MATHEMATICS University of Gothenburg and Chalmers University of Technology Examination in algebra: MMG500 and MVE 150, 2015-03-20. No books, written notes or any other aids are allowed. Telephone: 0703-088304

1. Let G be a group and H be a subgroup.	4p
a) Prove that two left cosets aH and bH of H in G are either disjoint or equal.	
b) Give an example of a left coset aH in some group G , which is not a right coset.	
2. Let p be a prime and G be group of order p^n for some positive integer n . Let $\varphi: G \to S_p$ be a homomorphism to the symmetric group S_p with non-trivial image.	4p
Show that the kernel of φ is order p^{n-1} . (Hint: What is the order of S_p ?)	
	(19 73)
3 Let θ : $\mathbb{Z} \to \mathbb{Z}_m$ be a ring homomorphism. a) Show that if m is a prime, then θ is either surjective or $\theta(k) = [0]$ for all $k \in \mathbb{Z}$.	4p
b) Is this true also for higher prime powers $m = p^r$? (Hint: $\theta(1)^2 = \theta(1)$.)	
4. Let p be a prime and $f(x) \in \mathbb{Z}_p[x]$ be a polynomial of degree $d \ge 1$.	5p
a) How many elements are there in $\mathbb{Z}_p[x]/(f(x))$?	
b) Show that $F = \mathbb{Z}_3[x]/(x^2+1)$ is a field.	
c) Let α be the class of x in F. Find a multiplicative inverse of $\alpha^{2014}+2015$ in F.	
5. Formulate and prove the fundamental homomorphism theorem for groups.	4p
6. Show that any finite integral domain is a field.	4p

All claims that are made must be motivated.

- 1a) If aH and bH have a common element $ah_1 = bh_2$ and $h \in H$, then $ah = b(h_2h_1^{-1})h \in bH$ and $bh = a(h_1h_2^{-1})h \in bH$. Hence $aH \subseteq bH$ and $bH \subseteq aH$ whenever $aH \cap bH \neq \emptyset$.
- 1b) One may e.g. choose $G = S_3$ and $H = \langle (12) \rangle$. Then $Ha \neq aH$ for a = (123). Indeed, (12)(123) = (23) while (123)(12) = (13). So $Ha = \{(123),(23)\}$ while $aH = \{(123),(13)\}$.
- 2. Let K=ker φ and H=im φ . Then $G/K \approx H$ by the fundamental homomorphism theorem. So o(H)o(K)=o(G/K)o(K)=o(G). Further, $o(H)\mid o(S_p)$ by Lagrange's theorem. Hence o(H) divides $GCD(o(G), o(S_p))=(p^n, p!)=p$. But then o(H)=p as $o(H)\neq 1$. So $o(K)=o(G)/o(H)=p^{n-1}$.
- 3a) Let $\theta: \mathbf{Z} \to \mathbf{Z}_p$ be a homomorphism of rings. Then θ is additive and $\theta(\mathbf{Z})$ an additive subgroup of \mathbf{Z}_p . Hence $\theta(\mathbf{Z}) = \mathbf{Z}_p$ or $\theta(\mathbf{Z}) = \{[0]_p\}$ by a corollary of Lagrange's theorem.
- 3b) If $\theta: \mathbb{Z} \to \mathbb{Z}_m$ be a ring homomorphism, then $\theta(1)^2 = \theta(1*1) = \theta(1)$. So if $\theta(1) = [k]_m$ then $m \mid k^2 k = (k-1)k$. If now p is a prime, then $p \mid (k-1)$ and $p \mid k$ cannot both be true. Hence if $m = p^r$, then $p^r \mid (k-1)$ or $p^r \mid k$. That is, $\theta(1) = [1]_m$ or $\theta(1) = [0]_m$. As θ is additive, we have thus that either $\theta(l) = [l]_m$ for all $l \in \mathbb{Z}$ or $\theta(l) = [0]_m$ for all $l \in \mathbb{Z}$.
- 4a) It follows from the division algorithm that any coset has a unique representative of the form $a_{d-1}x^{d-1}+...+a_1x+a_0 \in \mathbb{Z}_p[x]$. There are thus p^d classes in $\mathbb{Z}_p[x]/(f(x))$.
- 4b) It suffices by a theorem in Durbin's book to show that x^2+1 is an irreducible polynomial in $\mathbb{Z}_3[x]$. If x^2+1 were reducible then it would have a linear factor and a zero in \mathbb{Z}_3 . But there is no such zero as the squares in \mathbb{Z}_3 are either [0] or [1]. Hence x^2+1 is irreducible in $\mathbb{Z}_3[x]$
- 4c) As $\alpha^2 + 1 = 0$ in $F = \mathbb{Z}_3[x]/(x^2 + 1)$, we conclude that $\alpha^{2014} = (\alpha^2)^{1007} = (-1)^{1007} = -1$. Also, 2015=2 in $\mathbb{Z}_3 \subset F$. Hence $\alpha^{2014} + 2015 = 1$ in F, The multiplicative inverse is thus 1.
- 5) See Durbin's book
- 6) See Durbin's book.