MATHEMATICS Chalmers University of Technology Examination in algebra MMG500 and MVE 150, 2013-06-07 No books, written notes or any other aids are allowed. Telephone: 0703-088304 | 1a) Let $m \ge 2$ and $n \ge 2$ be integers. Show that a finite group of order mn | 3р | |---|----| | has at least three subgroups. b) Prove that an infinite group has infinitely many subgroups. | 22 | | b) Frove that an infinite group has infinitely many subgroups. | 2p | | 2. Let a,b,c be positive integers such that c divides ab . | | | a) Show that c divides b if $GCD(a, c)=1$. | 3p | | b) More generally, show that c divides bd for d =GCD(a , c). | 2p | | 3. Let $\theta: G \rightarrow H$ be a homomorphism of groups and $g \in G$. Show that $o(\theta(g))$ is a factor of $o(g)$. | 3p | | 4. An ideal $P \neq R$ of a commutative ring R is said to be a prime ideal if | 3p | | for all $a,b \in R$, we have that $ab \in P$ implies that $a \in P$ or $b \in P$. Prove that, | | | if n is a positive integer, then $(n):=\{mn:m\in\mathbb{Z}\}$ is a prime ideal of \mathbb{Z} | | | if and only if n is a prime. | | | 5. Let G be a multiplicative group and H be a subset of G. Show that | 4p | | H is a subgroup of G if and only if the following conditions hold. | | | a) H is non-empty | | | b) if $a \in H$ and $b \in H$, then $ab \in H$. | | | c) if $a \in H$, then $a^{-1} \in H$. | | | 6. Let θ : $R \rightarrow S$ be a ring homomorphism. | | | a) Show that the kernel of θ is an ideal of R . | 3р | | b) More generally, show that the inverse image $\theta^{-1}(J)$ of an ideal | 2p | | J of S is an ideal of R . | | | (You should here verify all conditions for a subset to be an ideal without referring to any other theorem.) | | The theorems of Durbin's book may be used to solve exercises 1-4, but all claims that are made must be motivated. ## Solutions to examination in algebra MMG500 and MVE 150 - 1a) If G is a finite group of order ≥ 2 , then there is an element $g \neq e$ in G, which by the subgroup criterion generates a subgroup $H = \langle g \rangle \neq \{e\}$ of G If |H| < |G|, then H is a subgroup different from - $\{e\}$ and G. If |H|=|G|, then $G=\langle g\rangle$ is cyclic. By a theorem in Durbin's book, we have then that $H=\langle g^m\rangle$ is a cyclic subgroup of order |G|/m for factors m of |G|. This subgroup is thus different from $\{e\}$ and G if |G|=mn with $m\geq 2$ and $n\geq 2$. - 1b) Suppose first that G contains an element g of infinite order. There are then infinitely many cyclic subgroups $\langle g^n \rangle$ of G, indexed by $n \in \mathbb{N}$. If instead all elements of G are of finite order, then G will be the union of the finite cyclic subgroups $\langle g \rangle$, $g \in G$. As |G| is infinite, G must thus have infinitely many finite different cyclic subgroups. - 2a) Let a,b,c be positive integers with GCD(a,c)=1. By Euclid's algorithm we may find integers x,y with ax+cy=1. If c divides ab, then it will also divide b(ax+cy)=b. - b) If GCD(a, c)=d, then ax+cy=d for some $x,y \in \mathbb{Z}$. Hence $c|ab \Rightarrow c|b(ax+cy)=bd$. - 3) Let n=o(g). Then $\theta(g)^n = \theta(g^n) = \theta(e) = e$. Hence $m:=o(\theta(g))$ divides n be a theorem in Durbin's book. Indeed, if n=mq+r with $0 \le r < m$, then $e=\theta(g)^n = \theta(g)^m \theta(g)$ - 4) If (n) is a prime ideal, then $n \ge 2$ as $(n) \ne \mathbb{Z}$. Also, if n = ab for $a, b \in \mathbb{N}$, then $a \in (n)$ or $b \in (n)$. We have thus that $n \mid a$ or $n \mid b$. But if $n \mid a$, then $a \le ab = n \le a$ and if $n \mid b$, then $b \le ab = n \le b$. Hence n = a or n = b for any factorization n = ab, which means that n is prime. Conversely, if n is a prime, then $n \ge 2$ and $(n) \ne \mathbb{Z}$. If $ab \in (n)$, then $n \mid ab$. By Euclid's lemma we have thus for a prime n that $n \mid a$ or $n \mid b$. Hence $a \in (n)$ or $b \in (n)$, which means that (n) is a prime ideal. - 5) See Durbin's book - 6a) See Durbin's book. - b) Let $\Theta: R \to S/J$ be the ring homomorphism which sends $r \in R$ to $\theta(r) + J \in S/J$. Then $\theta^{-1}(J)$ is the kernel of Θ and hence an ideal of R by a).