1. Let G be a group and H be a subgroup.
 a) Prove that two left cosets aH and bH of H in G are either disjoint or equal.
 b) Give an example of a left coset aH in some group G, which is not a right coset.

2. Let p be a prime and G be group of order p^n for some positive integer n. Let
 $\varphi: G \rightarrow S_p$ be a homomorphism to the symmetric group S_p with non-trivial image.
 Show that the kernel of φ is order p^{n-1}. (Hint: What is the order of S_p?)

3. Let $\theta: \mathbb{Z} \rightarrow \mathbb{Z}_m$ be a ring homomorphism.
 a) Show that if m is a prime, then θ is either surjective or $\theta(k) = [0]$ for all $k \in \mathbb{Z}$.
 b) Is this true also for higher prime powers $m = p^r$? (Hint: $\theta(1)^r = \theta(1)^r$.)

4. Let p be a prime and $f(x) \in \mathbb{Z}_p[x]$ be a polynomial of degree $d \geq 1$.
 a) How many elements are there in $\mathbb{Z}_p[x]/(f(x))$?
 b) Show that $F = \mathbb{Z}_p[x]/(x^2 + 1)$ is a field.
 c) Let α be the class of x in F. Find a multiplicative inverse of $\alpha^{2014} + 2015$ in F.

5. Formulate and prove the fundamental homomorphism theorem for groups.

6. Show that any finite integral domain is a field.

All claims that are made must be motivated.
Solutions to examination in algebra: MMG500 / MVE 150 2015-03-20

1a) If \(aH \) and \(bH \) have a common element \(ah_1 = bh_2 \) and \(h \in H \), then \(ah = b(h_2h_1^{-1})h \in bH \) and \(bh = a(h_1h_2^{-1})h \in bH \). Hence \(aH \subseteq bH \) and \(bH \subseteq aH \) whenever \(aH \cap bH \neq \emptyset \).

1b) One may e.g. choose \(G = S_3 \) and \(H = \{(12)\} \). Then \(Ha = aH \) for \(a = (123) \). Indeed, \((12)(123) = (23) \) while \((23)(12) = (13) \). So \(Ha = \{(123),(23)\} \) while \(aH = \{(123),(13)\} \).

2. Let \(K = \ker \varphi \) and \(H = \text{im } \varphi \). Then \(G/K \cong H \) by the fundamental homomorphism theorem. So \(o(H) = o(H) = o(K) = o(G) \). Further, \(o(H) | o(S_p) \) by Lagrange's theorem. Hence \(o(H) \) divides \(\text{GCD}(o(G), o(S_p)) = (p^n, p!) = p \). But then \(o(H) = p \) as \(o(H)
eq 1 \). So \(o(K) = o(G)/o(H) = p^{n-1} \).

3a) Let \(\theta : Z \rightarrow Z_p \) be a homomorphism of rings. Then \(\theta \) is additive and \(\theta (Z) \) an additive subgroup of \(Z_p \). Hence \(\theta (Z) = Z_p \) or \(\theta (Z) = \{0\} \) by a corollary of Lagrange's theorem.

3b) If \(\theta : Z \rightarrow Z_m \) be a ring homomorphism, then \(\theta (1)^2 = \theta (1 \cdot 1) = \theta (1) \). So if \(\theta (1) = [k]_m \), then \(m | k^2 - k = (k-1)k \). If now \(p \) is a prime, then \(p | (k-1) \) and \(p | k \) cannot both be true. Hence if \(m = p^r \), then \(p | (k-1) \) or \(p | k \). That is, \(\theta (1) = [1]_m \) or \(\theta (1) = [0]_m \). As \(\theta \) is additive, we have thus that either \(\theta (l) = [l]_m \) for all \(l \in Z \) or \(\theta (l) = [0]_m \) for all \(l \in Z \).

4a) It follows from the division algorithm that any coset has a unique representative of the form \(a_0 + a_1x^1 + \ldots + a_n x^n \in Z_p[x] \). There are thus \(p^n \) classes in \(Z_p[x]/(f(x)) \).

4b) It suffices by a theorem in Durbin's book to show that \(x^2 + 1 \) is an irreducible polynomial in \(Z_3[x] \). If \(x^2 + 1 \) were reducible then it would have a linear factor and a zero in \(Z_3 \). But there is no such zero as the squares in \(Z_3 \) are either \([0] \) or \([1] \). Hence \(x^2 + 1 \) is irreducible in \(Z_3[x] \).

4c) As \(x^2 + 1 = 0 \) in \(F = Z_3[x]/(x^2 + 1) \), we conclude that \(\alpha^{2014} = (\alpha^2)^{1007} = (-1)^{1007} = -1 \). Also, \(2015 = 2 \) in \(Z_3 \subseteq F \). Hence \(\alpha^{2014 + 2015} = 1 \) in \(F \), the multiplicative inverse is thus \(1 \).

5) See Durbin's book.

6) See Durbin's book.