Foundations of Probability Theory (MVE140 – MSA150)

Friday 9th of April 2021 resit examination questions

This examination has five problems with a maximum of 20 credit points for a fully satisfactory solution, so the maximal total is 100 credit points. To pass the course, you need to score at least 40 points (50 if you are a PhD student). You should keep a zoom session with a camera on showing you working for the whole duration of the exam. A recording will be made which will be deleted soon after the results are released. A member of staff is available for consultation on zoom around 3pm and 5pm.

Examination Questions

- 1. Let $[X, \mathcal{X}]$ be a measurable space and let $A \subset X$, $A \in \mathcal{X}$ be a fixed measurable set. Define the system of subsets $\mathcal{X}_A = \{A \cap B : B \in \mathcal{X}\}.$
 - a) Show that \mathcal{X}_A is a σ -field.
 - b) Which of $[X, \mathcal{X}]$ -measurable functions $X \mapsto \mathbb{R}$ are also $[X, \mathcal{X}_A]$ -measurable?
- 2. An organiser of a TV show suggests a participant to choose between two urns and draw one ball from it. If the participant draws a white ball he or she wins a prise, but if the ball is black, the participant quits the show. There are altogether 4 balls: 2 white and 2 black. How the organiser should in advance distribute the balls over the two urns (not all four in the same urn) so that to minimise the chance of a participant to win?
- 3. Let $S_n = \sum_{i=1}^n \xi_i$ for independent identically distributed non-negative random variables ξ_1, ξ_2, \ldots Show that for every c > 0 there is an $\alpha = \alpha(c) > 0$ such that $\mathbf{P}\{S_n \le c\} \le \exp\{-n\alpha\}$.
- 4. The joint density of the vector (ξ, η) is given by f(x, y) = a(x + 2y) in the square $[0, 1]^2$ and 0 outside of it. Find the constant a and:
 - a. The joint c.d.f.;

- b. The marginal p.d.f. of ξ and η ;
- c. The probability that $\eta < \xi^2$;
- d. Conditional distribution of ξ given $\eta = 1/2$ and the conditional expectation $\mathbf{E}[\xi \mid \eta]$.
- 5. Let ξ_n be Geometrically distributed with parameters p_n random variables (i.e. $\mathbf{P}\{\xi_n = k\} = p_n(1-p_n)^{k-1}, k = 1, 2, ...$), where $\lim_{n \to \infty} p_n = 0$. Show that the sequence $\{p_n\xi_n\}$ converges weakly to an exponentially distributed random variable ξ with parameter 1 (i.e. $\mathbf{P}\{\xi \leq x\} = 1 e^{-x}, x \geq 0$).