fact that both level sets of V and velocities of the

system were orthogonal to the y - axis. It implied that Vf (z) = 0 on the y -

axis. To go around this problem a strong Lyapunov function must have level

sets that deviate slightly from the normal to the y - axis. Adding a relatively

small inde�nite term xy3 to the function x6+3y2 we get this e¤ect. A level set

corresponding x6 + xy3 + 3y2 = 0:7 of this new Lyapunovs function looks as a

slightly rotated version of level sets for the previous (weak) Lyapunovs function.

Why like that ? Take a simpler example with an ellipse curve x2 + 2y2 = 1

and another that is x2 + xy + 2y2 = 1

This quadratic form is positive de�nite: the matrix is

"
1 0:5

0:5 2

#
:A quadratic

form xTAx = Q(x) is positive de�nite if and only if det A > 0 and all subma-

trices Ai from the upper left corner have positive determinants: detAi > 0:

Level sets of the positive de�nite quadratic form with mixed tems like x2 +

xy + 2y2 are ellipses with symmetry axes (that are orthogonal eigenvectors to

A) and are rotated with respect to coordinate axes:

5



10.80.60.40.20-0.2-0.4-0.6-0.8-1
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We try to introduce the test function V (x; y) = x6 + xy3 + 3y2 with an

inde�nite mixed term xy3 added, that would similarly with the ellipses, give

slightly rotated level sets so that trajectories would cross them strictly inside

on the y - axis:

0.80.60.40.20-0.2-0.4-0.6-0.8
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0
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x

y

x

y

We claim that the test function V (x; y) = x6+ xy3+3y2 is positive de�nite

and is a strong Lyapunovs function namely that Vf (x; y) < 0 for (x; y) 6= (0; 0).
Because of the geometry of the vector �eld f of our equation z0 = f(z)

velocities on the y axis cross such level sets strictly towards inside, implying the

desired strict inequality Vf (z) < 0; z 6= 0 on the y axis. We need to check that
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V (x; y) = x6 + xy3 + 3y2 is positive de�nite (it is not trivial) and to show that

Vf (z) < 0; z 6= 0 for all z 2 R2 (it requires some non-trivial analysis).
A very useful inequality in analysis is Young�s inequality
Lemma. If a; b � 0, then

ab � ap

p
+
bq

q

for every pair of numbers p; q 2 (1;1) satisfying the conjugacy relation.

1

p
+
1

q
= 1

The simplest example of Young�s inequality:

ab � 1

2

�
a2 + y2

�
We show that the test function V (x; y) = x6 + xy3 + 3y2 is positive de�nite

in a domain around the origin.

We calculate Vf =
�
V for the system from the Example 3:

x0 = �y � x3

y0 = x5
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Example 5.

Consider the Lienard equation: x00 + x0 + g(x) = 0; and investigate stability

of the equilibrium in the origin. The second order equation can be rewritten as

a system z0 = f(z):

x0 = y

y0 = �g(x)� y

where g satis�es the following hypothesis: g is continuously di¤erentialble for

jxj < k for some k > 0, xg(x) > 0; x 6= 0:
Physically this equation is a Newton equation for a non-linear spring. For

example if g(x) = sin(x) it describes a pendulum with friction where air resis-

tance is proportional to velocity.
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A Lyapunov function is naturally to choose as a total energy of the system:

V (x; y) =
(y)

2

2
+

Z x

0

g(s)ds

Indeed it is positive de�nite in the region 
 = f(x; y) : jxj < k g because
g(s)s > 0 in 
 according to given conditions. The directional derivative of V

along f is

Vf (x; y) = y (�g(x)� y) + g(x)y = � (y)2

V is a Lyapunov�s function, but not strong because Vf (x; y) is negative

de�nite in 
. V �1f (0) is the whole x - axis. Checking values of f on V �1f (0) we

observe that trajectories of the system are orthogonal to V �1f (0) in all points

on V �1f (0) except the origin. It implies that f0g is the only invariant set on
V �1f (0) that attracts all trajectorie starting in a small neighborhood of the

origin. Therefore the origin is asymptotically stable.

Our next problem is to �nd a possibly large domain or region of attraction

for the equilibrium point.If we �nd a closed level set for V in 
, it will be a

boundary for a domain of attraction. It will might not be the largest possible

and depends on a clever choice of Lyapunov�s function V .

We cannot solve this problem for a general expression V (x; y) = (y)2

2 +R x
0
g(s)ds.

Example 6.
Choose a particular g(x) = x+ x2 in the previous example.

x0 = y

y0 = �(x+ x2)� y

Observe that the system has two equilibrium points: (�1; 0) and (0; 0)

Linearization gives Jacoby matrix A(x; y) =

"
0 1

�1� 2x �1

#
;A(�1; 0) ="

0 1

1 �1

#
Observe that det

"
0 1

1 �1

#
= 0� 1 = �1 < 0 it implies by Grob-

man - Hartman that (�1; 0) is a saddle point.

A(0; 0) =

"
0 1

�1 �1

#
, det

"
0 1

�1 �1

#
= 1 > 0, trace

"
0 1

�1 �1

#
=

�1 < 0;
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(traceA(0; 0))
2
=4 = 1=4 < 1 = detA(0; 0). It imples that the origin is stable

spirals.

1.250-1.25

6

4

2

0

x

y

x

y

g(x) = x+ x2

We can �nd an explicit expression for the Lyapunov�s function V (x; y) =
(y)2

2 +
R x
0
g(s)ds.

