MATHEMATICS

Univ. of Gothenburg and Chalmers University of Technology Examination in algebra: MMG 500 and MVE 150, 2020-06-08. Telephone 031-41 46 70

1) Let *G* be the set of all 2×2-matrices of the form $\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}$ where

 $a \neq 0$ and b are real numbers. Show that G is a group with respect to matrix multiplication.

2) Let $\mathbf{H} = \{z \in \mathbb{C}: \operatorname{Im}(z) > 0\}$ be the set of complex numbers in the

upper half plane and *G* be the group in 1). For $g = \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \in G$, let

 $\pi_g: \mathbf{H} \to \mathbf{C}$ be the map which sends z to $a^2 z + ab$.

(a) Prove that π_g is a permutation of H for all $g \in G$ and that	3p
these permutations define an action of G on H .	
(b) Determine the stabiliser of <i>i</i> in <i>G</i> .	1p
(d) Prove that G acts transitively on H .	2p

3p

3) Let <i>G</i> be a group with only one element <i>h</i> of order 2.	3р
Prove that $gh=hg$ for all $g \in G$.	

4) Let *I* be the principal ideal in $\mathbb{Z}_2[x]$ generated by x^3+x+1 . Compute $(f(x)+I)^2 \in \mathbb{Z}_2[x]/I$ for all binary polynomials f(x)of degree two. (The .answers should be given in the form g(x)+I with g(x) of degree at most two.)

5) Let $K = \mathbf{Q}[x]/I$ for the principal ideal $I = (x^3 - 2)$. a) Show that *K* is a field. 2p b) Determine all field homomorphisms from *K* to **C**. 3p 6) The largest known prime to date is $p=2^{82} 589 933 - 1$. Find all the roots in \mathbb{Z}_p to the equation $x^{82} 589 932 + x^{82} 589 931 + ... + x^2 + x + 1 = 0$.

You may use the theorems in Durbin's book to solve the exercises. But all claims should be motivated!

Solutions to examination in algebra: MMG500 /MVE 150, 2020-06-08.

1) G is closed under multiplication as $\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} c & d \\ 0 & c^{-1} \end{pmatrix} = \begin{pmatrix} ac & ad + bc^{-1} \\ 0 & (ac)^{-1} \end{pmatrix} \in G$ The operation is associative as matrix multiplication is associative and $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is a neutral element as $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}$. Finally. as $\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} a^{-1} & -b \\ 0 & a \end{pmatrix} = \begin{pmatrix} a^{-1} & -b \\ 0 & a \end{pmatrix} \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ we see that all elements in G have inverses in G such that all four group axioms hold. 2a) $\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} z \in \mathbf{H}$ for $\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \in G$ and $z \in \mathbf{H}$ as $\operatorname{Im}(a^2 z + ab) = a^2 \operatorname{Im}(z) > 0$. The map which sends z to $w = \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} z$ is a permutation on **H** as there is an inverse map given by $z = \begin{pmatrix} a^{-1} & -b \\ 0 & a \end{pmatrix} w = a^{-2}w - ab.$ Further, $\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} c & d \\ 0 & c^{-1} \end{pmatrix} z = \begin{pmatrix} ac & ad + bc^{-1} \\ 0 & (ac)^{-1} \end{pmatrix} z = (ac)^2 z + ac(ad + b/c)$ while $\binom{a \ b}{0 \ a^{-1}} \binom{c \ d}{0 \ c^{-1}} z = \binom{a \ b}{0 \ a^{-1}} (c^2 z + cd) = a^2 (c^2 z + cd) + ab = (ac)^2 z + ac(ad + b/c).$ Hence the map which sends z to $\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}$ z is an action of G on **H**. $\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}$ is in the stabiliser of *i* if and only if $a^2i+ab=i$. By separating the real and imaginary parts we have thus that $\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}$ is in the stabiliser of *i* if and only if $a^2=1$ and ab=0 which means that $a=\pm 1$ and b=0. There are thus just two matrices $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ in the stabilizer of *i*. (c) The orbit of *i* consists of all complex number of the form $b+a^2i$ where

 $a\neq 0$ and b are arbitrary real numbers. The orbit of i is thus **H** and the action transitive.

3) $(ghg^{-1})^2 = ghg^{-1}ghg^{-1} = ghhg^{-1} = geg^{-1} = e$. This means that ghg^{-1} is of order two as $ghg^{-1} = e$ would imply that $h = g^{-1}eg = e$. As *h* is the only one element of order 2 we have this that $ghg^{-1} = h$ and gh = hg for all $g \in G$.

