MATHEMATICS

University of Gothenburg and Chalmers University of Technology. Examination in algebra : MMG500 and MVE 150, 2019-03-22. No aids are allowed. Telephone 031-772 5325.

1) Let R be an integral domain with four elements 0,1,a and b where 1 is the neutral element for multiplication. Prove the following statements in R.

a) 1+1=0.	2p
b) <i>a</i> +1= <i>b</i> .	1p
c) $a^2 = b$.	2p

2) Let *R* be the set of all rational numbers of the form $m/2^n$ for integers *m* and *n*.

a) Show that <i>R</i> is a subring of Q .	2p
b) Which of the integers 2, 4 and 6 are irreducible in R ?	2p
Which of these three integers are units in <i>R</i> ?	

3a) Determine the number of elements of order 5 in S_5 .	2p
3b) Determine the number of subgroups of order 5 in S_5 .	2p

4) Let *T* be the set of subgroups of order 5 of S₅. If $\sigma \in S_5$, let $\pi_{\sigma}: T \to T$ be the bijective map which sends a subgroup *H* of order 5 to the subgroup $\sigma H \sigma^{-1} := \{\sigma h \sigma^{-1} : h \in H\}$ in *T*.

a) Prove that the map $\pi: S_5 \rightarrow Sym(T)$, which sends $\sigma \in S_5$ to $\pi_{\sigma} \in Sym(T)$	2p
gives an action of S_5 on T .	
b) The above action of S_5 on <i>T</i> is transitive by a theorem of Sylow. Use	2p
this to show that π is injective.	

5a) Show that each group has at most one neutral element.	2p
5b) Show that each element of a group has at most one inverse.	2p

6) Prove that congruence modulo n is an equivalence relation on **Z** 4p for each positive integer n.

You may use the theorems in Durbin's book to solve the first 4 exercises. But all claims should be motivated !

Solutions to algebra exam: MMG500 and MVE 150, 2019-03-23.

1a) On applying a corollary of Lagrange's theorem to the underlying additive group we get that $(1+1)^2=1+1+1=0$. Hence 1+1=0 as we are in an integral domain.

b) The group equation x+1=b has a unique solution x=b-1. But $0+1=1\neq b$, $1+1=0\neq b$ and $b+1\neq b$. Hence $x\notin\{0,1,b\}$, which implies that x=a and a+1=b.

c) A finite integral domain is a field and hence $\{1, a, b\}$ a multiplicative group of prime order. We have thus by a corollary of Lagrange's theorem that $\{1, a, b\} = \{1, a, a^2\}$. So $a^2 = b$.

2a) If *k.l.m.n* $\in \mathbb{Z}$, then $k/2^{l} \pm m/2^{n} = (2^{n-l}k \pm m)/2^{n} = (k \pm 2^{l-n}m)/2^{l} \in \mathbb{R}$ as $2^{n-l}k \pm m \in \mathbb{Z}$ or $k \pm 2^{l-n}m \in \mathbb{Z}$.

Hence *R* is closed under addition and subtraction. . *R* is also closed under multiplication as $(k/2^l)(m/2^n) = km/2^{l+n} \in R$. Hence *R* is a subring of **Q** by the subring criterion.

b) 2 and 4 are units in R with inverses 1/2 resp. 1/4 in R. They are thus not irreducible in R.

6 is not a unit in *R* as $1/6 \notin R$. To decide if 6 is irreducible or nor we use that all elements of *R* are of the form $m/2^n$ with $n \ge 0$. If now $3=(k/2^l)(m/2^n)$ with $l,n\ge 0$, then $2^{l+n}3=kl$ in N. Hence *k* or *l* is then a 2-power and $k/2^l$ or $m/2^n$ a unit. This means that 6 is irreducible in *R*.

3a) An element of order 5 in S_5 can only have one cycle of order 5. It is therefore of the form $(1 \ a \ b \ c \ d)$ with $\{a,b,c,d\} = \{2,3,4,5\}$. There are 4! = 24 orderings of $\{2,3,4,5\}$ and hence 24 elements of order 5 in S_5 .

b) The intersection of two different subgroups of order 5 is of order 1 by Lagrange's theorem.

We have thus a partition of the 24 elements of order 5 into disjoint subsets with 4 elements,

where each such subset consists of the 4 non-neutral elements in a subgroup of order 5. There are thus 6=24/4 such subsets and 6 subgroups of order 5.in S₅.

4a) Let $\sigma, \tau \in S_5$ and *H* be a subgroup of order 5 in S₅. Then,

 $\pi_{\sigma\tau}(H) = (\sigma\tau) H(\sigma\tau)^{-1} = \{(\sigma\tau)h(\sigma\tau)^{-1} : h \in H\} = \{(\sigma\tau)h(\tau^{-1}\sigma^{-1}) : h \in H\},\$ $\pi_{\sigma}(\pi_{\tau}(H)) = \sigma(\tau H\tau^{-1})\sigma^{-1} = \{\sigma(\tau h\tau^{-1})\sigma^{-1} : h \in H\} = \{(\sigma\tau)h(\tau^{-1}\sigma^{-1}) : h \in H\}.$

Hence $\pi_{\sigma\tau} = \pi_{\sigma}\pi_{\tau}$ in Sym(*T*) for all $\sigma, \tau \in S_5$, which means that π is an action of S_5 on *T*.

b) $K=\ker \pi$ is contained in the stabilizer $N(H)=\{\sigma \in S_5 : \sigma H\sigma^{-1}=H\}$ of any $H \in T$. If the normal subgroup K contained a Sylow 5-subgroup of S_5 , then it would contain all such subgroups as they are conjugate in S_5 . It would thus then be of order >24 as it contains all elements of order 5 in S_5 . But this is impossible as K is a subgroup of N(H) for any $H \in T$ and $o(N(H))=o(S_5)/\text{Card }T=20$ as S_5 acts transitively on T. The order of K can therefore not be divisible by 5 as it contains no Syolw-5-subgroup. It is thus by Lagrange's theorem of order 1,2 or 4 as a subgroup of N(H). If o(K)=2 or 4, then there is an element $\sigma \in K$ of order 2. But all conjugates of σ are then also in K as it is normal in S_5 . We have thus then that (12) and all its 9 conjugates are in K or that (12)(34) and all its 14 conjugates are in K. But this is not possible that $o(K) \leq 4$. Hence o(K)=1 and π injective.