MATHEMATICS Chalmers University of Technology Examination in algebra MMG 500 and MVE 150, 2013-03-15 No books, written notes or any other aids are allowed. Telephone: 0762-721860 or 0762-721861

0703-088304

1a) Determine the units of \mathbb{Z}_8 and \mathbb{Z}_{12} and write down Cayley tables for the multiplicative groups $U(\mathbb{Z}_8)$ and $U(\mathbb{Z}_{12})$ of these units. (The congruence classes should be represented by the smallest positive integers in the tables.)

3р

b) Decide if $U(\mathbf{Z}_8)$ and $U(\mathbf{Z}_{12})$ are isomorphic or not.

2p

2. Prove or disprove that every abelian group of order 2013 is cyclic. (Hint: $2013 = 11 \times 183$.)

3p

3. Prove that 5+12i is reducible in the ring $\mathbb{Z}[i]$ of Gaussian integers. (Hint: Use the norm map from $\mathbb{Z}[i]$ to \mathbb{Z} to find a factorisation.)

4p

4a) Prove that $f(x)=(x^2+x+1)^2+x+1$ is irreducible in $\mathbb{Z}_2[x]$

2p

b) Let K be the quotient ring $\mathbb{Z}_2[x]/I$ of the principal ideal I=(f(x)) in $\mathbb{Z}_2[x]$. Explain why the set of non-zero elements in K form a multiplicative group G and determine the order of this group.

2p

c) Determine the order of the element $(x^2+x+1)(x+1)+I$ in G.

2p

5. Let G be a group and $a \in G$ be an element such $a^r = a^s$ for two different integers r and s. Show the following statements.

4p

- a) There is a smallest positive integer with $a^n = e$.
- b) If t is an integer, then a' = e if and only if n is a divisor of t.
- c) The elements $e=a^0$, a, a^2 , ..., a^{n-1} are distinct and represent all elements in the cyclic subgroup generated by a.
- 6. Let K be a field. Prove that any ideal of K[x] is a principal ideal.

3p

The theorems in Durbin's book may be used to solve the exercises 1-4, but all claims that are made must be motivated. The exam will be corrected within three weeks.

Solutions to the examination in algebra MMG 500 and MVE 150, 2013-03-15

1a) The units in \mathbb{Z}_n are given by $[k]_n$ for positive integers $k \le n$ relatively prime to n. If we write k instead of $[k]_n$, then the Cayley tables for \mathbb{Z}_8 resp. \mathbb{Z}_{12} are given by

1	3	5	7	×	1	5	7	11
1	3	5	7	1	1	5	7	11
3	1	7	5	5	5	1	11	7
5	7	1	3	7	7	11	1	5
7	5	3	1	11	11	7	5	1
	1 3 5	1 3 3 1 5 7	1 3 5 3 1 7 5 7 1	1 3 5 7 1 3 5 7 3 1 7 5 5 7 1 3 7 5 3 1	1 3 5 7 1 3 1 7 5 5 5 7 1 3 7	1 3 5 7 3 1 7 5 5 5 7 1 3	1 3 5 7 3 1 7 5 5 1 5 7 1 1 5 7 7 11	1 3 5 7 3 1 7 5 5 1 11 5 7 1 1 1 5 7 7 11 1

b) $U(\mathbf{Z}_8)$ and $U(\mathbf{Z}_{12})$ are both abelian of order 4 with all elements $\neq 1$ of order two. They are therefore both isomorphic to the *additive* group $\mathbf{Z}_2 \times \mathbf{Z}_2$ by the fundamental theorem for finite abelian groups and hence isomorphic to each other.

2. $2013 = 3 \times 11 \times 61$ where 3, 11 and 61 are primes. Any abelian group A of order 2013 is thence isomorphic to $\mathbb{Z}_3 \times \mathbb{Z}_{11} \times \mathbb{Z}_{61}$ by the fundamental fundamental theorem for finite abelian groups. In particular, we have that $\mathbb{Z}_{2013} \cong \mathbb{Z}_3 \times \mathbb{Z}_{11} \times \mathbb{Z}_{61}$ and by transitivity that $A \cong \mathbb{Z}_{2013}$. Every abelian group of order 2013 is thus cyclic.

3. Let a+bi be a Gaussian integer, which divides 5+12i. Then by the multiplicativity of the norm $N(a+bi)=a^2+b^2$, we get that a^2+b^2 divides $5^2+12^2=13^2$. Hence $a^2+b^2=1,13$ or 13^2 , where $a^2+b^2=1$ and 13^2 lead to factorizations of 5+12i where one of the factors is a unit. We are thus led to study factors a+bi with $a^2+b^2=13$. But then $(a,b)=(\pm 2,\pm 3)$ or $(\pm 3,\pm 2)$ and is now easy to verify that $(2-3i)(-2+3i)=(3+2i)^2=(-3-2i)^2=5+12i$.

4a) There was a misprint in the exam. We assume here that $f(x)=(x^2+x+1)^2+(x+1)x$. Then, f(x) has no linear factor in $\mathbb{Z}_2[x]$ by the factor theorem as f(0)=f(1)=1. If f(x) were reducible in $\mathbb{Z}_2[x]$, it would thus have a monic quadratic irreducible factor. But x^2 , $x^2+x=(x+1)x$ and $x^2+1=(x+1)^2$ are all reducible in $\mathbb{Z}_2[x]$. If f(x) were reducible, it would thus have x^2+x+1 a factor. But this is not the case as $f(x)=(x^2+x+1)^2+(x^2+x+1)+1$. So f(x) must be irreducible.

b) By a theorem in Durbin's book we have that $K=\mathbb{Z}_2[x]/(f(x))$ is a field as f(x) is irreducible. The set G of non-zero elements in the field K form thus a multiplicative group. By the division algorithm for $\mathbb{Z}_2[x]$ any element in $K=\mathbb{Z}_2[x]/(f(x))$ is uniquely represented by a polynomial $a_0+a_1x+a_2x^2+a_3x^3\in\mathbb{Z}_2[x]$. There are thus 2^4 elements in K such that G is of order $2^4-1=15$.

c) Let $g=(x^2+x+1)(x+1)+I$, a=(x+1)+I and b=x+I. Then $g^2=(x^2+x+1)^2(x+1)^2+I=a^3b$ since $(x^2+x+1)^2+I=(x+1)x+I$. Moreover, $a^5\neq e$, $a^3\neq e$, $b^5\neq e$ and $b^3\neq e$ as $(x+1)^5-1=x(x^4+x^3+1)$,

 $(x+1)^3$ -1, x^5 -1=(x-1)(x^4 + x^3 + x^2 +x+1) and x^3 -1 are not divisible by f(x) in $\mathbb{Z}_2[x]$. Hence, o(a)= o(b)= 15 as the order of an element in G divide |G|=15. There is therefore some k with GCD(k, 15)=1 such that b= a^k and $e \neq g^2 = a^{k+3}$. But then $o(g) = o(g^2) = o(a)/$ GCD(k+3, 15)= 3 or 15. Finally, $o(g) \neq 3$ since $g^3 = g^2g = a^3b$ g=(x+1) $^4x(x^2+x+1)$ -1 is not divisible by f(x) in $\mathbb{Z}_2[x]$. Hence o(g)=15.

- 5. See Durbin's book
- 6. See Durbin's book