
Foundations of Probability Theory
(MVE140 – MSA150)

Saturday 15th of January 2022 examination questions

You are allowed to use a dictionary (to and from English) and
up to a maximum of one double-sided page of your own hand-
written notes. This examination has five problems with a max-
imum of 20 credit points for a fully satisfactory solution, so the
maximal total is 100 credit points. To pass the course, you need
to score at least 40 points (with any bonus you have) (50 if you
are a PhD student).

Examination Questions

1. Let A is the system of semi-open segments {[0, n), n ∈ Z+} in R.

i) Is A a σ-field?

ii) Describe the σ-field F generated by A.

iii) Which functions from R to R are F -measurable?

iv) Establish that the set of measurable functions has the power of
RN (which is continuum).

Solution.

i) No. For instance, [0, 1)c = (−∞, 0) ∪ [1,∞) 6∈ A.

ii) Together with ∅ and R, F contains (−∞, 0) and intervals [n, n+ 1) for
n ∈ Z+, their unions and complements, in particular, [m,n), 0 ≤ m <
n, and unbounded sets of the form [n,∞).

iii) Only functions of the type f(x) = f0 1I(−∞,0)(x) +
∑∞

n=1 fn 1I[n,n+1)(x)
for some constants f0, f1, . . . . In particular, they are right continuous.
The bijection f ↔ (f0, f1, . . . ) establish equivalence of these functions
to RN.

2. Let X1, X2, X3 . . . be independent Bernoulli trials with success proba-
bility p and Sk = X1 + . . .+Xk. Let m < n.
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i) Find the conditional probability mass function of (X1, . . . , Xn)
given that Sn = k. That is, find

P{X1 = a1, . . . , Xn = an Sn = k}

for all vectors (a1, . . . , an) of zeros and ones. Identify the distri-
bution by name and given an intuitive explanation of the answer.

ii) Find the conditional probability mass function fSm|Sn(l, k) of Sm
given Sn = k.

Solution.

i) When Sn = k, exactly k of Xi’s 1 ≤ i ≤ n are success (1’s). Therefore,

P{X1 = a1, . . . , Xn = an, Sn = k}
= P{X1 = a1, . . . , Xn = an} = pk(1− p)k (1)

for all (a1, . . . , an) such that
∑n

i=1 ai = k and 0 otherwise. Since sum
Sn is Binomially Bin(n, p) distributed,

P{X1 = a1, . . . , Xn = an Sn = k} =
pk(1− p)k(
n
k

)
pk(1− p)k

=
1(
n
k

)
for all (a1, . . . , an) such that

∑n
i=1 ai = k and 0 otherwise. Since

there are exactly
(
n
k

)
of these, the distribution is uniform over such

(a1, . . . , an) :
∑n

i=1 ai = k. The result is expected because of the
symmetry of the probability (1) under permutations of ai’s.

ii) When Sm = l and Sn = k, the sum S ′ = Xm+1 + . . .+Xn is k − l. We
have that S ′ ∼ Bin(n−m, p) and it is independent of Sm, implying

fSm|Sn(l, k) =
P{Sm = l}P{S ′ = k − l}

P{Sn = k}

=

(
m
l

)
pl(1− p)m−l

(
n−m
k−l

)
pk−l(1− p)n−m−k+l(

n
k

)
pk(1− p)n−k

=

(
m
l

) (
n−m
k−l

)(
n
k

) , l = 0, . . . , k.
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3. Variable η has density fη(y) = 3y2 1I0<y<1. For y ∈ (0, 1), given η = y,
variable ξ has conditional density fξ|η(x|y) = 2x/y2 1I0<x<y.

i) Find the joint density fξ,η(x, y) of (ξ, η). Be precise about where
it is non-zero and check that it integrates to 1.

ii) Find the conditional density fη|ξ(y|x), identify the conditional dis-
tribution by name.

iii) Find E[η ξ] and verify that EE[η ξ] = E η.

Solution. i) The joint density is positive in the triangle S bounded by 0 <
y < 1 and 0 < x < y having vertices (0, 0), (0, 1) and (1, 1):

fξ,η(x, y) = fξ|η(x|y)fη(y) = 6x 1IS(x, y)

ii) The marginal density of ξ is

fξ(x) =

∫
6x 1IS(x, y) dy = 6x(1− x), x ∈ (0, 1).

Hence

fη|ξ(y|x) =
6x 1IS(x, y)

6x(1− x)
=

1Ix<y<1

1− x
, x ∈ (0, 1),

i.e. η given ξ = x is uniformly distributed on [x, 1]. iii) The condi-
tional expectation is the middle point for the uniform distribution on [ξ, 1]:
E[η ξ] = (1 + ξ)/2, its expectation is

EE[η ξ] =

2∫
0

(1+x)/2 6x(1−x) dx = 3

1∫
0

(x−x3) dx = 3/4 =

1∫
0

y·3y2 dy = E η.

4. Given variables ξ1, ξ2 with finite second moment, show that

var(ξ1 + ξ2) = var ξ1 + var ξ2 + 2 cov(ξ1, ξ2).

Assume that ξ1, ξ2, . . . is a sequence of random variables with E ξk = µ
and var ξk = σ2. They are not independent but there is a constant c
such that for every i,

∑
k 6=i cov(ξi, ξk) < c. Using the Chebyshov in-

equality, prove that the sequence satisfies the Law of Large Numbers:
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Sn/n→ µ in probability.
Solution. Variance of the sum is elementary by expanding the square in
E[(ξ1 − µ) + (ξ2 − µ)]2. Thus in general, for Sn =

∑n
i=1 ξi, one has

varSn = var ξi +
∑
i 6=k

cov(ξi, ξk).

We need to show that

P{|Sn/n− µ| > ε} = P{|Sn − nµ| > nε}

converges to 0. By Chebyshov’s inequality, the last expression is at most

(nε)−2 varSn = (nε)−2
[
nσ2 +

n∑
i=1

∑
k 6=i

cov(ξi, ξk)
]
≤ nσ2 + nc

n2ε2
→ 0.

5. Gamma distribution Γ(n, λ) is the distribution of a sum of n indepen-
dent exponentially Exp(λ) distributed random variables. Find

(a) its characteristic function;

(b) its mean and its variance;

(c) For a > 0 find the weak limit of the sequence {ζn = ξn −
√
n/a},

where ξn are random variables distributed as Γ(n, a
√
n).

Solution. For ξ1 ∼ Exp(λ) the ch.f. is ϕ1(t) = λ/(λ− it), with mean 1/λ and

variance 1/λ2 (e.g., by differentiating the ch.f. at t = 0: E ξk = ikϕ
(k)
1 (0)).

Hence for Gamma-distributed ξ, ϕξ(t) = λn/(λ− it)n, E ξ = −iϕ′ξ(0) = n/λ,
var ξ = n/λ2 as the sum of n independent exponentially distributed r.v.’s.
Now, either use CLT for this sum: its mean is

√
n/a and variance is 1/a2,

so aζn ⇒ N (0, 1) implying ζn ⇒ N (0, a−2). Or show directly that ϕζn(t) =
e−it

√
n/aannn/2/(a

√
n− it)n → e−t

2/(2a2) for all t ∈ R.
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