4) If *a,b,c*, are elements in a ring *R* of characteristic two, then $(a+b+c)^2 = a^2+b^2+c^2+2(ab+ac+bc) = a^2+b^2+c^2$. As char($\mathbb{Z}_2[x]$)=2, we have therefore that $(x^2+Ax+B)^2 = x^4+A^2x^2+B^2 = x^4+Ax^2+B$ in $\mathbb{Z}_2[x]$ for any $A,B \in \mathbb{Z}_2$. Further, $x^4+I = x^2+x+I$ as $x^4-x^2-x = x^4+x^2+x = x(x^3+x+I) \in I$. Therefore, $(x^2+Ax+B+I)^2 = (x^2+Ax+B)^2+I = x^4+Ax^2+B+I = (A+1) x^2+x+B+I$ for $A, B \in \mathbb{Z}_2$. Hence, $(x^2+I)^2 = x^2+x+I$, $(x^2+1+I)^2 = x^2+x+1+I$, $(x^2+x+I)^2 = x+I$ and $(x^2+x+1+I)^2 = x+1+I$.

5a) Suppose that $f(x) = x^3 - 2$ had a root α in **Q**. Then $\alpha = m/n$ for two coprime integers with $m^3 = 2n^3$. But then *m* must be even $2n^3 = m^3$ be divisible by 4 and

n also be even. As this is a contradiction , f(x) has thus no root in **Q** and no linear factor in **Q**[*x*], It is therefore irreducible over **Q** as deg *f*=3. (This can also be seen from the Eisenstein criterion,.)

As f(x) is irreducible over **Q**, we have thus by theorem 42.3 in Durbin's book that $K = \mathbf{Q}[x]/(f(x))$ is a field.

b) If $\phi: \mathbf{Q}[x]/I \to \mathbf{C}$ is a ring homomorphism, then

$$\phi(x+I)^3 = \phi(x^3+I) = \phi(x^3+I) = \phi(2+I) = \phi(1+I) + \phi(1+I) = 1 + 1 = 2$$

such that $\phi(x+I) \in \{\sqrt[3]{2}, \sqrt[3]{2}(-1+i\sqrt{3}), \sqrt[3]{2}(-1-i\sqrt{3})/2\}.$

But any coset in $\mathbf{Q}[x]/I$ can be represented by a quadratic polynomial Ax^2+Bx+C in $\mathbf{Q}[x]$ and $\phi(Ax^2+Bx+C+I) = A\phi(x+I)^2+B\phi(x+I)+C$ The homomorphism θ is therefore uniquely determined by $\phi(x+I)$. If conversely $\beta \in \mathbf{C}$, then we have a ring homomorphism θ from $\mathbf{Q}[x]$ to \mathbf{C} ,

which sends $g(x) \in \mathbf{Q}[x]$ to $g(\beta)$. If $\beta \in \{\sqrt[3]{2}, \sqrt[3]{2}(-1+i\sqrt{3}), \sqrt[3]{2}(-1-i\sqrt{3})/2\}$, then we have further that $\theta(x^3-2) = \beta^3-2=0$ such that $I=(x^3-2) \subseteq \ker \theta$. There exists therefore by the fundamental homomorphism theorem for rings (see Durbin p.178) a ring homomorphism ϕ from $\mathbf{Q}[x]/I$ to \mathbf{C} , which sends g(x)+I to $\theta(g(x)) = g(\beta)$ and x+I to β . There are therefore exactly three ring homomophisms from $K = \mathbf{Q}[x]/I$ to \mathbf{C} . 6) Let q=82589933 and [a] be the congruence class of $a \pmod{p}$ for $a \in \mathbb{Z}$. Then $[2^k]^q = [2^{kq}]^e [2^q]^k = [1]^k = [1]$ for any integer k. The polynomial x^{q-1} has thus q different zeroes in \mathbb{Z}_p given by $[1], [2], [2^2], \dots, [2^{q-1}]$. Now let $f(x) = x^{q-1} + {}^{q-2} + \dots + x^2 + x + 1$. Then $f(x)(x-1) = x^q - 1$ in \mathbb{Z} and hence also in \mathbb{Z}_p . This means that any zero of f(x) in \mathbb{Z}_p will be a zero of $x^q - 1$. If conversely $[a] \neq [1]$ is a zero of $x^q - 1$, then f([a])([a] - [1]) = [0] and $[a] - [1] \neq [0]$ in \mathbb{Z}_p . But then f([a]) = [0] as \mathbb{Z}_p an integral domain (an even a field) for a prime p. We have therefore shown that $[2], [2^2], \dots, [2^{q-1}]$ are zeroes of f(x) in \mathbb{Z}_p . These are then all zeroes by theorem 43.1.