MATHEMATICS

Univ. of Gothenburg and Chalmers University of Technology
Examination in algebra : MMG500 and MVE 150, 2019-08-21.
No aids are allowed. Telephone 031-772 5325.

1. Let R be the quotient ring Z,[x]/(x*+1). Write down the

Cayley tables for addition and multiplication on R.
(Al cosets should be represented by binary polynomials of minimal degree.)

2. Find the subgroups of Z,xZ,. (There are eight.)

3. Let G be the abelian group of all rotations of the unit circle
S'={(cosh, sin B)eR? : 0<6<2r)}. Determine the number of
elements of order one million in G. (Hint: Prove first that G~ R/21Z.)

4. Let e=cos(2n/3)+i sin(2n/3)=(-1+ i\3)/2 and D be the set of
all complex numbers of the form a+be with a,beZ
a) Show that D is a subring of C.

b) Show that the integral domain D is Euclidean by means of
the function 8(a+be)=|a+be|* = a’~ab+b’

5. Formulate and prove the fundamental homomorphism
theorem for groups.

6. Show that the kernel of a ring homomorphism 6: R—S is an
ideal of R by verifying all conditions for a subset of R to be
an ideal.

The theorems in Durbin’s book may be used to solve exercises 1-4,

but all claims that are made must be motivated.
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Solutions to examination in algebra : MMG500 /MVE 150, 2019-08-21.

+ 0 1 X X+1 X 01 X X+1
0 0 1 X X+1 0 0 0 0 0
L1 1 0 x+1 x 1 01 x x+1
X X x+1 0 1 X 0 x 0 X+1
X+1 Xx+1 X 1 0 Xx+1 0 x+1 x+1 O

where all polynomials p(x) should be interpreted as the coset p(x)+(x*+1)
in Zo[x]/(x*+1)

2. There are two trivial subgroups {([0], [0])} and Z,xZ,,
three cyclic subgroups of order 2 : <([0], [2])>, <([1], [0])>, and <([1], [2])>.
one non-cyclic subgroup Z,x<([2])> of order 4 given by the elements

(01, [OD), ([0, [2]), ([1], [O]) and ([1], [2]).

and two cyclic subgroups of order 4 :

<([0], [1])> =<([0], [3])> and <([1], [1])> =<([1], [3])>.

3. If we represent the points on the unit circle by complex number

e'=cos @+isin ¢ , peR/2nZ, then a rotation on S* will send €' to e'“**)
for some a.eR/2nZ. The composition e'* —e'®**)—e'@***#) of two such
rotations correspond to the sum a+f3 in R/2nZ such that G is isomorphic to
the additive group A= R/2rtZ. But any coset aeR/2nZ with na=0 in R/2nZ

can be represented by exactly one of the real numbers & 2x for some
ke{0,...,n-1} and & 2n+2nZ is of order n in R/2nZ if and only if (k, n)=1.

If n=10°, then (k, n)=1 if and only k=1,3,7 or 9 (mod 10). There are thus 4x10°
elements of order 10°in R/2rZ and in G.

4a) Let a+be and c+de be elements to D. Then,
(atbe)+(c+de)=(a+c)+(b+d)eeD,
(atbe)—(c+de)=(a—c)+(b—d)eD and
(a+be)(c+de)=ac+(ad+bc)s+bde’=ac—bd +(ad+bc—bd)seD.



Hence R is a subring of C by the subring criterion.

4b) There are two conditions for a function 5: D\{0}— N to be Euclidean.
To verify these, let w and z=a+beeD\{0}. Then §(z)>1 as &(z)=a’-ab+b*cZ
and 8(2)=|z|*>0. We have therefore that

(i) S(wz)=|wz[*=|w|z*=8(w)3(2)>5(w)

To prove the second property of Euclidean functions, we use that the fact
the elements in D divide the complex plane into equilateral triangles with
side 1. We may therefore approximate w/zeC by an element qeD with
\w/z—q| <1. For r:=w—gz we have hence that

(if) 3(r)=Iw—0qz’=|w/z—q*|z]*<[z|°=5(2),

which implies that D is a Euclidean domain.

5. See page 114 in Durbin’s book.

6. See page 179 in Durbin’s book.