V (x; y) =
(x)

2

2
+
(x)

3

3
+
(y)

2

2

This function is positive de�nite on the set 
 =
n
(y)

2
> � (x)2 � 2

3 (x)
3
o

The level set 1
2y
2 + 1

2x
2 + 1

3x
3 = 1

6 is depicted by the red line.The level set
1
2y
2 + 1

2x
2 + 1

3x
3 = 0 is depicted by the blue line. We will investigate them

analytically a bit later.
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Vf (x; y) = rV (x; y) � f = xy + (x)2 y � (y)2 � xy � (x)2 y = � (y)2 � 0 valif
in the whole plane R2:
We check which invariant sets are contained in V �1f (0) on 
 that is a part

of x - axis f(x; 0) : x > �3=2g that is a thick black line on the picture above.
Notice that V �1f (0) on 
 contains two equilibrium points (�1; 0) and (0; 0)

and they both are invariant sets. We like to �nd a largest domain 
 1 � 


bounded by a part of a level set of V such that 
 1 does not include the point

(�1; 0). Then 
 1 contains only one invariant set that is the origin (0; 0). This

set 
 1 is the domain of attraction for the asymptotically stable equilibrium in

(0; 0).

Such largest level set of V must go through the second equilibrium point

(�1; 0) and it�s value there is V (x; y) = V (�1; 0) = 1=6. The domain of at-

traction 
� is the egg - shaped domain bounded by the closed curve (y)2 =

1=3�
�
(x)

2
+ 2

3 (x)
3
�
or as a union of explicit two branches:

y = �

s
1=3�

�
(x)

2
+
2

3
(x)

3

�
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It is a part of the red level set on the picture. To see that this curve is closed e

consider derivative of the function
d
dx

�
1=3�

�
(x)

2
+ 2

3 (x)
3
��

= �2x � 2x2 = (�2)x (x+ 1). It implies that
the functions has a maximum in x = 0, and minimum at x = �1. V (x) has zero
in x = �1 and another zero in x = 1=2:
1=3�

�
(x)

2
+ 2

3 (x)
3
����
x=1=2

= 1=3�
�
(1=2)

2
+ 2

3 (1=2)
3
�
= 1=3�

�
(1=4) + 1

3 (1=4)
�
=

1=3� 1=3 = 0;
�
One can try to �nd an even larger region of attraction 
�� for the equilibrium

point in the origin. It cannot include the equilibrium in (�1; 0) because it is
unstable (a saddle point). We can extend 
1 to a rectangle [1; 0]�

�
0;
p
3=3
�
in

the second quadrant by checking signs of x0 and y0 on it�s left and upper sides.

Actual region of attraction is even a bit larger as one can see on the phase

portrait
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Example 7. Exercise 5.13 from L.R.
Investigate stability of the equilibrium point in the origin and �nd a possible

domain of attraction for the following system.

x01 = �x2(1 + x1x2)

x02 = 2x1

We try choose the Lyapunov function V as

V (x1; z2) = 2x
2
1 + x

2
2

We could try �rst a function V (x1; x2) = ax21+x
2
2, check Vf and then decide

which value a suites best.
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Vf (x1; x2) = �2ax1x2(1 + x1x2) + 2x22x1
= 4x1x2 � 2ax1x2 � 2ax21x22 = �2ax21x22 � 0

for a = 2

We conclude that the equilibriom 0 is stable. Vf (x1; x2) = �2ax21x22 = 0 on
both coordinate axes. We chech which invariant sets are contained in V �1f (0).

If x1 = 0, then x01 = �x2, x02 = 0. Therefore only f0g is an invariant set on
the x2 axis.

If x2 = 0, then x01 = 0, x
0
2 = 2x1. Therefore only f0g is an invariant set on

the x1 axis.

Trajectories '(t; �) starting inside ellipses V (x1; z2) = 2x21 + x
2
2 = C >0 are

contained inside these ellipses. It implies that their positive orbits O+(�) are

bounded and have compact closure in R2:
It implies according to the LaSalle�s theorem that all these solutions '(t; �)

approach the maximal invariant set in V �1f (0) that in our particular case con-

sists of one point (0; 0). Therefore the equilibrium point in the origin is asymp-

totically stable. It is also globally stable because the Lyapunov function V (x)

tends to in�nity as kxk ! 1 , making that arbitrary large elliptic discs from

the family 2x21 + x
2
2 < C are regions of attraction.

�

Example 8.

Consider the following system of ODE:

(
x0 = �x� 2y + xy2

y0 = 3x� 3y + y3
.

1. Show asymptotic stability of the equilibrium point in the origin and �nd

the region of attraction for that.

Hint: applying Lyapunovs theorem, use the elementary Young�s inequal-
ity 2xy �

�
x2 + y2

�
to estimate inde�nite terms with xy: (4p)

Solution. Choose a test function V (x; y) = 1
2

�
x2 + y2

�
Vf = x(�x� 2y + xy2) + y

�
3x� 3y + y3

�
= xy � x2 � 3y2 + y4 + x2y2

= �x2
�
1� y2

�
� y2

�
3� y2

�
+ xy � 0 ?????
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We apply the inequality 2xy �
�
x2 + y2

�
to the last term and collecting

terms with x2 and y2 arrive to the estimate

Vf � �x2
�
0:5� y2

�
� y2

�
2:5� y2

�
It implies that Vf < 0 for (x; y) 6= (0; 0) and jyj < 1=

p
2.Therefore the

origin is asymptotically stable.

The attracting region is bounded by the largest levle set of V - a circle

having the center in the origin that �ts to the domain jyj < 1=
p
2, namely�

x2 + y2
�
< 1=2.

