MATHEMATICS Chalmers University of Technology Examination in algebra MMG500 and MVE 150, 2013-06-07 No books, written notes or any other aids are allowed. Telephone: 0703-088304

1a) Let $m \ge 2$ and $n \ge 2$ be integers. Show that a finite group of order mn	3р
has at least three subgroups. b) Prove that an infinite group has infinitely many subgroups.	22
b) Frove that an infinite group has infinitely many subgroups.	2p
2. Let a,b,c be positive integers such that c divides ab .	
a) Show that c divides b if $GCD(a, c)=1$.	3p
b) More generally, show that c divides bd for d =GCD(a , c).	2p
3. Let $\theta: G \rightarrow H$ be a homomorphism of groups and $g \in G$. Show that $o(\theta(g))$ is a factor of $o(g)$.	3p
4. An ideal $P \neq R$ of a commutative ring R is said to be a prime ideal if	3p
for all $a,b \in R$, we have that $ab \in P$ implies that $a \in P$ or $b \in P$. Prove that,	
if n is a positive integer, then $(n):=\{mn:m\in\mathbb{Z}\}$ is a prime ideal of \mathbb{Z}	
if and only if n is a prime.	
5. Let G be a multiplicative group and H be a subset of G. Show that	4p
H is a subgroup of G if and only if the following conditions hold.	
a) H is non-empty	
b) if $a \in H$ and $b \in H$, then $ab \in H$.	
c) if $a \in H$, then $a^{-1} \in H$.	
6. Let θ : $R \rightarrow S$ be a ring homomorphism.	
a) Show that the kernel of θ is an ideal of R .	3р
b) More generally, show that the inverse image $\theta^{-1}(J)$ of an ideal	2p
J of S is an ideal of R .	
(You should here verify all conditions for a subset to be an ideal without referring to any other theorem.)	

The theorems of Durbin's book may be used to solve exercises 1-4, but all claims that are made must be motivated.

Solutions to examination in algebra MMG500 and MVE 150

- 1a) If G is a finite group of order ≥ 2 , then there is an element $g \neq e$ in G, which by the subgroup criterion generates a subgroup $H = \langle g \rangle \neq \{e\}$ of G If |H| < |G|, then H is a subgroup different from
- $\{e\}$ and G. If |H|=|G|, then $G=\langle g\rangle$ is cyclic. By a theorem in Durbin's book, we have then that $H=\langle g^m\rangle$ is a cyclic subgroup of order |G|/m for factors m of |G|. This subgroup is thus different from $\{e\}$ and G if |G|=mn with $m\geq 2$ and $n\geq 2$.
- 1b) Suppose first that G contains an element g of infinite order. There are then infinitely many cyclic subgroups $\langle g^n \rangle$ of G, indexed by $n \in \mathbb{N}$. If instead all elements of G are of finite order, then G will be the union of the finite cyclic subgroups $\langle g \rangle$, $g \in G$. As |G| is infinite, G must thus have infinitely many finite different cyclic subgroups.
- 2a) Let a,b,c be positive integers with GCD(a,c)=1. By Euclid's algorithm we may find integers x,y with ax+cy=1. If c divides ab, then it will also divide b(ax+cy)=b.
- b) If GCD(a, c)=d, then ax+cy=d for some $x,y \in \mathbb{Z}$. Hence $c|ab \Rightarrow c|b(ax+cy)=bd$.
- 3) Let n=o(g). Then $\theta(g)^n = \theta(g^n) = \theta(e) = e$. Hence $m:=o(\theta(g))$ divides n be a theorem in Durbin's book. Indeed, if n=mq+r with $0 \le r < m$, then $e=\theta(g)^n = \theta(g)^m = \theta(g)$
- 4) If (n) is a prime ideal, then $n \ge 2$ as $(n) \ne \mathbb{Z}$. Also, if n = ab for $a, b \in \mathbb{N}$, then $a \in (n)$ or $b \in (n)$. We have thus that $n \mid a$ or $n \mid b$. But if $n \mid a$, then $a \le ab = n \le a$ and if $n \mid b$, then $b \le ab = n \le b$. Hence n = a or n = b for any factorization n = ab, which means that n is prime.

Conversely, if n is a prime, then $n \ge 2$ and $(n) \ne \mathbb{Z}$. If $ab \in (n)$, then $n \mid ab$. By Euclid's lemma we have thus for a prime n that $n \mid a$ or $n \mid b$. Hence $a \in (n)$ or $b \in (n)$, which means that (n) is a prime ideal.

- 5) See Durbin's book
- 6a) See Durbin's book.
- b) Let $\Theta: R \to S/J$ be the ring homomorphism which sends $r \in R$ to $\theta(r) + J \in S/J$. Then $\theta^{-1}(J)$ is the kernel of Θ and hence an ideal of R by a).