1) Let G be the set of all 2×2-matrices of the form $\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}$ where $a \neq 0$ and b are real numbers. Show that G is a group with respect to matrix multiplication.

2) Let $H = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \}$ be the set of complex numbers in the upper half plane and G be the group in 1). For $g = \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \in G$, let $\pi_g : H \to \mathbb{C}$ be the map which sends z to $a^2z + ab$.

(a) Prove that π_g is a permutation of H for all $g \in G$ and that these permutations define an action of G on H.

(b) Determine the stabiliser of i in G.

(d) Prove that G acts transitively on H.

3) Let G be a group with only one element h of order 2. Prove that $gh = hg$ for all $g \in G$.

4) Let I be the principal ideal in $\mathbb{Z}_2[x]$ generated by $x^3 + x + 1$. Compute $(f(x) + I)^2 \in \mathbb{Z}_2[x]/I$ for all binary polynomials $f(x)$ of degree two. (The answers should be given in the form $g(x) + I$ with $g(x)$ of degree at most two.)

5) Let $K = \mathbb{Q}[x]/I$ for the principal ideal $I = (x^3 - 2)$.

a) Show that K is a field.

b) Determine all field homomorphisms from K to \mathbb{C}.
6) The largest known prime to date is \(p = 2^{82,589,933} - 1 \). Find all the roots in \(\mathbb{Z}_p \) to the equation \(x^{82,589,932} + x^{82,589,931} + \ldots + x^2 + x + 1 = 0 \).

You may use the theorems in Durbin’s book to solve the exercises.

But all claims should be motivated!
Solutions to examination in algebra: MMG500 /MVE 150, 2020-06-08.

1) G is closed under multiplication as
$$
\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} c & d \\ 0 & c^{-1} \end{pmatrix} = \begin{pmatrix} ac & ad+bc^{-1} \\ 0 & (ac)^{-1} \end{pmatrix} \in G
$$

The operation is associative as matrix multiplication is associative and
$$
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
$$
is a neutral element as
$$
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}.
$$

Finally, as
$$
\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} a^{-1} & -b \\ 0 & a \end{pmatrix} = \begin{pmatrix} a^{-1} & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
$$we see that all elements in G have inverses in G such that all four group axioms hold.

2a) \(\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \in H \) for \(\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \in G \) and \(z \in H \) as \(\text{Im}(a^2 z + ab) = a^2 \text{Im}(z) > 0 \). The map which sends \(z \) to \(w = \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} z \) is a permutation on \(H \) as there is an inverse map given by \(z = \begin{pmatrix} a^{-1} & -b \\ 0 & a \end{pmatrix} \), \(w = a^{-2} w - ab \).

Further,
$$
\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} c & d \\ 0 & c^{-1} \end{pmatrix} z = \begin{pmatrix} ac & ad+bc^{-1} \\ 0 & (ac)^{-1} \end{pmatrix} z = (ac)^2 z + ac(ad+b/c) \quad \text{while}
$$
$$
\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} c & d \\ 0 & c^{-1} \end{pmatrix} z = \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} (c^2 z + cd) = a^2(c^2 z + cd) + ab = (ac)^2 z + ac(ad+b/c).
$$

Hence the map which sends \(z \) to \(\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} z \) is an action of \(G \) on \(H \).

\(\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \) is in the stabiliser of \(i \) if and only if \(a^2 i + ab = i \). By separating the real and imaginary parts we have thus that \(\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \) is in the stabiliser of \(i \) if and only if \(a^2 = 1 \) and \(ab = 0 \) which means that \(a = \pm 1 \) and \(b = 0 \). There are thus just two matrices \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) and \(\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \) in the stabilizer of \(i \).

(c) The orbit of \(i \) consists of all complex number of the form \(b + a^2 i \) where \(a \neq 0 \) and \(b \) are arbitrary real numbers. The orbit of \(i \) is thus \(H \) and the action transitive.
3) \((ghg^{-1})^2 = ghg^{-1}ghg^{-1} = ghh g^{-1} = ge g^{-1} = e\). This means that \(ghg^{-1}\) is of order two as \(ghg^{-1} = e\) would imply that \(h = g^{-1}e = e\). As \(h\) is the only one element of order 2 we have this that \(ghg^{-1} = h\) and \(gh = hg\) for all \(g \in G\).

4) If \(a,b,c\), are elements in a ring \(R\) of characteristic two, then \((a+b+c)^2 = a^2+b^2+c^2+2(ab+ac+bc) = a^2+b^2+c^2\). As \(\text{char}(\mathbb{Z}[x]) = 2\), we have therefore that \((x^2+Ax+B)^2 = x^4+A^2x^2+B^2 = x^4+Ax^2+B\) in \(\mathbb{Z}[x]\) for any \(A,B \in \mathbb{Z}_2\).