Another more clever choice of a test function is V (x; y) = 3x2 + 2y2:

Vf = 6x(�x�2y+xy2)+4y(3x�3y+y3) = 4y4�12y2�6x2+6x2y2 = �4y2�
3� y2

�
� 6x2

�
1� y2

�
< 0

for jyj < 1, therefore the ellipse 3x2 + 2y2 < 2 is a domain of attraction

for the asymptotically stable equilibrium in the origin.

One can also observe the asymptotic stability of the origin by linearization

with variational matrix

A =

"
�1 �2
3 �3

#
, with characteristic polynomial: �2 + 4� + 9 = 0, and

calculating eigenvalues: �i
p
5�2; i

p
5�2 with Re� < 0. But linearization

gives no information about the set of attraction.�

Example 9 on instability
Consider the following system of ODEs. Prove the instability of the equilib-

rium point in the origin, of the following system(
x0 = x5 + y3

y0 = x3 � y5
(4p)

using the test function V (x; y) = x4�y4 and Lyapunov�s instability theorem.
Solution.

Denoting f(x; y) =

"
x5 + y3

x3 � y5

#
, consider how V (x; y) = x4 � y4changes

along trajectories of the system. f(x; y) �rV (x; y) =
"
x5 + y3

x3 � y5

#
�
"
4x3

�4y3

#
=

x54x3 + y34x3 � x34y3 + y54y3 = x54x3 + y54y3 = 4(x8 + y8) > 0:
Point out that the function V (x; y) = x4 � y4 is positive along the line

y = x=2, x > 0 arbitrarily close to the origin. It implies according to the

instability theorem, that the origin is an unstable equilibrium.�
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May 27, 2020

1 Banach�s contraction principle. Picard-Lindelöf

theorem.

We consider in this chapter the theorem by Picard and Lindelöf about exis-

tence and uniqueness of solutions to the initial value problem to the system

of di¤erential equations in the form

x0(t) = f (t; x(t)) (1)

x(�) = � (2)

Here f : J �G! Rn is a vector valued function continuous with respect
to time variable t and space variable x. J is an interval; G is an open subset

of Rn.
One can reformulate the I.V.P. (1),(2) in the form of the integral equation

x(t) = � +

Z t

�

f (s; x(s)) ds (3)

If f is continuous, then these two formulations are equivalent by the

Newton-Leibnitz theorem.
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Fixed points of operators.

Consider a vector space X with a subset C � X and an operator K :

C ! C:

De�nition
A point x 2 C is called the �xed point of the operator K if

K(x) = x (4)

A general idea behind the analysis of many types of equations is to reformu-

late them as a �xed point problem.

Consider the right hand side of the integral equation (3) as an operator

K(x)(t)
def
= � +

Z t

�

f (s; x(s)) ds

acting from the vector space of continuous functions C(I); where I � J is a
closed interval including � . Point out that t can be smaller than � (t < �):

The expression kxkC(I) = supt2I kx(t)k de�nes a norm on the space C(I)

because it satis�es the triangle inequality and we know that uniformly con-

vergent sequences of continuous functions on the compact set (I in this case)

converge to continuous functions.

This space is even complete in the sense that Cauchy sequences of func-

tions in C(I) converge uniformly to continuous functions. It means more

explicitely that if the sequence fxng 2 C(I) has the Cauchy property:

kxm � xnkC(I) = sup
t2I
kxm(t)� xn(t)kC(I) !

m;n!1
0

then there is a continuous function x 2 C(I) such that xn !
n!1

x uniformly

on I, or that is the same, kxn � xkC(I) !n!1 0:
De�nition.
We call a normed vector space a Banach space if it is complete with
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respect to it�s norm.

This notion was introduced by Polish mathematician Stefan Banach who

lead the greatest school in functional analysis at the university of Lwow in

the beginning of 20th century.

Examples.
The space C(I) is a Banach space.

Elementary examples of Banach spaces are given by Rn supplied with
norms kxkp = (

Pn
i=1 jxij

p)
1=p with p � 1.

A slight extension of this example is a set lp, p � 1 of real sequences

fxig1i=1 with �nite norms in the form kxkp = (
P1

i=1 jxij
p)
1=p.

One of the most popular classes of Banach spaces is the space of "in-

tegrable functions" f : G ! R where G � Rn, with norms kfkLp =�R
G
jf(z)jp dz

�1=p
"Integrable functions" and the integral here are in the sense of Lebesque,

that is a contemporary notion of integral, studied in the course "Integration

theory" given for master and PhD students.

Remark.
We point out for convenience that di¤erent norms are used through out

the text. Notation kk means usual euclidean norm in Rn: For a Banach space
X the notation kxkX means the norm in the space X:

The operator K de�ned above, acts from C(I) to itself. It makes that

the I.V.P. above can be considered as a �xed value problem (4) on C(I) or
on some subset of it.

A classical theorem that guarantees the existence and uniqueness of �xed

points to operators in Banach and more generally in metric spaces, is Ba-

nach�s contraction principle.

De�nition. Operator K : A ! A; where A � X; and X is a Banach

space, is called contraction on A if there is a constant 0 < � < 1 such that

for any x; y 2 A

3



kK(x)�K(y)kX � � kx� ykX

Example. An elementary example is a smooth functionK acting from an

interval [a; b] to itself and having absolute value of derivative
�� d
dt
K(t)

�� < � < 1
for all t 2 [a; b]. By intermediate value theorem for any x; y 2 [a; b] there is
a point c 2 (x; y) such that K(x)�K(y) = (x� y)K 0(c).Therefore

jK(x)�K(y)j = j(x� y)j jK 0(c)j � � j(x� y)j

It implies that K is a contraction in on the interval [a; b]. Example:

K(x) = 0:5 (x� 0:25x3) + 0:2

10.50-0.5-1

1

0.5

0

-0.5

-1

x

K(x)

x

K(x)

Another example would be a Lipschitz function with Lipschitz constant

L smaller then one: L < 1.

