Tentamentsskrivning i Statistisk slutledning MVE155/MSG200, 7.5 hp.

Tid: 21 augusti 2017, kl 8.30-12.30
Examinator och jour: Serik Sagitov, tel. 031-772-5351, rum H3026 i MV-huset.
Hjälpmedel: Chalmersgodkänd räknare, egen formelsamling (fyra A4 sidor).
CTH: för " 3 " fordras 12 poäng, för " 4 " - 18 poäng, för " 5 " - 24 poäng.
GU: för "G" fordras 12 poäng, för "VG" - 20 poäng.
Inclusive eventuella bonuspoäng.

Partial answers and solutions are also welcome. Good luck!

1. (5 points) Suppose you have got a sample of 4 independent observations $(1,4,4,4)$ from an unknown distribution. You are interested in the distributions of the sample median \hat{M} and sample mean \bar{X}.
(a) Compute the sample median and the sample mean for the given sample. In what sense these numbers are realizations of two random variables?
(b) The are five possible outcomes (after ordering) for a non-parametric bootstrap drawing from this sample:

$$
(4,4,4,4), \quad(1,4,4,4), \quad(1,1,4,4), \quad(1,1,1,4), \quad(1,1,1,1)
$$

Compute the correspondig five probabilities.
(c) Find the distributions of the sample median and the sample mean using (b).
(d) Compute the means for the distributions in (c) and compare them to the answers in (a).
2. (5 points) A multiple regression model

$$
E(Y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}
$$

was used to explain the arthritis incidence measured by the the number of cases per 1000 inhabitants. Three explanatory variables were
$x_{1}=$ percent of population over 65 years old,
$x_{2}=$ number of physicians (per 1000),
$x_{3}=$ mean disposable income for the people over 65 (in thousands of US dollars).
A computer output for data collected in 13 different districts, has given four least squares estimates and their standard errors:

Parameter	Point estimate	Standard error
β_{0}	0.43914	1.57976
β_{1}	0.46963	0.11035
β_{2}	1.49976	0.67926
β_{3}	0.05921	0.08163

The sum of squares were computed to be: total $=28.51451$, residuals $=4.41567$, regression $=$ 23.99884 .
(a) Find 95% confidence intervals for β_{2} and β_{3}. What are your conclusions about the choice of explanatory variables?
(b) For the simple regression model with a single explanatory variable x_{1}, the same data gave

Parameter	Point estimate	Standard error
β_{0}	2.38250	1.30464
β_{1}	0.56714	0.09719

The sum of squares for the residuals $=6.96186$. Compare the multiple regression model to the simple regression model using the coefficient of determination.
(c) What is the difference between a confidence interval and a prediction interval? Compute a prediction interval for the arthritis incidence in a district with 20 percent of people being older than 65 (compared to 15 precent as the sample mean).
3. (5 points) A randomized double-blind experiment compared the effectiveness of several drugs in ameliorating postoperative nausea. All patients were anesthetized with nitrous oxide and ether. The following table shows the incidence of nausea during the first four hours for each of several drugs and a placebo.

	Number of patients	Incidence of nausea
Placebo	165	95
Chlorpromazine	152	52
Dimenhydrinate	85	52
Pentobarbital $(100 \mathrm{mg})$	67	35
Pentobarbital $(150 \mathrm{mg})$	85	37

