1. Let \ast be the binary operation on \mathbb{Z} for which $m \ast n = m+n-1$.
 a) Is this operation associative?
 b) Is there a neutral element in \mathbb{Z} for this operation \ast?
 c) Is (\mathbb{Z}, \ast) a group?

2. Determine the number of non-isomorphic abelian groups of order 2020 and write down one group in each isomorphism class.

3. Let G be finite group and N be a normal subgroup of order $o(N)$ relatively prime to its index $[G: N]$. Prove that any element $g \in G$ with $g^{o(N)} = e$ belongs to N. (Hint : Use G/N.)

4. Let R be a commutative ring and r, s be elements of R such that rs is a zero divisor in R. Prove that r or s is a zero divisor in R.

5. Let $\sqrt{-6} = \sqrt{6}i$ and $\mathbb{Z}[\sqrt{-6}] = \{a+b\sqrt{6}i : a, b \in \mathbb{Z}\}$.
 a) Show that $\mathbb{Z}[\sqrt{-6}]$ is a subring of \mathbb{C}.
 b) Determine the units in $\mathbb{Z}[\sqrt{-6}]$.
 c) Prove that the numbers 2, 3, $\pm \sqrt{-6}$ are irreducible in $\mathbb{Z}[\sqrt{-6}]$ and use this to explain why $\mathbb{Z}[\sqrt{-6}]$ is not a unique factorisation domain.

6. Let K and L be two fields and $K \times L$ be the direct product of these rings.
 a) List as many ideals of $K \times L$ as you can and motivate why they are ideals.
 b) Can there be more than four ideals in such a ring?

You may use the theorems in Durbin’s book, but all claims that are made must be motivated.
1a) The operation is associative as \(l*(m*n) = l*(m+n-1) = (l+m)+n = (l+m)*n \)
b) 1 is a neutral element for the given operation as \(m*1 = (m+1)-1 = m \) and \(1*m = (1+m)-1 = m \)
c) \(* \) is an associative operation on \(\mathbb{Z} \) with neutral element 1. We have also for any \(m \in \mathbb{Z} \) that \(2-m \) is inverse to \(m \) as \(m*(2-m) = (m + (2-m)) - 1 = 1 \) and \((2-m)*m = (m(2-m)) + m = -1 \).

2. We know by the fundamental theorem for abelian groups that any finite abelian group is isomorphic to a product of cyclic groups of prime power order.

3. As \(o(N) \) and \(o(GN) \) are relatively prime we may find integers \(k \) and \(m \) with \(1 = o(N)k + o(GN)m \). Therefore, \(Ng=((Ng)^(mN))^k \cdot ((Ng)^{mGN})^m \) in \(GN \) by the power laws. Further, \((Ng)^{o(GN)} = Ne \) for all \(Ng \in GN \) by a corollary of Lagrange’s theorem. Hence \(Ng=((Ng)^{o(GN)})^k \cdot (Ne)^m \) is isomorphic to \(Z_{2 \times Z_{1010}} \). As by the above theorem these two groups are non-isomorphic, it follows that there are exactly two isomorphism classes of abelian groups of order 20.

4. If \(rs \) is a zero divisor in \(R \), then \(rs \equiv 0 \) and \((rs) \equiv 0 \) for some \(t \equiv 0 \) in \(R \). If now \(st \equiv 0 \), then \(r \) is a zero divisor as \((rs) \equiv 0 \) and \(rt \equiv 0 \).

5a) This follows from the subring criterion as \((a+b\sqrt{6}i) \pm (c+d\sqrt{6}i) = ((a \pm c) + (b \pm d)\sqrt{6}i) \in \mathbb{Z}[\sqrt{-6}] \) and \((a+b\sqrt{6}i)(c+d\sqrt{6}i) = (ac-6bd) + (ad+bc)\sqrt{6}i \in \mathbb{Z}[\sqrt{-6}] \) for all \(a,b,c,d \in \mathbb{Z} \).