Banach�s contraction principle.
Let A be a non-empty closed subset of a Banach space X and K : A! A

be a contraction operator with contraction constant � < 1:
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Then there is a unique �xed point x 2 A; to K such that Kx = x such

that

kKn(x0)� xkX �
�n

1� � kK(x0)� xkX

for arbitrary x0 2 A. Here Kn(x0) = K(K(:::K(x0)):::) is the operator

K applied to itself n times.

Proof (not required at the exam) is based on showing that the sequence
of approximations fxng1n=0 de�ned by the equations

x1 = K(x0)

:::

xn+1 = K(xn)

with an arbitrary initial approximation x0 2 A, converge to some x 2 A
that is the unique �xed point of K in A.

It follows by induction that

kxn+1 � xnkX = kK(xn)�K(xn�1)kX � � kxn � xn�1kX
� � kK(xn�1)�K(xn�2)kX � �

2 kxn�1 � xn�2kX
:::

� �n kx1 � x0kX
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We will show that fxng1n=0 is a Chauchy sequence. Let m > n:

kxm � xnkX = kxm � xm�1 + xm�1 � xm�2 + :::+ xn+1 � xnkX
� kxm � xm�1k+ kxm�1 � xm�2k+ :::+ kxn+1 � xnk �
�

�
�n + �n�1 + :::+ �m�1

�
kx1 � x0kX

= �n
�
1 + � + :::�m�n�1

�
kx1 � x0kX

� �n
= 1
1���

1 + � + :::�m�n�1 + :::
�
kx1 � x0kX

� �n
�

1

1� �

�
kx1 � x0kX ! 0; n!1; � < 1

A is closed, therefore the limit limn!1 xn = x exists x 2 A.
Claim: x is a �xed point to K. We see it by tending to the limit in the

expression for xn:xn+1 = K(xn)

lim
n!1

xn+1 = lim
n1
K(xn) = K(lim

n1
xn)

x = K(x)

and using continuity of K.

The last question we must answer is the uniqueness of the �xed point to

K in A. Suppose that here is another �xed point ex to K in A. Consider

the norm of the di¤erence x� ex:
kx� exkX = kK(x)�K(ex)kX � � kx� exkX , � < 1

It is possible only if x� ex = 0.
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kxm � xnkX � �n
�

1

1� �

�
kx1 � x0kX

lim
m!1

kxm � xnkX � �n
�

1

1� �

�
kx1 � x0kX lim

m!1
xm � xn


X

� �n
�

1

1� �

�
kx1 � x0kX

kx� xnkX � �n
�

1

1� �

�
kx1 � x0kX

�
Elementary exercise on Banach�s contraction principle.
Show using Banach�s contraction principle that the polynomial K(x) =

x2 � 0:4 has a �xed point K(x) = x.

Solution consists of two steps.

i) Find a setB � R whereK(x) has the contraction property: jK(x)�K(y)j �
� jx� yj, � < 1, for x; y 2 B
ii) Find a subset A � B that the functionK maps into itself: K : A! A.

i) K 0(x) = 2x < 1 =) x 2 [�0:5 + �; 0:5� �]
ii)The set [�0:5 + �; 0:5� �] satis�es the requirement.
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Picard-Lindelöf theorem.
Here f : J �G! Rn is a vector valued function continuous in J �G: J

is an interval; G is an open subset of Rn. Let in addition suppose that f is
Lipschitz continuous with respect to the second argument with the Lipschitz

constant L > 0:

kf(t; x)� f(t; y)k � L kx� yk ;8x; y 2 G

8



(We could suppose a weaker condition that this Lispchitz property is only

local, but will not do it because it would make the proof just slightly longer

without changing main ideas).

Then for any (� ; �) 2 J �G the initial value problem

x0 = f(x; t)

x(�) = �

has a unique solution on some time interval including � . �
Remark. This local solution can always be extended to a unique maxi-

mal solution. We considered maximal extensions earlier in the course.

Proof to the Picard-Lindelöf theorem.
The proof is based on using the integral form of the I.V.P.

x(t) = � +

Z t

�

f (s; x(s)) ds

and applying Banachs contraction principle to it. We use the Banach space

of continuous functions x : I ! Rnon some compact interval I � J .
The application of Banach�s principle here consists of two steps.

� The �rst one is to �nd a time interval I1 and a subset A � C(I1) such
that the operator K de�ned by

K(x)(t) = � +

Z t

�

f (s; x(s)) ds

maps A to itself: K : A! A:

� The second one is to �nd a time interval I2 such that the contractness
property for the operator would be valid on a subset of C(I2): Finally we

will choose the smallest of I1 and I2 for both properties to be valid and will

conclude the result.

We consider here the case when an interval [� ; � +T ] 2 J ; T > 0 and try
to �nd a solution on this time interval (or possibly on a shorter time interval

9



[� ; � + �] with � < T ). Considering a time interval backword direction in

time is similar.

We choose �rst a closed ball B(�; �) = fx : kx� �k � �g such that it
belongs to G: B(�; �) 2 G.
Our intension is to �nd solution in the set of continuous functions x :

[� ; � + T ] ! Rn such that x(t) 2 B(�; �) for all t 2 [� ; � + T ] and therefore
supt2[�;�+T ] kx(t)� �k � �. It is a closed ball

A = kx� �kC([�;�+T ]) � �

in the in�nitely dimensional space C([� ; � + T ]).