(a) Compare the drugs to each other and to placebo.
(b) Explain your choice of the statistical testing procedure and the underlying assumptions.
(c) Is the difference between the two dosages of Pentobarbital statistically significant? Explain.
4. (5 points) Respond to the following.
(a) Explain the multiple comparison (multiple testing) problem.
(b) What are the advantages of stratified sampling?
(c) When a retrospective study is appropriate?
(d) Why the analysis of the residuals is important when you apply ANOVA, or linear regression, or a t -test?
5. (5 points) It is known that if a single observation x comes from an exponential distribution with a parameter ρ, and ρ has a gamma distribution with parameters (α, λ), then the conditional distribution of ρ has a gamma distribution with parameters $(\alpha+1, \lambda+x)$.
(a) Find the posterior distribution after a second observation y is collected from the same exponential distribution.
(b) Suppose $x=3.2, y=7.3, \alpha=2$, and $\lambda=1$. What a prior distribution would you use for a forthcoming third observation?
(c) Using the data from (b) find the posterior mean estimate of ρ. Reminder: the mean of the gamma distribution with parameters (α, λ) is $\mu=\alpha / \lambda$.
6. (5 points) The following data gives the amount of time (in minutes) it took a certain person to drive to work, Monday through Friday, along four different routes.

Route	Mon	Tue	Wed	Thu	Fri
1	22	26	25	25	31
2	25	27	28	26	29
3	26	29	33	30	33
4	26	28	27	30	30

(a) Using simple graphs, describe the observed differences between the days of the weeks and the four routes.
(b) How would you justify the experimental design chosen for this study?
(c) Fill in the missing values into the ANOVA table for the data above.

Source	SS	df	MS	F	Prob $>$ F
-	73.2	-	-	-	0.0021
-	52.8	-	-	-	0.0038
Error	27.2	-	-		
Total	-	-			

(d) State two relevant pairs of null and alternative hypotheses. Which statistical conclusions follow from the ANOVA table?

TABLE 2 Cumulative Normal Distribution-Values of P Corresponding to z_{p} for the Normal Curve

z is the standard normal variable. The value of P for $-z_{p}$ equals 1 minus the value of P for $+z_{p}$; for example, the P for -1.62 equals $1-.9474=.0526$.

z_{p}	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
. 0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	239	. 5279	5319	5359
. 1	. 5398	. 5438	. 5478	17	. 5557	. 5596	. 5636	5675	. 5714	5753
. 2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	6103	. 6141
3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	6879
. 5	. 6	50	. 6985	019	05	. 7088	7123	7157	7190	224
. 6	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	.7454	. 7486	. 7517	. 7549
. 7	. 7580	. 7611	. 7642	. 7673	. 7704	. 7734	. 7764	. 7794	7823	. 7852
. 8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	8133
. 9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	8389
	. 8413	. 8438	61	8485	08	. 8531	. 8554	. 8577	. 8599	621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.4	. 9192	. 9207	. 9222	. 9236	. 9251	. 9265	. 9279	. 9292	. 9306	. 9319
	. 93	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	. 9441
. 6	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	. 9525	. 9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	25	. 9633
1.8	. 9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9699	. 9706
1.9	. 9713	. 9719	. 9726	. 9732	. 9	. 9744	. 9750	. 9756	. 9761	. 9767
	. 9772	. 97	. 97	. 9788	. 9793	. 9798	. 9803	. 9808	. 9812	9817
	. 9821	. 9826	. 9830	. 9834	. 9838	. 9842	. 9846	. 9850	. 9854	. 9857
	. 9861	. 9864	. 9868	. 9871	. 9875	. 9878	. 9881	. 9884	. 9887	. 9890
	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916
	. 9918	. 9920	. 9922	. 9925	. 9927	. 9	. 9931	. 9932	. 9934	. 9936
	. 9938	. 9940	. 994	. 9943	45	. 9946	. 9948	. 9949	9951	9952
	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	. 9964
	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974
	. 9974	. 9975	. 9976	. 9977	. 9977	. 9978	. 9979	. 9979	. 9980	. 9981
	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 9986
	. 9987	. 9987	. 9987	. 9988	. 9988	. 9989	. 9989	. 9989	. 9990	9990
	. 9990	. 9991	. 9991	. 9991	. 9992	. 9992	. 9992	. 9992	. 9993	. 9993
	. 9993	. 9993	. 9994	. 9994	. 9994	. 9994	. 9994	. 9995	. 9995	. 9995
	. 9995	. 9995	. 9995	. 9996	. 9996	. 9996	. 9996	. 9996	. 9996	. 9997
	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9998

