MATHEMATICS

Univ. of Gothenburg and Chalmers University of Technology Examination in algebra: MMG500 and MVE 150, 2018-08-22. No books, written notes or any other aids are allowed. Telephone 031-772 5325.

- 1) Let $F = \mathbb{Z}_2 = \{0.1\}$ be the field of binary numbers and GL(2,F) be the multiplicative group of 2×2 -matrices $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ with entries in F and determinant $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \neq 0$.
- a) Determine the order of GL(2,F).

2 ...

b) Determine the normal subgroups of GL(2,F).

3p

2p

- 2) Let S be the set of column vectors $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ with entries in $F = \mathbf{Z}_2$ and
- π : GL(2,F) ×S \rightarrow S be the map which sends $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$) to

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 \\ a_{21}x_1 + a_{22}x_2 \end{pmatrix}$$

a) Explain why π gives a group action of GL(2,F) on S. (You may use standard rules for matrix multiplication without proof.)

2p

b) Determine the orbit and stabiliser of $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \in S$ under this action,

2p

4p

- 3) Let $\varphi: R_1 \to R_2$ be a homomorphism of rings and J an ideal in R_2 . Show that $I = \varphi^{-1}(J)$ is an ideal of R_1 .
- 4) For primes p. let $\mathbf{Q}(\sqrt{p})$ be the set of all real numbers of the form $a+b\sqrt{p}$ for $a,b\in\mathbf{Q}$.
- a) Show that $\mathbf{Q}(\sqrt{p})$ is a subfield of **R**.

2p

b) Show that these fields are not isomorphic for different p.

2p

- 5. Let $*: G \times G \rightarrow G$ be an associative binary operation on a set G.
- a) Show that (G, *) has at most one neutral element.
- b) Show that each element of G has at most one inverse with respect to *.
- 6, Show that a polynomial of degree $n \ge 1$ over a field F 4p has at most n roots in F.

1a) The 2×2-matrices $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ in GL(2, \mathbf{Z}_2) are those where either a_{11} a_{22} =1 and a_{12} a_{21} =0 or where a_{11} a_{22} =0 and a_{12} a_{21} =1. In the first case we get that a_{11} = a_{22} =1 and that a_{12} or a_{21} =0.

In the second case we get that a_{11} or $a_{22}=0$ and that $a_{11}=a_{22}=1$. There are thus 3+3 matrices in

 $GL(2, \mathbf{Z}_2)$, such that $GL(2, \mathbf{Z}_2)$ is a group of order 6.

b) We have two trivial normal subgroups, namely $GL(2, \mathbf{Z}_2)$ itself and the group with the neutral element $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. The other subgroups are of order 2 or 3 by Lagrange's theorem. By

a corollary of the same theorem they are therefore cyclic as they are of prime order. They are thus generated by an element of order 2 o 3. There are exactly three elements of order two

given by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. None of these are in the center of GL(2, \mathbb{Z}_2) as

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \text{ and } \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

Their conjugacy classes must therefore consist of more than one element, which means that none of these three elements can generate a normal subgroup. There are thus no normal

subgroups of order 2. The only subgroup or order 3 is the subgroup H consisting of $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

and the elements $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ of order 3. This is normal as their conjugates must have the same order. There is thus only normal subgroup in GL(2, \mathbf{Z}_2) apart from the trivial ones.

2a) It follows from the associative law for matrix multiplication that

$$\begin{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 for all $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$ in GL(2,F) and all $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ in S.

If we write π_A : $S \rightarrow S$ for the map which sends $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ to $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, then we thus

have that $\pi_{AB} = \pi_{A} \circ \pi_{B}$ such that π is a group action of GL(2, F) on S.

(b) As
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ the column vectors

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ are in the orbit of $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$. These are all elements of the orbit as $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ would imply that $\begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = 0$.