Our goal in the proof is to �nd such an interval [� ; �+T ] that this set A in

C([� ; �+T ]) and the operatorK satisfy conditions in the Banach contraction

principle.

The function f(t; x) is continuous on the compact set V = [� ; � + T ]�
B(�; �) in Rn+1and therefore

M = sup
(t;x)2V

kf(t; x)k <1

The constant M controls how large is velocity f(t; x) inside the set V =

[� ; � + T ]� B(�; �)(yellow in the picture). Correspondingly M controls how

fast the (blue) trajectory x(t) can go away from the initial point �:

According to the equation x(t) = K(x) must be inside the "angle"

bounded by the cone kx� �k =M(t� �).
We give here two pictures illustrating the proof, a one dimensional picture:

and a two-dimensional picture:

We are going to estimate kK(x)(t)� �k and choose the length T of the
time interval [� ; � + T ] in such a way that for any x(t) 2 B(�; �) for t 2
[� ; � + T ], it follows that K(x(t)) does not escape the ball B(�; �).

kK(x(t))� �k � �

10



11



12



for t 2 [� ; � + T ].
It would imply that

sup
t2[�;�+T ]

kK(x)(t)� �k = kK(x)� �kC([�;�+T ]) � �

for kx� �kC([�;�+T ]) � �. We start with proving the �rst inequality:

kK (x) (t)� �k =
Z t

�

f (s; x(s)) ds

 � Z t

�

kf (s; x(s))k ds � TM

We observe that choosing T < �=M we get that kK (x) (t)� �k � � for
t 2 [� ; � + T ]. Taking supremum of the left hand side over t 2 [� ; � + T ]
arrive to

kK(x)� �kC([�;�+T ]) � �

It means that for this time interval trajectories do not gun out of the yellow

domain on the picture. In turn it means that the operatorK maps the closed

ball A in C([� ; � + T ]) de�ned by the inequality kx� �kC([�;�+T ]) � �, with

T < �=M

into itself:

K : A! A

Now we check conditions (again choosing the length of the time inter-

val) such that the operator K would be contraction on the set A with

once again suitably adjusted time interval T . Consider �rst the di¤erence

kK (x) (t)�K (y) (t)k, for arbitrary t 2 [� ; � + T ]:We apply the triangle in-
equality, the Lipschitz property of the function f , and estimate the integral

by the length of the interval times maximum of the function under it.

13



kK (x) (t)�K (y) (t)k =

Z t

�

f (s; x(s))� f (s; y(s)) ds
 triangle inequality

�

�
Z t

�

kf (s; x(s))� f (s; y(s))k ds

Lipschitz property
� L

Z t

�

kx(s)� y(s)k ds �
sup

� LT sup
s2[�;�+T ]

kx(s)� y(s)k = LT kx� ykC([�;�+T ])

Calculating supremum over t 2 [� ; � + T ] of the left hand side we arrive
to the inequality

kK (x)�K (y)kC([�;�+T ]) � LT kx� ykC([�;�+T ])

It implies that choosing the length f the time interval T < 1=L we get

the contraction property.

kK (x)�K (y)kC([�;�+T ]) � � kx� ykC([�;�+T ]) ; 0 < � < 1

Now choosing the time interval T < min(1=L, �=M) we conclude that the

operator K maps the closed ball A in C([� ; � + T ]) de�ned by

A =
n
x 2 C([� ; � + T ]), kx� �kC([�;�+T ]) � �

o
into itself: K : A! A and thatK is a contraction onA: kK (x)�K (y)kC([�;�+T ]) �
� kx� ykC([�;�+T ]), � < 1, for any x; y 2 A:
By the Banach contraction principle K has for T < min(1=L, �=M) a

unique �xed point x in A that is the solution to the integral equation (3) and

to the original initial value problem.�
Example. Banach�s contraction principle applied to a non-linear

integral operator.(exam 2019 june)

14



Consider the following (nonlinear!) operator

K(x)(t) =

Z 2

0

B(t; s) [x(s)]2 ds+ g(t);

Fixed point problem to solve:

x = K(x)

acting on the Banach space C([0; 2]) of continuous functions with norm

kxkC([0;2]) = kxkC = sup
t2[0;2]

jx(t)j. Here B(t; s) and g(t) are continuous func-

tions and jB(t; s)j < 0:5 for all t; s 2 [0; 2] : Estimate the norm kK(x)�K(y)kC([0;2])
for the operator K(x)(t): Find requirements on the function g(t) such that

Banach�s contraction principle implies that K(x)(t) has a �xed point.

Solution.
Banach�s contraction principle. Let B be a nonempty closed subset of a

Banach spaceX and let the non-linear operatorK : B ! B be a contraction:

kK(x)�K(y)kX � � kx� ykX ; � < 1

Then K has a �xed point x = K(x) such that

kKn(x0)� xkX �
�n

1� �

for any x0 2 B. Here Kn(x0) = (K(K(:::K(x0):::)) is the n -fold super-

position of the operator K with itself.

We like to have the estimate kK(x)�K(y)k � � kx� yk for x; y in some
closed subset B of C([0; 2]).