b) Let \(N \) be the norm map with \(N(a+b\sqrt{6}i) = a^2 + 6b^2 \). This map is multiplicative as \(N((a+b\sqrt{6}i) \pm (c+d\sqrt{6}i)) = (a^2+6b^2) \pm (c^2+6d^2) \). So if \(a+b\sqrt{6}i \) is inverse to \(c+d\sqrt{6}i \) in \(\mathbb{Z}[\sqrt{-6}] \) then \((a^2+6b^2)(c^2+6d^2) = N((a+b\sqrt{6}i)(c+d\sqrt{6}i)) = N(1) = 1 \). But then \(a^2 + 6b^2 = 1 \) and \(c^2 + 6d^2 \in \mathbb{N} \). We have thus for any unit \(a+b\sqrt{6}i \) that \(a^2 - 1 = 6b^2 \) if \(0 \in \mathbb{Z} \), which implies that \(a \equiv =1 \) and \(b \equiv =0 \). There are therefore just two units in \(\mathbb{Z}[\sqrt{-6}] \) given by \(\pm 1 \).

c) If \(a+b\sqrt{6}i \) and \(c+d\sqrt{6}i \) are in \(\mathbb{Z}[\sqrt{-6}] \), then \(N((a+b\sqrt{6}i)(c+d\sqrt{6}i)) = (a^2+6b^2)(c^2+6d^2) \). Also, if \(b \equiv =0 \) then \(a^2 + 6b^2 \equiv =0 \) and \(b \equiv =0 \) then \(a^2 + 6b^2 \equiv =0 \) if not \(a \equiv =1 \). We have therefore, if of \(a+b\sqrt{6}i \) and \(c+d\sqrt{6}i \) are units that \(a^2 + 6b^2 \equiv =0 \) and \(c^2 + 6d^2 \equiv =0 \) and \(N((a+b\sqrt{6}i)(c+d\sqrt{6}i)) \equiv >1 \). The non-units \(2, 3, \sqrt{-6}i, -\sqrt{-6}i \) are thus all irreducible as \(N(2)=4, N(3)=9 \) and \(N(\sqrt{-6}i) = N(-\sqrt{-6}i) = 6 \). We have thus two different prime factorisations of 6 given by \(2 \times 3 \) and \((\sqrt{-6}i)(-\sqrt{-6}i) \) in \(\mathbb{Z}[\sqrt{-6}] \), where 2 and 3 are not associates to \(\pm \sqrt{-6}i \) so \(\mathbb{Z}[\sqrt{-6}] \) is not a UFD.

6a). If \(I \subseteq R \) and \(J \subseteq S \) are ideals in the rings \(R \) and \(S \), then it follow from the subgroup criterion that \(I \cap J \) is an additive subgroup of \(R \times S \). Further, if \((r,s),(r',s) \in I \cap J \) then \((r,s)(r',s) = (rr',ss) \) and \((i,j)(r,s) = (ir,js) \) are both in \(I \cap J \), such that \(I \cap J \) is an ideal of \(R \times S \). If we apply this to the two trivial ideals in \(R \) and \(S \), then we get four ideals \(R \times \{0 \} \), \(\{0 \} \times S \), \(\{0_k \} \times \{0_k \} \) and \(\{0 \} \times \{0 \} \) in \(R \times S \) for any two rings and in particular for fields \(R = K \) and \(S = L \).

b) Let \(I \) be an ideal in \(K \times L \) for two fields \(K \) and \(L \). There are then four cases.

Case 1: There exists \((a,b) \in I \) with \(a \equiv =0 \) and \(b \equiv =0 \). Then \((a',b')(a,b) = (1a,1b) \in I \) such that \(I = K \times L \), as any \((r,s) = (r,s)(1,1) \in I \).

Case 2: \(I \subseteq K \times \{0 \} \), but \(I \not= \{0 \} \times \{0 \} \). We have then that \((a,0) \in I \) for some \(a \equiv =0 \) and hence that \((a',0)(a,0) = (1a,0) \in I \). But then \(I = K \times \{0_k \} \) as any element \((r,0) \in K \times \{0 \} \) lies in \(I \) as \((r,0)(1,0) \in I \).

Case 3: \(I \subseteq \{0_k \} \times L \), but \(I \not= \{0 \} \times L \). Then \((0_k,1a) \in I \) and \(I = \{0_k \} \times L \) by the same arguments as in case 2.

Case 4: \(I = \{0 \} \times \{0 \} \).

There are thus no other ideals in \(K \times L \) than \(K \times L \), \(K \times \{0 \} \), \(\{0_k \} \times L \) and \(\{0_k \} \times \{0 \} \) if \(K \) and \(L \) are fields.