2b) As
$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix}$$
 we see that the stabiliser of $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ consists of the matrices

in GL(2,
$$\mathbb{Z}_2$$
) of the form $\begin{pmatrix} 1 & a_{12} \\ 0 & a_{22} \end{pmatrix}$. But then we get from $\begin{vmatrix} 1 & a_{12} \\ 0 & a_{22} \end{vmatrix} \neq 0$ that $a_{22}=1$. The stabilizer

of
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 will therefore consist of the two binary matrices $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ where $a = 0$ or 1.

3) We first verify that $\varphi^{-1}(J)$ is an additive subgroup of R_1 . Clearly $\varphi^{-1}(J) \neq \emptyset$ as $\varphi(0) = 0 \in J$. We have also if $a,b \in \varphi^{-1}(J)$, that $\varphi(a+b) = \varphi(a) + \varphi(b) \in J$ and $\varphi(-a) = -\varphi(a) \in J$ as J is an additive subgroup of R_2 . Hence $a,b \in \varphi^{-1}(J)$ implies that a+b, $-a \in \varphi^{-1}(J)$ such that $\varphi^{-1}(J)$ is an additive subgroup of R_1 by the subgroup criterion.

To see that $\varphi^{-1}(J)$ is an ideal of R_1 , suppose that $r \in R_1$ and $i \in \varphi^{-1}(J)$. Then $\varphi(r i) = \varphi(r) \varphi(i)$ with $\varphi(i) \in J$. But then as $\varphi(i)$ belong to the ideal J in R_2 , we get that $\varphi(r i) = \varphi(r) \varphi(i) \in J$ and $ri \in \varphi^{-1}(J)$. This shows that $\varphi^{-1}(J)$ is an ideal of R_1 .

4a) As $(a+b\sqrt{p})+(c+d\sqrt{p})=(a+c)+(b+d)\sqrt{p}$, $(a+b\sqrt{p})-(c+d\sqrt{p})=(a-c)+(b-d)\sqrt{p}$, and $(a+b\sqrt{p})(c+d\sqrt{p})=(ac+pbd)+(ad+bc)\sqrt{p}$), we see that $\mathbf{Q}(\sqrt{p})$ is closed under addition subtraction and multiplication. It is therefore a subring of $\mathbf{Q}(\sqrt{p})$ by the subring criterion. We have also the multiplicative inverse $(a-b\sqrt{p})/(a^2-pb^2)$ to any element $a+b\sqrt{p}\neq 0$ in $\mathbf{Q}(\sqrt{p})$. Hence $\mathbf{Q}(\sqrt{p})$ is a subfield of \mathbf{R} .

4b) Suppose we had a ring isomorphism ϕ from $\mathbf{Q}(\sqrt{q})$ to $\mathbf{Q}(\sqrt{p})$ for two different primes primes p and q. We may then find rational number a and b with $\phi(\sqrt{q}) = a + b\sqrt{p}$. But then $q = \phi(q) = (\phi(\sqrt{q})^2 = (a + b\sqrt{p})^2 = (a^2 + b^2p) + 2ab\sqrt{p}$. If now $ab \neq 0$, then we would have that $\sqrt{p} \in \mathbf{Q}$. Otherwise, either a = 0 and $\sqrt{pq} = \pm bp \in \mathbf{Q}$ or b = 0 and $\sqrt{q} = \pm a \in \mathbf{Q}$. We have thus shown that one of \sqrt{p} , \sqrt{pq} or \sqrt{q} must be rational if $\mathbf{Q}(\sqrt{p})$ and $\mathbf{Q}(\sqrt{q})$ are isomorphic as fields. But if $r > \mathbf{I}$ is an square-free integer, then \sqrt{r} cannot be rational as $\sqrt{r} = m/n$ would lead to $rn^2 = m^2$ and that all exponents in the prime factorizations of rn^2 are even. But this is a contradiction. Hence $\mathbf{Q}(\sqrt{p})$ and $\mathbf{Q}(\sqrt{q})$ cannot be isomorphic as fields.