Further, \(x^4+I = x^2+x+I\) as \(x^4-x^2 = x^4+x^2 = x(x^3+x+I) \in I\). Therefore,
\[(x^2+Ax+B+I)^2 = (x^2+Ax+B)^2 + I = x^4+Ax^2+B+I = (A+1)x^2+x+B+I\]
for \(A, B \in \mathbb{Z}_2\).

Hence, \((x^2)^2 = x^2\) and \((x^2+1)^2 = x+1\) and \((x^2+1+1)^2 = x+1+I\).

5a) Suppose that \(f(x) = x^3-2\) had a root \(\alpha\) in \(\mathbb{Q}\). Then \(\alpha = m/n\) for two coprime integers with \(m^2 = 2n^3\). But then \(m\) must be even, \(2n^3 = m^3\) be divisible by 4 and \(n\) also be even. As this is a contradiction, \(f(x)\) has thus no root in \(\mathbb{Q}\) and no linear factor in \(\mathbb{Q}[x]\). It is therefore irreducible over \(\mathbb{Q}\) as \(\deg f = 3\). (This can also be seen from the Eisenstein criterion.)

As \(f(x)\) is irreducible over \(\mathbb{Q}\), we have thus by theorem 42.3 in Durbin’s book that \(K = \mathbb{Q}(x)/(f(x))\) is a field.

b) If \(\phi: \mathbb{Q}[x]/I \rightarrow \mathbb{C}\) is a ring homomorphism, then
\[
\phi(x+I)^3 = \phi(x^3 + I) = \phi(x^3) + \phi(1+I) = \phi(1+I) = 1+1+2
\]
such that \(\phi(x+I) \in \{\sqrt{2}, \sqrt{2}(-1+i\sqrt{3}), \sqrt{2}(-1-i\sqrt{3})/2\}\).

But any coset in \(\mathbb{Q}[x]/I\) can be represented by a quadratic polynomial \(Ax^2+Bx+C\) in \(\mathbb{Q}[x]\) and \(\phi(Ax^2+Bx+C+I) = A\phi(x+I)^2 + B\phi(x+I) + C\)

The homomorphism \(\theta\) is therefore uniquely determined by \(\phi(x+I)\).

If conversely \(\beta \in \mathbb{C}\), then we have a ring homomorphism \(\theta\) from \(\mathbb{Q}[x]\) to \(\mathbb{C}\), which sends \(g(x) \in \mathbb{Q}[x]\) to \(g(\beta)\). If \(\beta \in \{\sqrt{2}, \sqrt{2}(-1+i\sqrt{3}), \sqrt{2}(-1-i\sqrt{3})/2\}\),

then we have further that \(\theta(x^3-2) = \beta^3 - 2 = 0\) such that \(I = (x^3-2) \subseteq \ker \theta\). There exists therefore by the fundamental homomorphism theorem for rings (see Durbin p.178) a ring homomorphism \(\phi\) from \(\mathbb{Q}[x]/I\) to \(\mathbb{C}\), which sends \(g(x)+I\) to \(\theta(g(x)) = g(\beta)\) and \(x+I\) to \(\beta\). There are therefore exactly three ring homomorphisms from \(K = \mathbb{Q}[x]/I\) to \(\mathbb{C}\).
6) Let \(q = 82\,589\,933 \) and \([a]\) be the congruence class of \(a \pmod{p} \) for \(a \in \mathbb{Z} \). Then \([2^k]^q = [2^k]^q = [1] \) for any integer \(k \). The polynomial \(x^q - 1 \) has thus \(q \) different zeroes in \(\mathbb{Z}_p \) given by \([1], [2], [2^2], \ldots, [2^{q-1}]\).

Now let \(f(x) = x^{q-1} + x^{q-2} + \cdots + x^2 + x + 1 \). Then \(f(x)(x-1) = x^q - 1 \) in \(\mathbb{Z} \) and hence also in \(\mathbb{Z}_p \). This means that any zero of \(f(x) \) in \(\mathbb{Z}_p \) will be a zero of \(x^q - 1 \). If conversely \([a] \neq [1]\) is a zero of \(x^q - 1 \), then \([f([a])][a][1] = [0] \) and \([a][1] \neq [0]\) in \(\mathbb{Z}_p \). But then \(f([a]) = [0] \) as \(\mathbb{Z}_p \) an integral domain (an even a field) for a prime \(p \). We have therefore shown that \([2], [2^2], \ldots, [2^{q-1}]\) are zeroes of \(f(x) \) in \(\mathbb{Z}_p \).

These are then all zeroes by theorem 43.1.