MATHEMATICS Chalmers University of Technology Examination in algebra MMG 500 and MVE 150, 2013-08-19 No books, written notes or any other aids are allowed. Telephone: 0703-08 83 04

1. Write down a group isomorphism $\phi: \mathbb{Z}_6 \to \mathbb{Z}_2 \times \mathbb{Z}_3$ with all images in the form ($[a]_2$, $[b]_3$) for $0 \le a \le 1$ and $0 \le b \le 2$.	3p
2. Let G be a group and g be an element of order 36 in G. What are the orders of the following elements of $G: g^{-1}, g^{-8}, g^{15}, g^{27}$? Explain your answers.	4p
 3. Let Q be the field of rational numbers and D = {a + b√2 : a, b ∈ Q}. a) Show that D is a subring of the field R of real numbers. b) Prove or disprove that D is a subfield of R. c) Prove that √3 ∉D. 	6р
4. Find a commutative ring R with an injective ring homomorphism $\phi: R \to R$, which is not an isomorphism.	4p
 5. Let *: G × G → G be an associative binary operation on a set G. a) Show that (G, *) has at most one neutral element. b) Show that each element of G has at most one inverse with respect to *. 	4p
6. Show that any finite integral domain is a field.	4p

The theorems in Durbin's book may be used to solve the exercises 1-4, but all claims that are made must be motivated.

Solutions to examination in algebra MMG 500 and MVE 150, 2013-08-19

1. The map $\vartheta : \mathbf{Z}_m \to \mathbf{Z}_n$ where $\vartheta([a]_m) = [a]_n$ is well defined for a factor n of m as $n \mid (a-b)$ if $m \mid (a-b)$. It is a homomorphism as $\vartheta([a]_m + [b]_m) = \vartheta([a+b]_m) = [a+b]_n = [a]_n + [b]_n = \vartheta([a]_m) + \vartheta([b]_m)$. The map $\varphi : \mathbf{Z}_6 \to \mathbf{Z}_2 \times \mathbf{Z}_3$ which sends $[a]_6$ to $([a]_2, [a]_3)$ is thus a homomorphism. It is in fact an

The map $\phi: \mathbf{Z}_6 \to \mathbf{Z}_2 \times \mathbf{Z}_3$ which sends $[a]_6$ to $([a]_2,[a]_3)$ is thus a homomorphism. It is in fact an isomorphism as it is bijective. Indeed, $\phi([0]_6) = ([0]_2,[0]_3)$, $\phi([1]_6) = ([1]_2,[1]_3)$, $\phi([2]_6) = ([0]_2,[2]_3)$, $\phi([3]_6) = ([1]_2,[0]_3)$, $\phi([3]_6) = ([1]_2,[2]_3)$.

2. $(g^{-1})^n = g^{-n} = g^{36-n} \neq e$ if $1 \le n \le 35$, while $(g^{-1})^{36} = g^{-36} = e$. Hence $o(g^{-1}) = 36$.

 $(g^{-8})^n = g^{-8n} = g^{36-8n}$ with $36-8\times 1=28$, $36-8\times 2=20$, $36-8\times 3=12$, $36-8\times 4=4$. Hence $(g^{-8})^n \neq e$ if $1 \le n \le 4$. Also, $(g^{-8})^n = g^{72-8n}$ with $72-8\times 5=32$, $72-8\times 6=24$, $72-8\times 7=16$, $72-8\times 8=8$, $72-8\times 9=0$. So $(g^{-8})^n \neq e$ if $5 \le n \le 8$ and $(g^{-8})^9 = e$, which implies that $o(g^{-8})=9$.

 $o(g^{15})$ is equal to the order of the cyclic group $H=\langle g^{15}\rangle$. But by a theorem we in Durbin's book we have |H|=36/GCD(36,15)=36/3=12. Hence $o(g^{15})=12$.

 $o(g^{27}) = |\langle g^{27} \rangle| = 36/\text{GCD}(36,27) = 36/9 = 4. \text{ Indeed } g^{27} \neq e, (g^{27})^2 = g^{54} = g^{18} \neq e, (g^{27})^3 = g^{81} = g^9 \neq e \text{ and } (g^{27})^4 = g^{108} = (g^{36})^3 = e^3 = e.$

3a) Suppose $a + b\sqrt{2}$ and $(c + d\sqrt{2}) \in D$. Then

$$(a + b\sqrt{2}) + (c + d\sqrt{2}) = (a+c) + (b+d)\sqrt{2} \in D$$
,

$$(a + b\sqrt{2}) - (c + d\sqrt{2}) = (a-c) + (b-d)\sqrt{2} \in D$$

$$(a+b\sqrt{2})(c+d\sqrt{2})=(ac+2bd)+(ad+bc)\sqrt{2}\in D.$$

Hence D is a subring of \mathbf{R} by the subring criterion.