15



jK(x)(t)�K(y)(t)j �
����Z 2

0

jB(t; s)j
��[x(s)]2 � [y(s)]2�� ds����

=

����Z 2

0

jB(t; s)j � jx(s)� y(s)j � jx(s) + y(s)j ds
����
taking sup

t;s2[0;2]

�

�
Z 2

0

ds sup
t;s2[0;2]

jB(t; s)j sup
s2[0;2]

jx(s)� y(sj)
 
sup
s2[0;2]

jx(s)j+ sup
s2[0;2]

jy(s)j
!
=

= 2 � 0:5 kx� ykC (kxkC + kykC) = kx� ykC (kxkC + kykC)

We take supremum ower t 2 [0; 2] of the left hand side and get

kK(x)�K(y)kC � kx� ykC (kxkC + kykC)

We can choose a ball B � C([0; 2]) such that for any x, y 2 B it follows

kxkC + kykC � � < 1; for example B can be taken as a set of continuous

functions with kxkC � �=2. On this set K will be a contraction because

kK(x)�K(y)kC � � kx� ykC ; � < 1:

To apply Banach�s principle we need also that K maps B into itsel·f,

namely that kK(x)kC � �=2 for kxkC � �=2.
It gives a requirement on function g(t).

K(x)(t) =

Z 2

0

B(t; s) [x(s)]2 ds+ g(t);

kK(x)kC � 2� 0:5� kxk2C + kgkC � (�=2)
2 + kgkC � �=2

Conclusion is that kgkC = supt2[0;2] jg(t)j � �=2� (�=2)
2 = �=2 (1� �=2)

implies that K : B ! B, where B = fx(t) : jx(t)j � �=2g ; x(t) - continuous.
Therefore K has a unique �xed point in the ball B in C([0; 2]). �

16



Example. (exam. 2018 january)

1. Consider the following initial value problem: y0 = sin(y)t2; y(1) = 2.

a) Reduce the initial value problem to an integral equation and give a

general description of iterations approximating the solution as in the

proof to the existence and uniqueness theorem by Picard and Lindelöf.

(2p)

b) Find a time interval such that these approximations converge to the

solution of the initial value problem. (2p)

Solution.

We introduce an integral equation equivalent to the ODE y0 = f(t; y)

by the integration of the right and left hand sides in the equation:

y(t) = y(1) +

Z t

1

f(s; y(s))ds:

Taking y0(t) = y(1) we de�ne Picard iterations by the recurrense rela-

tion

yn+1(t) = y(1) +

Z t

1

f(s; yn(s))ds:

yn+1 = K(yn)

For the particular equation it looks as

yn+1(t) = y(1) +

Z t

1

sin(yn(s))s
2ds = K(yn; t):

Fixed point problem:

y = K(y)

The Banach contraction principle gives existence and uniqueness of

17



solutions by showing that the operator K is a contraction on some

closed set B of a Banach space X, such that K maps B into itself.

A hidden question here is that we must �nd this Banach space X and

this set B where these conditions are satis�ed.

One proves the existence and uniqueness theorem by showing that at

some time interval the integral operatorK(y; t) = y(1)+
R t
1
sin(y(s))s2ds

in the right hand side is a contraction in C([1; T ]):

kK(w)�K(u)kC([1;T ]
def
= sup

t2[1;T ]
jK(w; t)�K(u; t)j < � sup

t2[1;T ]
jw(t)� u(t)j = � kw � ukC([1;T ]

� < 1, in some ball kw � y(1)kC([1;T ] = supt2[1;T ] jw(t)� y(1)j � R in

the space C([1; T ]) of continuous functions on [1; T ], and maps this ball

into itself:

sup
t2[1;T ]

jK(w; t)� y(1)j � R

and applying the Banach contraction theorem to K(y; t).

We estimate �rst kK(w)�K(u)kC([1;T ] = supt2[1;T ] jK(w; t)�K(u; t)j
for continuous functions u and w such that supt2[1;T ] jw(t)� y(1)j � R
and

kw � y(1)kC([1;T ] = supt2[1;T ] ju(t)� y(1)j � R: Point out that supt2[1;T ] jw(t)j �
y(1) +R: We will �nd T such that the contraction property is valid:

kK(w)�K(u)kC([1;T ] = sup
t2[1;T ]

����Z t

1

sin(w(s))s2ds�
Z t

1

sin(u(s))s2ds

���� � � sup
t2[1;T ]

jw(t)� u(t)j ; � < 1

We carry out elementary estimates using the triangle inequality and in-

termediate value theorem for sin.
���R t1 sin(w(s))s2ds� R t1 sin(u(s))s2ds��� �R t

1
j(sin(w(s))� sin(u(s))j s2ds =

18



R t
1
j(w(s)� u(s)) cos(�(s))j s2ds � (T � 1)T 2 � 1 � sup

t2[1;T ]
jw(s)� u(s)j

kK(w)�K(u)kC([1;T ] � (T � 1)T 2 kw(s)� u(s)kC([1;T ]

The argument �(s) above is a number between w(s) and u(s) that exists

according the intermediate value theorem. It was also used above that

jcos(�)j � 1. Therefore to have the contraction property we need to

have (T � 1)T 2 < 1.

For a function w with kw(s)kC([1;T ] = supt2[1;T ] jw(t)� y(1)j � R we

like to have that jK(w; t)� y(1)j � R meaning that K maps this ball

in C([1; T ]) into itself. For this particualr case it is not necessary

because he equation is de�ned in the whole /R and the contraction

property is bvalid in the whole C([1; T ]) : But this checking might be

necessary if the contraction property is valid only locally, not in thew

whole C([1; T ]):

The following estimate leads to another bound for T : sup
t2[1;T ]

jK(w; t)� y(1)j �

sup
t2[1;T ]

���R t1 sin(w(s))s2ds��� � (T � 1)T 2 � R:
Therefore the time interval must satisfy estimates (T � 1)T 2 < 1 and
(T � 1)T 2 < R to have convergence of Picard iterations in the ball

supt2[1;T ] jw(t)� y(0)j � R. Taking R = 1 we get an optimal estimate
(T � 1)T 2 < 1 that is satis�ed for example for T = 1:4:

� = 0:4(1:4)(1:4) = 0:784

Introduction to bifurcations.

