MATHEMATICS

Univ. of Gothenburg and Chalmers University of Technology Examination in algebra : MMG500 and MVE 150, 2018-03-16. No aids are allowed. Telephone 031-772 5325.

1a) Let $\sigma = (123)$ and $\tau = (145)$. Compute the commutator $\sigma \tau \sigma^{-1} \tau^{-1}$ in S_5 .	3р
(The answer should be given in cycle form.)	
b) Show that $\sigma \tau \sigma^{-1} \tau^{-1}$ belongs to the subgroup A_5 of even cycles in S_5 .	1p
2a) Let ϕ be a homomorphism from Z to a finite group <i>G</i> of order <i>n</i> .	3р
Prove that $\langle n \rangle \subseteq \ker \phi$.	
b) Show that ker $\phi = \langle n \rangle$ if and only if ϕ is surjective.	2p
3. Show that the rings $R = \mathbb{Z}[\sqrt{2}] = \{a+b\sqrt{2}: a, b \in \mathbb{Z}\}$ and	4p

$$S = \{ \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} : a, b \in \mathbb{Z} \}$$
 are isomorphic.

4a) Verify that $1/(3+2\sqrt{2}) \in \mathbb{Z}[\sqrt{2}]$.	2p
1	

b) Prove that
$$R = \mathbb{Z}[\sqrt{2}]$$
 has infinitely many units. 2p

6. Prove that any ideal of a polynomial ring $F[x]$ over a field F	4p
is a principal ideal.	

The theorems in Durbin's book may be used to solve exercises 1–4, but all claims that are made must be motivated.

Solutions to examination in algebra: MMG500 and MVE150 2018 -03-16.

1a) If
$$\sigma = (123)$$
 and $\tau = (145)$, then $\sigma^{-1} = (132)$, $\tau^{-1} = (154)$ and
 $\sigma \tau \sigma^{-1} \tau^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 3 & 1 & 4 \\ 5 & 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 & 5 \\ 2 & 4 & 3 & 1 & 5 \end{pmatrix} = (124).$

b) Any 3-cycle (abc) = (ac)(ab). In particular, $\sigma \tau \sigma^{-1} \tau^{-1} = (14)(12)$ is even.

2a) For $nk \in \langle n \rangle$, then $\phi(nk) = \phi(k)^n$ by a counting rule for homomorphisms. We have also by a corollary of Lagrange's theorem that $\phi(k)^n = e$ as $\phi(k)$ belong to a group of order *n*. Hence $\phi(nk) = e$ for all $k \in \mathbb{Z}$, thereby proving the assertion.

2b) For $l,m \in \mathbb{Z}$ with $[l]_n = [m]_n$, then $\phi(l)\phi(m)^{-1} = \phi(l-m) = e$ as $\langle n \rangle \subseteq \ker \phi$. There is thus a well defined map $\theta : \mathbb{Z}_n \to G$, which sends $[m]_n$ to $\phi(m)$. This map is a homomorphism as $\theta([k]_n \oplus [m]_n) = \theta([k+m]_n) = \phi(k+m) = \phi(k)\phi(m) = \theta([k]_n)\theta([m]_n)$. On using that ker $\theta = \ker \phi/\langle n \rangle$, im $\theta = \operatorname{im} \phi$ and $o(\mathbb{Z}_n) = o(G)$, we have thus ker $\phi = \langle n \rangle \Leftrightarrow \ker \theta = \{[0]_n\} \Leftrightarrow \theta$ is one-to one $\Leftrightarrow \theta$ is onto $\Leftrightarrow \phi$ is surjective.

3) Let
$$\theta: R \to S$$
 be the bijective map which sends $a+b\sqrt{2}$ to $\begin{pmatrix} a & 2b \\ b & a \end{pmatrix}$. Then
 $(a+b\sqrt{2})+(c+d\sqrt{2})=(a+c)+(b+d)\sqrt{2}$ is sent to $\begin{pmatrix} a+c & 2(b+d) \\ b+d & a+c \end{pmatrix} = \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} + \begin{pmatrix} c & 2d \\ d & c \end{pmatrix}$
while $(a+b\sqrt{2})(c+d\sqrt{2})=(ac+2bd)+(ad+bc)\sqrt{2}$ is sent to $\begin{pmatrix} ac+2bd & 2(ad+bc) \\ ad+bc & ac+2bd \end{pmatrix} =$
 $= \begin{pmatrix} ac+2bd & 2(ad+bc) \\ bc+ad & 2bd+ac \end{pmatrix} = \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} \begin{pmatrix} c & 2d \\ d & c \end{pmatrix}$. Hence θ is additive and multiplicative,

as was to be proved.

4a) As
$$(3+2\sqrt{2})(3-2\sqrt{2})=3^2-(2\sqrt{2})^2=9-8=1$$
, we get that $1/(3+2\sqrt{2})=3-2\sqrt{2}$.

b) We first note that $(3+2\sqrt{2})^n (3-2\sqrt{2})^n = ((3+2\sqrt{2})(3-2\sqrt{2}))^n = 1^n = 1$. Hence as $3+2\sqrt{2}>1$, we have a strictly increasing sequence $(3+2\sqrt{2})^n$, $n \in \mathbb{N}$ of units in $R = \mathbb{Z}[\sqrt{2}]$.

- 5) See theorem 23.1 in Durbin's book.
- 6) See theorem 40.3 in Durbin's book.