- 3b) Suppose $a + b\sqrt{2} \in D\setminus\{0\}$. Then $1/(a + b\sqrt{2}) = (a b\sqrt{2})/(a + b\sqrt{2}) = (a b\sqrt{2})/(a^2 2b^2) = a/(a^2 2b^2) + (-b/(a^2 2b^2))\sqrt{2} \in D$. The subring D is thus a subfield of \mathbf{R} .
- 3c) Suppose $\sqrt{3}=a+b\sqrt{2}\in D$. Then, $3=(a+b\sqrt{2})^2=a^2+2b^2+2ab\sqrt{2}$ and $\sqrt{2}=(3-a^2-2b^2)/2ab\in \mathbb{Q}$ in case $ab\neq 0$. If instead a=0, then $\sqrt{6}=2b$ and if b=0, then $\sqrt{3}=a$. We have thus shown that if $\sqrt{3}\in D$, then $\sqrt{2}$, $\sqrt{3}$ or $\sqrt{6}$ is rational. But this is impossible. Indeed, if $\sqrt{n}=p/q$ for two relatively prime positive integers p and q, then $nq^2=p^2$ where q can only be 1. So $\sqrt{2}$, $\sqrt{3}$ and $\sqrt{6}$ are irrational and $\sqrt{3}\notin D$.
- 4. There are many such rings. Let R = A[X] be the ring of all polynomials in an indeterminate X with coefficients in a commutative ring A. Then the map $\Phi: R \to R$, which sends $p(X) = a_0 + a_1 X^2 + \ldots + a_n X^n$ to $p(X^2) = a_0 + a_1 X^2 + \ldots + a_n X^n$ is a ring homomorphism. Indeed, if $q(X) = b_0 + b_1 X + \ldots + b_n X^n$ is another element in R, then

 $\Phi(p(X)+q(X))=(a_0+b_0)+(a_1+b_1)X^2+\ldots+(a_n+b_n)X^{2n}=(a_0+a_1X^2+\ldots+a_nX^{2n})+(b_0+b_1X^2+\ldots+b_nX^{2n})=(a_0+b_0)+(a_1+b_1)X^2+\ldots+(a_n+b_n)X^{2n}=(a_0+a_1X^2+\ldots+a_nX^{2n})+(a_0+b_1X^2+\ldots+a_nX^{2n})=(a_0+a_1X^2+\ldots+a_nX^{2n})+(a_0+b_1X^2+\ldots+a_nX^{2n})=(a_0+a_1X^2+\ldots+a_nX^{2n})+(a_0+b_1X^2+\ldots+a_nX^{2n})=(a_0+a_1X^2+\ldots+a_nX^{2n})+(a_0+b_1X^2+\ldots+a_nX^{2n})=(a_0+a_1X^2+\ldots+a_nX^{2n})+(a_0+b_1X^2+\ldots+a_nX^{2n})=(a_0+a_1X^2+\ldots+a_nX^{2n})+(a_0+a_1X^2+\ldots+a_nX^{2n})+(a_0+a_1X^2+\ldots+a_nX^{2n})=(a_0+a_1X^2+\ldots+a_nX^{2n})+(a_0+a_1X^2+\ldots+a_nX^{2n})=(a_0+a_1X^2+\ldots+a_nX^{2n})+(a_0+a_1X^2+\ldots+a_nX^{2n})$

 Φ $(p(X))+\Phi(q(X))$ or simply $\Phi(p(X)+q(X))=(p+q)(X^2)=p(X^2)+q(X^2)=\Phi(p(X))+\Phi(q(X)).$ Similarly, if we let $q(X)=b_0+b_1X+\ldots+b_mX^m$ and pq be the product of p an q in R, then $\Phi(p(X)q(X))=(pq)(X^2)=p(X^2)q(X^2)=\Phi(p(X))\Phi(q(X)).$ Φ is injective as $\ker \Phi=0$. It is also clear that Φ is not surjective as $X \notin \operatorname{Im} \Phi$.

- 5. See Durbin's book p.32 or the lecture notes.
- 6. See Durbin's book p.129 or the lecture notes.