Foundations of Probability Theory (MVE140 - MSA150)

Friday 9th of April 2021 resit examination questions

This examination has five problems with a maximum of 20 credit points for a fully satisfactory solution, so the maximal total is 100 credit points. To pass the course, you need to score at least 40 points (50 if you are a PhD student). You should keep a zoom session with a camera on showing you working for the whole duration of the exam. A recording will be made which will be deleted soon after the results are released. A member of staff is available for consultation on zoom around 3pm and 5pm.

Examination Questions

1. Let $[X, \mathcal{X}]$ be a measurable space and let $A \subset X, A \in \mathcal{X}$ be a fixed measurable set. Define the system of subsets $\mathcal{X}_{A}=\{A \cap B: B \in \mathcal{X}\}$.
a) Show that \mathcal{X}_{A} is a σ-field.
b) Which of $[X, \mathcal{X}]$-measurable functions $X \mapsto \mathbb{R}$ are also $\left[X, \mathcal{X}_{A}\right]$ measurable?
2. An organiser of a TV show suggests a participant to choose between two urns and draw one ball from it. If the participant draws a white ball he or she wins a prise, but if the ball is black, the participant quits the show. There are altogether 4 balls: 2 white and 2 black. How the organiser should in advance distribute the balls over the two urns (not all four in the same urn) so that to minimise the chance of a participant to win?
3. Let $S_{n}=\sum_{i=1}^{n} \xi_{i}$ for independent identically distributed non-negative random variables ξ_{1}, ξ_{2}, \ldots. Show that for every $c>0$ there is an $\alpha=\alpha(c)>0$ such that $\mathbf{P}\left\{S_{n} \leq c\right\} \leq \exp \{-n \alpha\}$.
4. The joint density of the vector (ξ, η) is given by $f(x, y)=a(x+2 y)$ in the square $[0,1]^{2}$ and 0 outside of it. Find the constant a and:
a. The joint c.d.f.;
b. The marginal p.d.f. of ξ and η;
c. The probability that $\eta<\xi^{2}$;
d. Conditional distribution of ξ given $\eta=1 / 2$ and the conditional expectation $\mathbf{E}[\xi \mid \eta]$.
5. Let ξ_{n} be Geometrically distributed with parameters p_{n} random variables (i.e. $\mathbf{P}\left\{\xi_{n}=k\right\}=p_{n}\left(1-p_{n}\right)^{k-1}, k=1,2, \ldots$), where $\lim _{n \rightarrow \infty} p_{n}=$ 0 . Show that the sequence $\left\{p_{n} \xi_{n}\right\}$ converges weakly to an exponentially distributed random variable ξ with parameter 1 (i.e. $\mathbf{P}\{\xi \leq x\}=$ $\left.1-e^{-x}, x \geq 0\right)$.