Considering di¤erential equations where the right hand side includes a

parameter:

x0 = f(t; x; �)

19



we can observe qualitative changes in the phase portrait of the system at

certain values of the parameter � = �0:

Examples of bifurcations.

Pitchforc bifurcation
The equation

x0 = �x� x3

has one stable equilibrium point x = 0 for � � 0, that becomes unstable and
splits into two stable equilibrium points at � = 0.

f(x) = �x� x3; � < 0
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f(x) = x� x3; � > 0
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Transcritical bifurcation.
The equation

x0 = �x� x2

has two �xed points for � 6= 0 which collide and exchange stability at � = 0.
f(x) = x� x2; � = 1
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f(x) = �x� x2, � = �1
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Saddle point bifurcation.
The equation

x0 = �+ x2

has one stable and one unstable equilibrium point for � < 0 which collide at

� = 0 and vanish when � > 0.

Hopf bifurcation
One impressive example is the so called Hopf bifurcation where an as-

ymptotically stable equilibrium becomes unstable equilibrium surrounded by

a unique limit cycle, a periodic solution attracting sorrounding trajectories.

The theorem blow gives a possibility to show the existence of a unique
periodic solution surrounding an equilibrium that is a repeller.

Theorem on Hopf bifurcation. Let the system of di¤erential equations
in plane:

x01 = f1(x1; x2; �)

x02 = f2(x1; x2; �)

have an equilibrium point in the origin for all real values of the parameter �:

Suppose that for the linearized system of equation around the origin eigen-

values are purely imaginary for � = �0. Suppose also that for real part part
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of eigenvalues Re(�1(�)) = Re(�2(�)) the condition

d

d�
fRe(�1(�))gj�=�0 > 0

and that the origin is asymptotically stable for � = �0.

Then

i) � = �0 is a bifurcation point for the system

ii) there is an interval (�1; �0) such that the origin is a stable spiral(focus)

iii) there is an interval (�0; �2) such that the origin is an unstable spi-

ral(focus), surrounded by a limit cycle (periodic orbit) with size increasing

with increasing of �:

Example. Show that the following system undergoes Hopf bifurcation

at � = 0.

x01 = �x1 � 2x2 � 2x1(x21 + x22)2

x02 = 2x1 + �x2 � x2(x21 + x22)2

Linearized equations are the following:

x01 = �x1 � 2x2
x02 = 2x1 � �x2

with matrix

"
� �2
2 �

#
with eigenvalues �1;2(�) = ��2i. Therefore �1;2(0) =

�2i are purely imaginary.
Re�(�) = �. and d

d�
Re�(�) = 1 > 0:

The system has a strong Lyapunov function V (x1; x2) = x21+x
2
2 for � = 0:

Vf (x1; x2) = �2
�
2x21 + x

2
2

�
(x21 + x

2
2)
2 < 0; (x1; x2) 6= (0; 0)

that makes the origin asymptotically stable for � = 0. Then according to
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the Hopf theorem the system undergoues a bifurcation at � = 0 and at some

small � > 0 it has instable spiral in the origin, surrounded by a periodic

orbit. If it is di¢ cult to �nd a strong Lyapunov function, one can apply

LaSalle�s invariance principle.

Exercise.
Show that the equation x00+(x2��)x0+2x+x3 = 0 has a Hopf bifurcation

at � = 0.

Bifurcations will not be at the exam!!!
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Main ideas and tools in the course in ODE

1. Integral form of I.V.P. to ODEs

2. Grönwall�s inequality for showing uniqueness and continuity with respect
to data.

3. Generalised eigenspaces of matrices. Basis of generalized eigenvectors.

4. Jordan form of matrices. Matrix exponent and logarithm.

5. Transfer matrix. Monodromy matrix.

6. Stability and instability of equilibrium points.

7. Linearization and Grobman Hartman theorem. (i¤ Re(�) 6= 0)

8. Lyapunov functions.(for stability and for hunting positively invariant sets)

9. LaSalle�s invariance principle for hunting ! - limit sets.

10. Idea of solving integral equations by iterations.

Examples

1) Solve the initial value problem

_x = t x3; x (1) = �

and �nd maximal intervals for solutions. Give a sketch of the domain for x(t) =
'(t; 1; �) in the (t; x) plane.
2) Can one conclude which maximal interval have solutions to the similar

equation
_x = t3x

without solving it?

1. Solution.

1



1) It is the equation with separable variables.

dx

dt
= tx3; x (1) = �Z

dx

x3
=

Z
tdt

�1
2x2

=
t2

2
� C

C =
t2

2
+

1

2x2
; C =

1

2
+

1

2�2
=
1 + �2

2�2

�1
2x2

=
t2

2
� 1 + �

2

2�2

�1
2x2

=
�2t2

2�2
� 1 + �

2

2�2
=
�2t2 �

�
1 + �2

�
2�2

x2 =
�2�

1 + �2
�
� �2t2

=
1�

1 + �2
�
=
�
�2
�
� t2

x =

s
1�

1 + �2
�
=
�
�2
�
� t2

;
�
1 + �2

�
=
�
�2
�
� t2 > 0; � > 0

x = �
s

1�
1 + �2

�
=
�
�2
�
� t2

;
�
1 + �2

�
=
�
�2
�
� t2 > 0; � < 0

x � 0; � = 0; equilibrium�
1 + �2

�
=
�
�2
�
> t2; t 2

�
�
q�
1 + �2

�
=
�
�2
�
;
q�
1 + �2

�
=
�
�2
��
OPEN !!!

