MATHEMATICS

Univ. of Gothenburg and Chalmers University of Technology Examination in algebra : MMG500 and MVE 150, 2019-08-21. No aids are allowed. Telephone 031-772 5325.

1. Let <i>R</i> be the quotient ring $\mathbb{Z}_2[x]/(x^2+1)$. Write down the Cayley tables for addition and multiplication on <i>R</i> . (All cosets should be represented by binary polynomials of minimal degree.)	4p
2. Find the subgroups of $\mathbb{Z}_2 \times \mathbb{Z}_4$. (There are eight.)	4p
3. Let <i>G</i> be the abelian group of all rotations of the unit circle $S^1 = \{(\cos\theta, \sin\theta) \in \mathbb{R}^2 : 0 \le \theta < 2\pi)\}$. Determine the number of elements of order one million in <i>G</i> . (Hint: Prove first that $G \approx \mathbb{R}/2\pi \mathbb{Z}$.)	4p
4. Let $\varepsilon = \cos(2\pi/3) + i \sin(2\pi/3) = (-1 + i\sqrt{3})/2$ and <i>D</i> be the set of all complex numbers of the form $a+b\varepsilon$ with $a,b \in \mathbb{Z}$	
a) Show that <i>D</i> is a subring of C .	2p
b) Show that the integral domain <i>D</i> is Euclidean by means of the function $\delta(a+b\epsilon)= a+b\epsilon ^2=a^2-ab+b^2$	3p
5. Formulate and prove the fundamental homomorphism theorem for groups.	4p

6. Show that the kernel of a ring homomorphism $\theta: R \rightarrow S$ is an 4p ideal of *R* by verifying <u>all</u> conditions for a subset of *R* to be an ideal.

The theorems in Durbin's book may be used to solve exercises 1–4, but all claims that are made must be motivated.

Solutions to examination in algebra : MMG500 /MVE 150, 2019-08-21.

	+	0	1	x	<i>x</i> +1	×	0	1	x	<i>x</i> +1
	0	0	1	x	<i>x</i> +1	0	0	0	0	0
1.	1	1	0	<i>x</i> +1	x	1	0	1	x	<i>x</i> +1
	x	X	<i>x</i> +1	0	1	x	0	x	0	<i>x</i> +1
	<i>x</i> +1	<i>x</i> +1	x	1	0	<i>x</i> +1	0	<i>x</i> +1	<i>x</i> +1	0

where all polynomials p(x) should be interpreted as the coset $p(x)+(x^2+1)$ in $\mathbb{Z}_2[x]/(x^2+1)$

2. There are two trivial subgroups {([0], [0])} and $\mathbb{Z}_2 \times \mathbb{Z}_4$, three cyclic subgroups of order 2 : <([0], [2])>, <([1], [0])>, and <([1], [2])>. one non-cyclic subgroup $\mathbb{Z}_2 \times <([2])>$ of order 4 given by the elements ([0], [0]), ([0], [2]), ([1], [0]) and ([1], [2]). and two cyclic subgroups of order 4 : <([0], [1])> =<([0], [3])> and <([1], [1])> =<([1], [3])>.

3. If we represent the points on the unit circle by complex number $e^{i\varphi}=\cos \varphi+i\sin \varphi$, $\varphi \in \mathbb{R}/2\pi\mathbb{Z}$, then a rotation on S^1 will send $e^{i\varphi}$ to $e^{i(\varphi+\alpha)}$) for some $\alpha \in \mathbb{R}/2\pi\mathbb{Z}$. The composition $e^{i\varphi} \rightarrow e^{i(\varphi+\alpha)} \rightarrow e^{i(\varphi+\alpha+\beta)}$ of two such rotations correspond to the sum $\alpha+\beta$ in $\mathbb{R}/2\pi\mathbb{Z}$ such that *G* is isomorphic to the additive group $A = \mathbb{R}/2\pi\mathbb{Z}$. But any coset $\alpha \in \mathbb{R}/2\pi\mathbb{Z}$ with $n\alpha=0$ in $\mathbb{R}/2\pi\mathbb{Z}$ can be represented by exactly one of the real numbers $\frac{k}{n} 2\pi$ for some $k \in \{0, ..., n-1\}$ and $\frac{k}{n} 2\pi+2\pi\mathbb{Z}$ is of order *n* in $\mathbb{R}/2\pi\mathbb{Z}$ if and only if (k, n)=1. If $n=10^6$, then (k, n)=1 if and only k=1,3,7 or 9 (mod 10). There are thus 4×10^5 elements of order 10^6 in $\mathbb{R}/2\pi\mathbb{Z}$ and in *G*.

4a) Let $a+b\varepsilon$ and $c+d\varepsilon$ be elements to D. Then, $(a+b\varepsilon)+(c+d\varepsilon)=(a+c)+(b+d)\varepsilon \in D$, $(a+b\varepsilon)-(c+d\varepsilon)=(a-c)+(b-d)\varepsilon \in D$ and $(a+b\varepsilon)(c+d\varepsilon)=ac+(ad+bc)\varepsilon+bd\varepsilon^2=ac-bd+(ad+bc-bd)\varepsilon \in D$. Hence R is a subring of **C** by the subring criterion.

4b) There are two conditions for a function $\delta: D \setminus \{0\} \rightarrow \mathbf{N}$ to be Euclidean. To verify these, let *w* and $z=a+b\varepsilon \in D \setminus \{0\}$. Then $\delta(z)\geq 1$ as $\delta(z)=a^2-ab+b^2 \in \mathbf{Z}$ and $\delta(z)=|z|^2>0$. We have therefore that (*i*) $\delta(wz)=|wz|^2=|w|^2|z|^2=\delta(w)\delta(z)\geq\delta(w)$ To prove the second property of Euclidean functions, we use that the fact the elements in *D* divide the complex plane into equilateral triangles with side 1. We may therefore approximate $w/z \in \mathbf{C}$ by an element $q \in D$ with |w/z-q| < 1. For r:=w-qz we have hence that (*ii*) $\delta(r)=|w-qz|^2=|w/z-q|^2|z|^2<|z|^2=\delta(z)$, which implies that *D* is a Euclidean domain.

- 5. See page 114 in Durbin's book.
- 6. See page 179 in Durbin's book.