1) Show that we get an automorphism of the group $GL(2, \mathbb{R})$ by sending
\[
\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}
\to
\begin{pmatrix} a_{22} & -a_{21} \\ -a_{12} & a_{11} \end{pmatrix}.
\]

2) Let G be a group and H, K be two subgroups of G.

a) Prove that $H \cap K$ is a subgroup of G.

b) Show that $Ha \cap Kb$ is a right coset of $H \cap K$ for all $a, b \in G$ with $Ha \cap Kb \neq \emptyset$.

3) Let $F(\sigma)$ the number of 1-cycles in the cyclic decomposition of $\sigma \in S_n$.

a) Prove that $\frac{1}{n!} \sum_{\sigma \in S_n} F(\sigma) = 1$.

b) Show that $\frac{1}{n!} \sum_{\sigma \in S_n} F(\sigma)^2 = 2$.

(Hint for b): Let S_n act on $\{1,2,..,n\} \times \{1,2,..,n\}$.

4) Prove that $X^4 - X - 1$ is not a product of two non-constant polynomials in $\mathbb{Z}[X]$. (Hint: Consider binary polynomials.)

5) Let K be the field defined by the quotient ring $\mathbb{Q}[X]/(X^4 - X - 1)$ and $\alpha \in K$ be the coset $X + (X^4 - X - 1)$. Express α^{10} and $1/\alpha$ as linear combinations of $1, \alpha, \alpha^2$ and α^3 over \mathbb{Q}.

6a) Show that every ideal of $R = \mathbb{C}[X]/(X^n)$ is principal.

b) Let α be the coset $X + (X^n) \in R$. Prove that there are exactly n proper ideals of R and that they are given by (α^k) for $k \in \{1,2,..,n\}$.

You may use the theorems in Durbin’s book, but all claims should be motivated.
Brief solutions to the exam in MMG500/MVE150 2020-08-19.

1) We first note that \(\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \det \begin{pmatrix} a_{22} & -a_{21} \\ -a_{12} & a_{11} \end{pmatrix} \). We have thus a map \(\varphi: \text{GL}(2,\mathbb{R}) \rightarrow \text{GL}(2,\mathbb{R}) \) which sends \(\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \) to \(\begin{pmatrix} a_{22} & -a_{21} \\ -a_{12} & a_{11} \end{pmatrix} \). This map is bijective as \(\varphi(\varphi(A)) = A \) for all \(A \in \text{GL}(2,\mathbb{R}) \). We have further that

\[
\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix},
\]

\[
\begin{pmatrix} a_{22} & -a_{21} \\ -a_{12} & a_{11} \end{pmatrix} \begin{pmatrix} b_{21} & b_{22} \\ -b_{11} & b_{12} \end{pmatrix} = \begin{pmatrix} a_{21}b_{12} + a_{22}b_{22} & -a_{21}b_{11} - a_{22}b_{21} \\ -a_{11}b_{12} - a_{12}b_{22} & a_{11}b_{11} + a_{12}b_{21} \end{pmatrix}.
\]

We have thus for all \(A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \) and \(B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \) in \(\text{GL}(2,\mathbb{R}) \) that

\[\varphi(AB) = \varphi \left(\begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix} \right) = \begin{pmatrix} a_{21}b_{12} + a_{22}b_{22} & -a_{21}b_{11} - a_{22}b_{21} \\ -a_{11}b_{12} - a_{12}b_{22} & a_{11}b_{11} + a_{12}b_{21} \end{pmatrix} = \varphi(A)\varphi(B). \]

We have thus shown that \(\varphi \) is a bijective homomorphism to itself.

2a) \(e \in H \cap K \), \(a, b \in H \cap K \Rightarrow ab \in H \cap K \) and \(a \in H \cap K \Rightarrow a^{-1} \in H \cap K \). Hence \(H \cap K \) is a subgroup by the subgroup criterion.

b) If \(c \in Ha \cap Kb \), then \(Ha = Hc \) and \(Kb = Kc \). We have also trivially that \((H \cap K)c \subseteq Hc \cap Kc \). Conversely, if \(hc = kc \in Hc \cap Kc \), then \(h = k \) be the cancellation law and hence \(hc = kc \) an element in \((H \cap K)c \). We have therefore if \(Ha \cap Kb \neq \emptyset \) that \(Ha \cap Kb = (H \cap K)c \) for any \(c \in Ha \cap Kb \).

c) Suppose that \([G:H] = m \) and \([G:K] = n \). Then \(G \) is a disjoint union \(G = Ha_1 \cup \ldots \cup Ha_m = Kb_1 \cup \ldots \cup Kb_n \) by right cosets of \(H \) and \(K \). Hence \(G \) is a union of at most \(mn \) non-empty intersections \(Ha \cap Kb \) and thus by b) a union of at most \(mn \) right cosets \((H \cap K)c \). Therefore, \([G: H \cap K] \leq mn \).