1. The maximal intervals for these solutions are open in accordance with the
general theory. One solution x � 0 is de�ned on the whole R. We draw
boundaries of the domain for '(t; 1; �).
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The equation _x = t3x is de�ned on R�R and the right hand side satis�es
on any compact time interval [�R;R] , R > 0 the estimate

��t3x�� � R3(1 + jxj)
where the right hand side rises linearly with respect to jxj : It implies that the
maximal existence interval for all solutions to this equation is R.

Estimating Lyapunov functions V and
their derivatives Vf = rV � f along trajectories.

Investigation of positivity of functions V and Vf = rV � f .
Choosing a Lyapunov function: it must be positive de�nite: V (0) = 0;

V (x) > 0, x 6= 0.
We like to have Vf = rV � f negative de�nite Vf < 0 or at least rV � f � 0.

Example.

1. Consider the following system of ODE:
�
x0 = �x� 2y + xy2
y0 = 3x� 3y + y3 .

Show asymptotic stability of the equilibrium point in the origin and �nd
the region of attraction for that.

Hint: applying Lyapunovs theorem, use the elementary inequality

jxyj � 1

2

�
x2 + y2

�
to estimate inde�nite terms with xy:

3



A more general inequality can be useful for polynomials of higher degree in
f :

jabj � ap

p
+
bq

q
;

1

p
+
1

q
= 1; p; q > 1

1. Solution. Choose a test function V (x; y) = 1
2

�
x2 + y2

�
Vf = x(�x� 2y + xy2) + y

�
3x� 3y + y3

�
= xy � x2 � 3y2 + y4 + x2y2

= �x2
�
1� y2

�
� y2

�
3� y2

�
+ xy � �x2

�
1� y2

�
� y2

�
3� y2

�
+0:5x2 +

0:5y2

We apply the inequality 2xy �
�
x2 + y2

�
to the last term and collecting

terms with x2 and y2 arrive to the estimate

Vf � �x2
�
0:5� y2

�
� y2

�
2:5� y2

�
It implies that Vf < 0 for (x; y) 6= (0; 0) and jyj < 1=

p
2.Therefore the

origin is asymptotically stable.

The attracting region is bounded by the largest levle set of V - a circle
having the center in the origin that �ts to the domain jyj < 1=

p
2, namely�

x2 + y2
�
< 1=2.

The second idea for choosing Lyapunov functions is choice of V
of polynomilas with arbitrary even powers and arbitrary coe¢ -
cients.

Another more clever choice of a test function as

V (x; y) = axm + byn

in particular V (x; y) = 3x2 + 2y2 works in this particular case:

Vf = 6x(�x�2y+xy2)+4y(3x�3y+y3) = 4y4�12y2�6x2+6x2y2 = �4y2�
3� y2

�
� 6x2

�
1� y2

�
< 0

for jyj < 1, therefore the ellipse 3x2 + 2y2 < 2 is a domain of attraction
for the asymptotically stable equilibrium in the origin.

One can also observe the asymptotic stability of the origin here by lin-
earization with variational matrix

A =

�
�1 �2
3 �3

�
, with characteristic polynomial: �2 + 4� + 9 = 0, and

calculating eigenvalues: �i
p
5�2; i

p
5�2 with Re� < 0. But linearization

gives no information about the domain of attraction.

Poincare - Bendixson theorem and
testing absence of equilibrium points in the positive invariant set.

We try to �nd an ring shaped domain that is positively invariant and need
to check three conditions:
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i) The outer boundary of the ring (using a level set of a test function, or a
polygon shaped domain testing velosities on each segment of it�s boundary)
ii) The inner boundary of the ring (using a level set of a test function, or

linearization for identifying a repeller inside a large postively invariant set by
applying the Grobman - Hartman theorem)
iii) Check that no equilibrium points exist inside of the ring (missed often

by students)
Example. Show that the following system of ODEs has a periodic solution.�

x0 = x� 2y � x
�
2x2 + y2

�
y0 = 4x+ y � y

�
2x2 + y2

� (4p)

Solution. Consider the following test function: V (x; y) = 2x2 + y2. Denot-
ing the right hand side in the equation by vectorfunction F (x; y) we conclude
that
Vf = rV � f = 4x2 � 8xy � 4x2

�
2x2 + y2

�
+ 8xy + 2y2 � 2y2(2x2 + y) =

2
�
1� (2x2 + y2)

�
(2x2 + y2):

It implies that the elliptic shaped ring: R =
�
(x; y) : 0:5 � (2x2 + y) � 2

	
is a positive invariant compact set for the ODE, because velocity vectors are
directed inside of this ring both on it�s outer and inner boundaries ( rV �F < 0
for (2x2 + y) = 2 and rV � F > 0 for (2x2 + y) = 0:5.

The origin is the only equilibrium point of the system. It is not so easy to
see from the system of equations itself. But one can see it easier by cheching
�rst zeroes of Vf (x; y) that is a scalar function and evidently must be zero in
all equilibrium points..
We observe that V (x; y) = 2x2+ y2 is positive de�nite and rV �F (x; y) = 0

only if (x; y) = (0; 0) or if (2x2+y2) = 1:But it is easy to see from the expression
for the right hand side for the ODE that in the last case (x; y) cannot be
equilibrium point because the right hand side becomes linear with nondegenerate
matrix and is zero only in the origin (x; y) = (0; 0). The equation for equilibrium
points on the level set (2x2 + y2) = 1 is the following:

1.
�
0 = x� 2y � x = �2y
0 = 4x+ y � y = 4x

By the Poincare-Bendixson theorem the positively invariant set R not in-
cluding any equilibrium point must include at least one orbit of a periodic
solution.�
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