MATHEMATICS University of Gothenburg and Chalmers University of Technology Examination in algebra (MMG 500 and MVE 150), 2012-08-25 8:30 -12-30 No books, written notes or any other aids are allowed.

Telephone: 0703-088304

1) Solve the equation (1234) x=(4321) in S_4 .

3p

2a) Determine all zero divisors in Z_{11} and Z_{12} .

4p

- 2b) Determine all invertible elements in \mathbf{Z}_{11} and \mathbf{Z}_{12} .
- 3) There are nine monic polynomials of degree 2 with coefficients in \mathbb{Z}_3 . Determine for each of these if the polynomial is irreducible or not.

4p

4) An isomorphism of a group onto itself is called an automorphism.

6р

- a) Prove that the set Aut(G) of all automorphisms of a group G is itself a group with respect to composition.
- b) If $g \in G$, let $\pi_g(a) = gag^{-1}$ for each $a \in G$. Verify that the map $\pi_g: G \to G$ belongs to Aut(G).
- c) Show that the map $\pi: G \to Aut(G)$ which sends g to π_g is a homomorphism.
- 4p

For $Na \in G/N$ and $Nb \in G/N$, let (Na)(Nb)=N(ab). Show that this gives a well defined binary operation on G/N which satisfies all group axioms.

5) Let N be a normal subgroup of G and G/N denote the set of all right cosets of N in G.

6a) Prove that the kernel of a ring homomorphism $\theta: R \to S$ is an ideal of R.

4p

b) Show that θ is injective if and only if Ker $\theta = \{0\}$.

All claims that are made must be motivated. The exam will be corrected within two weeks.

Solutions Algebra MMG 500/MVE 150 August 2012

- 1) (1234) $x = (4321) \Leftrightarrow x = (1234)^{-1}(1432) \Leftrightarrow x = (1432)(1432) \Leftrightarrow x = (13)(24)$
- 2) \mathbf{Z}_{11} is a field as 11 is a prime. There are thus no zero divisors and all non-zero elements are invertible.

The classes of 2,3,4,6,8,9 and 10 are zero divisors in \mathbb{Z}_{12} as 2×6, 3×4, 6×10 and 8×9 are all divisible by 12. The classes of 1,5,7,11 are invertible in \mathbb{Z}_{12} as the squares of 1,5,7,11 are all = 1(mod 12). These lists are complete as no element a in a commutative ring A can be both invertible and a zero divisor. Indeed, if ab=1 and ac=0, then c=abc=acb=0. (Also, 0 is never invertible and never a zero divisor by definition.)

3) A monic polynomial p of degree 2 over a field is irreducible if and only if it is not a product of two monic linear polynomials over that field. If we write 0,1,2 also for their classes in \mathbb{Z}_3 , then

$$x^{2}$$
, $x^{2}+x=x(x+1)$, $x^{2}+2x=x(x+2)$, $x^{2}+2x+1=(x+1)^{2}$, $x^{2}+2=(x+1)(x+2)$, $x^{2}+x+1=(x+2)^{2}$

is a complete list of all products of two linear monic polynomials over \mathbb{Z}_3 . These are thus the reducible monic quadratic polynomials over \mathbb{Z}_3 . The other three monic quadratic polynomials over \mathbb{Z}_3 : x^2+1 , x^2+x+2 , x^2+2x+2 are therefore irreducible.

- 4a) Aut (G) is a subset of the group Sym(G) of all permutations of G. One may thus use the criterion to check that if Aut(G) is a subgroup of Sym(G). But Aut(G) is non-empty as it contains the identity map $id: G \rightarrow G$. Moreover, as the composition of two automorphisms is an automorphism just like the inverse of an automorphism, we conclude that Aut(G) is a subgroup of Sym(G).
- 4b) $\pi_g: G \to G$ is bijective with inverse π_{g-1} as $\pi_{g-1}(\pi_g(a)) = g^{-1}(gag^{-1})g = a$. It is also a homomorphism as $\pi_g(ab) = g(ab)g^{-1} = (gag^{-1})(gbg^{-1}) = \pi_g(a) \pi_g(b)$. Hence $\pi_g \in \text{Aut } G$.
- 4c) $\pi_{gh}(a) = gh(a)(gh)^{-1} = g(hah^{-1})g^{-1} = \pi_g(hah^{-1}) = \pi_g(\pi_h(a))$ for all $a \in G$. Hence $\pi_{gh} = \pi_g \pi_h$ for all $g, h \in G$, as was to be proved.
- 5) See Durbin's book and the lecture notes.
- 6) See Durbin's book and the lecture notes.