Foundations of Probability Theory (MVE140 - MSA150)

Saturday 16th of January 2021 examination questions

This examination has five problems with a maximum of 20 credit points for a fully satisfactory solution, so the maximal total is 100 credit points. To pass the course, you need to score at least 40 points (50 if you are a PhD student). You should keep a zoom session with a camera on showing you working for the whole duration of the exam. A recording will be made which will be deleted soon after the results are released.

Examination Questions

1. An urn contains N balls numbered from 1 to N. A ball is drawn at random from the urn, its number is recorded. Let X be the maximal number after n draws. Find the distribution of X when
a) the drawn ball is returned back to the urn after its number is recorded;
b) the drawn ball is removed from the subsequent draws. In this case, it is assumed that $n \leq N$.

Solution.

a) Note that $X \leq k, k=1, \ldots, N$ when each time only the balls with numbers 1 to k were drown, so the probability of this is $(k / N)^{n}$. Then

$$
\mathbf{P}\{X=k\}=\mathbf{P}\{X \leq k\}-\mathbf{P}\{X \leq k-1\}=\frac{k^{n}-(k-1)^{n}}{N^{n}}, k=1, \ldots, N .
$$

b) For $X=k, n \leq k \leq N$ the ball numbered k must be drawn and the other $n-1$ balls must be within the numbers 1 to $k-1$. There are $\binom{k-1}{n-1}$ such choices. Overall, there are $\binom{N}{n}$ variants, all equiprobable, thus

$$
\mathbf{P}\{X=k\}=\frac{\binom{k-1}{n-1}}{\binom{N}{n}}, \quad n \leq k \leq N
$$

2. Let ξ_{i}, ξ_{2} be two independent Binomially distributed random variables with parameters $\left(n_{1}, p\right)$ and $\left(n_{2}, p\right)$ respectively (p is the same for both). Find
a) the conditional distribution of ξ_{1} given their sum $S=\xi_{1}+\xi_{2}=$ $m, 0 \leq m \leq n_{1}+n_{2} ;$
b) the conditional expectation $\mathbf{E}\left[\xi_{1} \mid S\right]$ (you might wish to consider the indicators χ_{i} of the success in the i-th trial).

Solution.

a) Since $S \sim \operatorname{Bin}\left(n_{1}+n_{2}, p\right)$ then, using independence, for $0 \leq k \leq m$,

$$
\begin{aligned}
\mathbf{P}\left\{\xi_{1}=\right. & k \mid S=m\}=\frac{\mathbf{P}\left\{\xi_{1}=k, \xi_{2}=m-k\right\}}{\mathbf{P}\{S=m\}} \\
& =\frac{\binom{n_{1}}{k} p^{k}(1-p)^{n_{1}-k}\binom{n_{2}}{m-k} p^{m-k}(1-p)^{n_{2}-m+k}}{\binom{n_{1}+n_{2}}{m} p^{m}(1-p)^{n_{1}+n_{2}-m}}=\frac{\binom{n_{1}}{k}\binom{n_{2}}{m-k}}{\binom{n_{1}+n_{2}}{m}}
\end{aligned}
$$

which is independent of p.
b) Let $\chi_{i}, i=1, \ldots, n_{1}+n_{2}$, be the indicators of the success in he i-th trial. Then

$$
\mathbf{P}\left\{\chi_{i}=1 \mid S=m\right\}=\frac{\binom{n_{1}+n_{2}}{m-1}}{\binom{n_{1}+n_{2}}{m}}=\frac{m}{n_{1}+n_{2}} .
$$

For this, you either repeat the above reasoning or, since χ_{i} 's are identically conditionally distributed, just use the previous distribution with $k=1, n_{1}=1$ and $n_{2}=n_{1}+n_{2}-1$. Thus $\mathbf{E}\left[\chi_{i} \mid S=m\right]=m /\left(n_{1}+n_{2}\right)$, i.e. $\mathbf{E}\left[\chi_{i} \mid S\right]=S /\left(n_{1}+n_{2}\right)$, implying

$$
\mathbf{E}\left[\xi_{1} \mid S\right]=\sum_{i=1}^{n_{1}} \mathbf{E}\left[\chi_{i} \mid S\right]=\frac{S n_{1}}{n_{1}+n_{2}}
$$

3. Let ξ_{1}, ξ_{2}, \ldots is a sequence of random variables defined on the same probability space $(\Omega, \mathcal{F}, \mathbf{P})$. Show that the set $C=\left\{\omega \in \Omega: \xi_{n}(\omega)\right.$ converges $\}$ is an \mathcal{F}-measurable set. Show that there exists a random variable ξ (i.e. an \mathcal{F}-measurable mapping from Ω to \mathbb{R}) such that $\xi(\omega)=\lim _{n \rightarrow \infty} \xi_{n}(\omega)$ for all $\omega \in C$.
Solution. By the Cauchy criterion, a sequence of numbers $\xi_{n}(\omega)$ converges if for all $k \in \mathbb{N}$ there is an n such that for all $m_{1}, m_{2} \geq n$ one has $\mid \xi_{m_{1}}(\omega)-$ $\xi_{m_{2}}(\omega) \mid<1 / k$. Thus

$$
C=\bigcap_{k \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} \bigcap_{m_{1} \geq n} \bigcap_{m_{2} \geq n}\left\{\omega:\left|\xi_{m_{1}}(\omega)-\xi_{m_{2}}(\omega)\right|<1 / k\right\} .
$$