A8 Appendix B Tables
TABLE 3 Percentiles of the χ^{2} Distribution-Values of χ_{P}^{2} Corresponding to P

| $d f$ | $\chi_{.005}^{2}$ | $\chi_{.01}^{2}$ | $\chi_{.225}^{2}$ | χ_{05}^{2} | χ_{10}^{2} | $\chi_{.90}^{2}$ | $\chi_{.95}^{2}$ | $\chi_{.975}^{2}$ | $\chi_{.99}^{2}$ | $\chi_{.995}^{2}$ |
| ---: | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| 1 | .000039 | .00016 | .00098 | .0039 | .0158 | 2.71 | 3.84 | 5.02 | 6.63 | 7.88 |
| 2 | .0100 | .0201 | .0506 | .1026 | .2107 | 4.61 | 5.99 | 7.38 | 9.21 | 10.60 |
| 3 | .0717 | .115 | .216 | .352 | .584 | 6.25 | 7.81 | 9.35 | 11.34 | 12.84 |
| 4 | .207 | .297 | .484 | .711 | 1.064 | 7.78 | 9.49 | 11.14 | 13.28 | 14.86 |
| 5 | .412 | .554 | .831 | 1.15 | 1.61 | 9.24 | 11.07 | 12.83 | 15.09 | 16.75 |
| 6 | .676 | .872 | 1.24 | 1.64 | 2.20 | 10.64 | 12.59 | 14.45 | 16.81 | 18.55 |
| 7 | .989 | 1.24 | 1.69 | 2.17 | 2.83 | 12.02 | 14.07 | 16.01 | 18.48 | 20.28 |
| 8 | 1.34 | 1.65 | 2.18 | 2.73 | 3.49 | 13.36 | 15.51 | 17.53 | 20.09 | 21.96 |
| 9 | 1.73 | 2.09 | 2.70 | 3.33 | 4.17 | 14.68 | 16.92 | 19.02 | 21.67 | 23.59 |
| 10 | 2.16 | 2.56 | 3.25 | 3.94 | 4.87 | 15.99 | 18.31 | 20.48 | 23.21 | 25.19 |
| 11 | 2.60 | 3.05 | 3.82 | 4.57 | 5.58 | 17.28 | 19.68 | 21.92 | 24.73 | 26.76 |
| 12 | 3.07 | 3.57 | 4.40 | 5.23 | 6.30 | 18.55 | 21.03 | 23.34 | 26.22 | 28.30 |
| 13 | 3.57 | 4.11 | 5.01 | 5.89 | 7.04 | 19.81 | 22.36 | 24.74 | 27.69 | 29.82 |
| 14 | 4.07 | 4.66 | 5.63 | 6.57 | 7.79 | 21.06 | 23.68 | 26.12 | 29.14 | 31.32 |
| 15 | 4.60 | 5.23 | 6.26 | 7.26 | 8.55 | 22.31 | 25.00 | 27.49 | 30.58 | 32.80 |
| 16 | 5.14 | 5.81 | 6.91 | 7.96 | 9.31 | 23.54 | 26.30 | 28.85 | 32.00 | 34.27 |
| 18 | 6.26 | 7.01 | 8.23 | 9.39 | 10.86 | 25.99 | 28.87 | 31.53 | 34.81 | 37.16 |
| 20 | 7.43 | 8.26 | 9.59 | 10.85 | 12.44 | 28.41 | 31.41 | 34.17 | 37.57 | 40.00 |
| 24 | 9.89 | 10.86 | 12.40 | 13.85 | 15.66 | 34.20 | 36.42 | 39.36 | 42.98 | 45.56 |
| 30 | 13.79 | 14.95 | 16.79 | 18.49 | 20.60 | 40.26 | 43.77 | 46.98 | 50.89 | 53.67 |
| 40 | 20.71 | 22.16 | 24.43 | 26.51 | 29.05 | 51.81 | 55.76 | 59.34 | 63.69 | 66.77 |
| 60 | 35.53 | 37.48 | 40.48 | 43.19 | 46.46 | 74.40 | 79.08 | 83.30 | 88.38 | 91.95 |
| 120 | 83.85 | 86.92 | 91.58 | 95.70 | 100.62 | 140.23 | 146.57 | 152.21 | 158.95 | 163.64 |