3a) We apply Burnside’s counting lemma to the action of \(G = S_n \) on the set \(\{1, 2, \ldots, n\} \). This gives that the number of orbits is equal to \(\frac{1}{n!} \sum_{\sigma \in S_n} F(\sigma) \).

But the action is clearly transitive so that the number of orbits is 1. Hence \(\frac{1}{n!} \sum_{\sigma \in S_n} F(\sigma) = 1 \), as asserted.
3b) We consider the natural action of $G=S_n$ on $T=\{1,2,\ldots,n\} \times \{1,2,\ldots,n\}$, where the action of $\sigma \in G=S_n$ sends (i,j) to $(\sigma(i), \sigma(j))$. There are then $F(\sigma)^2$ fixed points in T under the action of σ on T. We see therefore by Burnside’s lemma that there are $\frac{1}{n!} \sum_{\sigma \in S_n} F(\sigma)^2$ orbits under the action of S_n on $\{1,2,\ldots,n\} \times \{1,2,\ldots,n\}$. But it is clear that there are exactly 2 orbits under this action. The first orbit consists of all pairs (i,i) and the second of all pairs (i,j) where $i \neq j$. Hence
$$\frac{1}{n!} \sum_{\sigma \in S_n} F(\sigma)^2 = 2,$$ as was to be shown.

4) Suppose that $X^4 - X - 1 = f(X)g(X)$ for two polynomials f and g in $\mathbb{Z}[X]$. We have then that the leading coefficient of f and g are ± 1 and a factorization $X^4 - X - 1 = G(HX)$ in $\mathbb{Z}_2[X]$ for the images F and G of f and g under the evident homomorphism from $\mathbb{Z}[X]$ to $\mathbb{Z}_2[X]$. But $F(X) = X^4 - X - 1 \in \mathbb{Z}_2[X]$ has no linear factors as $F(0) = F(1) = 1$ in \mathbb{Z}_2. So if $X^4 - X - 1$ were reducible, then then we must have that $G(X) = H(X)$ are irreducible of degree two in $\mathbb{Z}_2[X]$. But the only irreducible polynomial of degree two in $\mathbb{Z}_2[X]$ is $X^2 + X + 1$, which means that $G(X)H(X) = (X^2 + X + 1)^2 = X^4 + X^2 + 1 \neq X^4 - X - 1$ in $\mathbb{Z}_2[X]$. Hence $X^4 - X - 1$ is irreducible in $\mathbb{Z}_2[X]$, and therefore also in $\mathbb{Z}[X]$.

5) $\alpha^{10} = \alpha^2(\alpha^4)^2 = \alpha^2(\alpha+1)^2 = \alpha^4 + 2\alpha^3 + \alpha^2 = 2\alpha^3 + \alpha^2 + \alpha + 1$ as $\alpha^4 - \alpha - 1 = 0$ in K.
From $\alpha^3 = \alpha + 1$, we see also that $\alpha(\alpha^3 - 1) = 1$ and hence that $\alpha^3 - 1 = \alpha - 1$ in K.

6a) Let J be an ideal in $R = \mathbb{C}[X]/(X^n)$ and I its inverse image in $\mathbb{C}[X]$. Then I is the kernel of the composite ring homomorphism $\mathbb{C}[X] \to R \to R/J$. It is thus an ideal of $\mathbb{C}[X]$ by theorem 38.1 in Durbin’s book and a principal ideal $(p(X))$ of $\mathbb{C}[X]$ by theorem 40.3 in (op.cit.). J is therefore a principal ideal of R generated by $p(X)+ (X^n)$.

6b) Let J be the principal ideal $(p(X)+ (X^n)) \subseteq R$. Then $J = \{0\} = (\alpha^n)$ if $p(X) \in \mathbb{C}[X]$ is divisible by X^n. If $p(X)$ is not divisible by X^n, then $f(X) : = \text{GCD}(p(X), X^n) = 1$ or X^k for $k \in \{1, 2, \ldots, n-1\}$. It is therefore enough to show that $J = (f(X)+ (X^n))$. But $J \subseteq (f(X)+ (X^n))$ as $f(x)$ divides $p(X)$ in $\mathbb{C}[X]$. We have also by theorem 36.2 that $f(X) = a(X)p(X) + b(X)X^n$ for some $a(X), b(X) \in \mathbb{C}[X]$ and hence that $f(X)+ (X^n) = (a(X)+ (X^n))(p(X)+ (X^n))$. Therefore, $(f(X)+ (X^n)) \subseteq J$, and we are done.