MATHEMATICS

University of Gothenburg and Chalmers University of Technology Examination in algebra: MMG 500 and MVE 150, 2017-06-08. No books, written notes or any other aids are allowed. Telephone. 031-772 35 25

1a) Compute the product π =(1 2)(2 3)(3 4) in S_4 .

4p

5p

- b) Describe the permutations in the cyclic subgroup generated by π . The permutations should be written in cycle form.
- 2 Let g,h be two elements in a finite group. Show that gh and hg have 4p the same order.
- 3. Determine the zero divisors and invertible elements in \mathbb{Z}_{10} .
- 4 Let p be a prime.

 a) Show that the equation $x^p = 1 = 0$ has no other root than 1 in 7.
- a) Show that the equation $x^p 1 = 0$ has no other root than 1 in \mathbb{Z}_p . b) Can the equation $x^p - a = 0$ have more than one root in \mathbb{Z}_p for other elements $a \neq 1$ in \mathbb{Z}_p ?
- 5. Let $*: G \times G \to G$ be an associative binary operation on a set G.
- a) Show that (G, *) has at most one neutral element.
- b) Show that each element of G has at most one inverse with respect to *.
- 6. Show that any finite integral domain is a field. 4p

All claims that are made must be motivated. The exams will be corrected within four weeks.

Brief solutions to examination in algebra 2017-06-08 (MMG 500-MVE 150)

1a).
$$\pi = (12)(2\ 3)(3\ 4) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \\ 1 & 3 & 4 & 2 \\ 2 & 3 & 4 & 1 \end{pmatrix} = (1234)$$

1b) $(1234)^2 = (13)(24)$, $(1234)^3 = (1432)$ and $(1234)^4 = id$.

The group generated by π will thus have $\{id, (1234), (13)(24), (1432)\}$ as underlying set.

- 2 If $k \in \mathbb{N}$, then $h(gh)^k h^{-1} = (hg)^k hh^{-1}$ by the associative law. As $hh^{-1} = e$, we thus get $h(gh)^k h^{-1} = (hg)^k$. In particular, if $(gh)^k = e$, then $(hg)^k = heh^{-1} = e$. Conversely, by symmetry $(hg)^k = e \Rightarrow (gh)^k = e$. The list of exponents of all $k \in \mathbb{N}$ with $(gh)^k = e$ will therefore coincide with the list of all exponents with $(hg)^k = e$. So gh and hg have the same order.
- 3. Let [k] be the congruence class (mod 10) of $k \in \mathbb{Z}$. Then, [2], [4], [5], [6] and [8] are zero divisors in \mathbb{Z}_{10} as [2] [5] = [4][5] = [6][5] = [8][5] = [0], while [1], [3], [7], [9] are invertible as $[1]^2 = [1]$, [3][7] = [1] and $[9]^2 = [1]$. So any element $[k] \neq [0]$ is either a zero divisor or invertible in \mathbb{Z}_{10} .

Further, no element [k] in \mathbb{Z}_{10} can be both a zero divisor and invertible, Indeed, if [j][k]=[0] and [k][l]=[1], then [j]=[j][1]=[j]([k][l])=([j][k])[l]=[0][l]=[0]. There are thus no further zero divisors or invertible elements in \mathbb{Z}_{10} .

4 The elements $\neq 0$ in \mathbb{Z}_p form a multiplicative group with p-1 elements as \mathbb{Z}_p is a field. By a corollary of Lagrange's theorem we have thus that $x^{p-1}=1$ for all $x\neq 0$. in \mathbb{Z}_p . Hence $x^p=x$ for all $x\in \mathbb{Z}_p$. The equation $x^p-a=0$ is thus equivalent to the equation x-a=0. This means that for each $a\in \mathbb{Z}_p$, the equation $x^p-a=0$ has exactly one solution in \mathbb{Z}_p , namely x=a.

- 5. See Durbin's book
- 6. See Durbin's book