MATHEMATICS University of Gothenburg and Chalmers University of Technology Examination in algebra: MMG500 and MVE 150, 2014-08-20. No books, written notes or any other aids are allowed. Telephone: 0703-088304

1. A relation \sim on a set S is said to be Euclidean if for all $a,b,c\in S$ with	
a-c and $b-c$ we have that $a-b$.	
a) Show that any equivalence relation ~ is Euclidean.	2p
b) Show that any reflexive and Euclidean relation ~ is an equivalence relati	70
el	
2. Let G be a group and H be a subgroup. Let ~ be the relation on G such that	
$a\sim b$ if and only if $ab^{-1}\in H$. Give a direct proof that \sim is reflexive and Euclide	ean.
(It is not enough to refer to the theorem that ~ is an equivalence relation.)	
3. Let G be a multiplicative group and S its underlying set.	
a) Prove that $G \times G$ acts on S by $\sigma(s) = asb^{-1}$ for $\sigma = (a,b) \in G \times G$ and $s \in S$.	3p
b) Prove that this action of $G \times G$ on S is transitive and determine the stabilizer	2p
of the neutral element $e \in S$ under this action.	
4. Let R be a ring such that $r^3=r$ for all $r \in R$.	
a) Prove that $r+r+r+r+r=0$ for all $r \in R$.	1,5p
b) Prove that $2(xy^2+yxy+y^2x)=0$ for all $x,y \in R$.	1,5p
c) Prove that $2xy = 2yx$ for all $x, y \in R$.	2p
(Hint: To solve c), start with b) and deduce new identities by multiplication from the left and from the right.)	
5-7	
5. Prove that any ideal in Z is a principal ideal.	-I
2. 2 to ve that any racar in 21's a principal ideal .	4p
6. Show that any finite integral domain is a field.	4p
	- <i>p</i>
All claims that are made must be motivated.	

Solutions for examination in algebra: MMG500 and MVE 150, 2014-08-20.

- 1a) Suppose that $a \sim c$ and $b \sim c$ for an equivalence relation \sim . Then $b \sim c \Rightarrow c \sim b$ as \sim is symmetric. So $a \sim c$ and $c \sim b$. Hence by the transitivity of \sim we get that $a \sim b$, which proves that \sim is Euclidean.
- 1b) Suppose that $b \sim a$ and that a = c. Then $b \sim c$. Further, as \sim is reflexive we get $a \sim c$. Finally, as \sim is Euclidean we deduce from $a \sim c$ and $b \sim c$ that $a \sim b$. Hence $b \sim a \Rightarrow a \sim b$, which proves that \sim is symmetric.

To see that \sim is transitive, suppose that $a\sim c$ and $c\sim b$. Then, as \sim is symmetric, we get from $c\sim b$ that $b\sim c$. But then as \sim is Euclidean, we conclude from $a\sim c$ and $b\sim c$, that $a\sim b$, which proves that \sim is transitive.

- 2. $aa^{-1}=e\in H\Rightarrow a\sim a$ for all $a\in G$ such that \sim is reflexive. To prove that \sim is Euclidean, suppose $a\sim c$ and $b\sim c$ for all $a,b,c\in G$. Then $ac^{-1}\in H$, $bc^{-1}\in H$ and $(ac^{-1})(bc^{-1})^{-1}\in H$. But $(bc^{-1})(cb^{-1})=(cb^{-1})(bc^{-1})=e$. Hence $(bc^{-1})^{-1}=(cb^{-1})$ such that $(ac^{-1})(cb^{-1})\in H$. Hence $ab^{-1}\in H$ and $a\sim b$, thereby proving that \sim is Euclidean.
- 3a) Let $\sigma=(a,b)\in G\times G$, $\tau=(c,d)\in G\times G$ and $s\in S$. Then $\sigma\tau=(ac,bd)$ and $\sigma(\tau(s))=\sigma(csd^{-1})=a(csd^{-1})b^{-1}=(ac)s(bd)^{-1}=(\sigma\tau)(s)$
- b) Let $s,t \in S = G$ and $\sigma = (t,s) \in G \times G$. Then $\sigma(s) = tss^{-1} = t$, thereby proving that the action is transitive. Further $\sigma = (g,h) \in G \times G$ is in the stabilizer of e if and only if $\sigma(e) = geh^{-1} = e$, that is if and only if g = h. Hence the stabilizer of e is the diagonal Subgroup $G^{\Delta} \subset G \times G$ of all pairs (g,g), $g \in G$.
- 4a) $r+r+r+r+r=r^3+r^3+r^3+r^3+r^3+r^3=(r+r)^3-(r^3+r^3)=(r+r)^3-(r+r)=0$.
- b) $2(xy^2+yxy+y^2x)=(x+y)^3+(x-y)^3-2x^3=((x+y)^3-(x+y))+((x-y)^3-(x-y))=0.$
- c) $2(xy^2+yxy+y^2x)y = 0 = 2y(xy^2+yxy+y^2x)x \Rightarrow 2(xy^3+yxy^2+y^2xy)=2(yxy^2+y^2xy+yx^3) \Rightarrow 2xy^3 = 2yx^3 \Rightarrow 2xy = 2yx$
- 5. See Durbin's book.
- 6. See Durbin's book.