For large degrees of fresdom,

$$
\chi_{P}^{2}=\frac{1}{2}\left(z_{P}+\sqrt{2 v-1}\right)^{2} \text { approximately, }
$$

where $v=$ degrees of freedom and z_{P} is given in Table 2 .

TABLE 4 Percentiles of the t Distribution

t_{P}								
$d f$	$t .60$	t. $\% 0$	t. 80	$t_{\text {SO }}$	t_{95}	t.975	$t .99$	t.995
1	. 325	. 727	1.376	3.078	6.314	12.706	31.821	63.657
2	. 289	. 617	1.061	1.886	2.920	4.303	6.965	9.925
3	. 277	. 584	. 978	1.638	2.353	3.182	4.541	5.841
4	. 271	. 569	. 941	1.533	2.132	2.776	3.747	4.604
5	. 267	. 559	. 920	1.476	2.015	2.571	3.365	4.032
6	. 265	. 553	. 906	1.440	1.943	2.447	3.143	3.707
7	. 263	. 549	. 896	1.415	1.895	2.365	2.998	3.499
8	. 262	. 546	. 889	1.397	1.860	2.306	2.896	3.355
9	. 261	. 543	. 883	1.383	1.833	2.262	2.821	3.250
10	. 260	. 542	. 879	1.372	1.812	2.228	2.764	3.169
11	. 260	. 540	. 876	1.363	1.796	2.201	2.718	3.106
12	. 259	. 539	. 873	1.356	1.782	2.179	2.681	3.055
13	. 259	. 538	. 870	1.350	1.771	2.160	2.650	3.012
14	. 258	. 537	. 868	1.345	1.761	2.145	2.624	2.977
15	. 258	. 536	. 866	1.341	1.753	2.131	2.602	2.947
16	. 258	. 535	. 865	1.337	1.746	2.120	2.583	2.921
17	. 257	. 534	. 863	1.333	1.740	2.110	2.567	2.898
18	. 257	. 534	. 862	1.330	1.734	2.101	2.552	2.878
19	. 257	. 533	. 861	1.328	1.729	2.093	2.539	2.861
20	. 257	. 533	. 860	1.325	1.725	2.086	2.528	2.845
21	. 257	. 532	. 859	1.323	1.721	2.080	2.518	2.831
22	. 256	. 532	. 858	1.321	1.717	2.074	2.508	2.819
23	. 256	. 532	. 858	1.319	1.714	2.069	2.500	2.807
24	. 256	. 531	. 857	1.318	1.711	2.064	2.492	2.797
25	. 256	. 531	. 856	1.316	1.708	2.060	2.485	2.787
26	. 256	. 531	. 856	1.315	1.706	2.056	2.479	2.779
27	. 256	. 531	. 855	1.314	1.703	2.052	2.473	2.771
28	. 256	. 530	. 855	1.313	1.701	2.048	2.467	2.763
29	. 256	. 530	. 854	1.311	1.699	2.045	2.462	2.756
30	. 256	. 530	. 854	1.310	1.697	2.042	2.457	2.750
40	. 255	. 529	. 851	1.303	1.684	2.021	2.423	2.704
60	. 254	. 527	. 848	1.296	1.671	2.000	2.390	2.660
120	. 254	. 526	. 845	1.289	1.658	1.980	2.358	2.617
∞	. 253	. 524	. 842	1.282	1.645	1.960	2.326	2.576