The difference of measurable functions is a measurable function, therefore $\left\{\omega:\left|\xi_{m_{1}}(\omega)-\xi_{m_{2}}(\omega)\right|<1 / k\right\} \in \mathcal{F}$ and hence $C \in \mathcal{F}$ as a countable union and intersections of measurable sets.
Next, for all $\omega \in C$ then there exist a number $\xi(\omega)$ also generally depending on ω, such that $\xi(\omega)=\lim _{n \rightarrow \infty} \xi_{n}(\omega)$. Set, for instance, $\xi(\omega)=0$ for $\omega \in$ $\Omega \backslash C$. Then, for $x<0$,

$$
\begin{aligned}
& \xi^{-1}((-\infty, x])=\{\omega: \xi(\omega) \leqx\} \\
&=C \bigcap\{\xi \leq x\} \\
&=C \bigcap \cap_{k} \cup_{n} \cap_{m \geq n}\left\{\xi_{m} \mathbb{I}_{C} \leq x+1 / k\right\} \in \mathcal{F}
\end{aligned}
$$

because ξ_{m} are measurable functions for all m. Similarly, for $x \geq 0$,

$$
\{\omega: \xi(\omega) \leq x\}=C \cap\{\xi \leq x\} \cup C^{\mathbf{c}} \in \mathcal{F} .
$$

Since $(-\infty, x]$ are generating sets for the Borel σ-field, then $\xi^{-1}(B) \in \mathcal{F}$ for all Borel B, i.e. ξ is a random variable.
4. Let ξ and η be independent random variables each having Exponential $\operatorname{Exp}(\lambda)$ distribution. Denote $\zeta=\xi+\eta$. Find the joint density of the pair (ξ, ζ) and deduce that the conditional density of ξ given $\zeta=t$ corresponds to the uniform distribution on $(0, t)$. In other words, knowing $\xi+\eta$ bears no information on the value of ξ ! Find $\mathbf{E}[\xi \mid \zeta]$ and the expectation of it.

Solution. The density of ξ (and also of η) is $f_{\xi}(x)=\lambda e^{-\lambda x}=f_{\eta}(x), x \geq 0$. The conditional density of $\xi+\eta$ given $\xi=x$ corresponds to the density of $x+\eta$ so it is $f_{\xi+\eta \mid \xi}(t \mid x)=\lambda e^{-\lambda(t-x)}$ for $t \geq x$ and 0 otherwise. Thus the joint density is

$$
f_{\xi, \xi+\eta}(x, t)=f_{\xi+\eta \mid \xi}(t \mid x) f_{\xi}(x)=\lambda^{2} e^{-\lambda t} \mathbb{I}\{0 \leq x \leq t\} .
$$

Therefore,

$$
\begin{aligned}
f_{\xi \mid \xi+\eta}(x \mid t)=f_{\xi, \xi+\eta} & (x, t) / f_{\xi+\eta}(t) \\
& =f_{\xi, \xi+\eta}(x, t)\left[\int_{0}^{t} f_{\xi, \xi+\eta}(x, t) d x\right]^{-1} \\
= & \lambda^{2} e^{-\lambda t}\left[t \lambda^{2} e^{-\lambda t}\right]^{-1} \mathbb{I}\{0 \leq x \leq t\}=t^{-1} \mathbb{I}\{0 \leq x \leq t\} .
\end{aligned}
$$

The density (a function of x !) is a constant t^{-1} on the interval $[0, t]$, i.e. the distribution is uniform. Its mean is $t / 2$ so that $\mathbf{E}[\xi \mid \zeta]=\zeta / 2$. By the Full expectation formlula, $\mathbf{E} \mathbf{E}[\xi \mid \zeta]=\mathbf{E} \xi=1 / \lambda$. It is also clear from $\mathbf{E} \zeta / 2=(\mathbf{E} \xi+\mathbf{E} \eta) / 2=1 / \lambda$.
5. Let $\left\{\xi_{n}\right\}$ be a sequence of random variables with the following distribution symmetrical with respect to a point a : ξ_{n} takes values $-n^{\alpha}+a$ and $n^{\alpha}+a$ for some α with equal probabilities. Characterise the sequences of normalising constants $\left\{c_{n}\right\}$ for which the sequence $c_{n} \xi_{n}$ has a weak limit. When does this limit is non-trivial (i.e. it is not a constant)? Solution. The characteristic function: $\varphi_{\xi_{n}}(t)=e^{i a t}\left(0.5 e^{-i t n^{\alpha}}+0.5 e^{i t n^{\alpha}}\right)=$ $e^{i a t} \cos \left(t n^{\alpha}\right)$. Thus $\varphi_{c_{n} \xi_{n}}(t)=e^{i a c_{n} t} \cos \left(t c_{n} n^{\alpha}\right)$ which has a limit as $n \rightarrow \infty$ iff both terms have a limit, i.e. when $c_{n} n^{\alpha} \rightarrow C_{1}<\infty$ and $c_{n} \rightarrow C_{2}<\infty$. Thus, either $\alpha<0$ and $0 \leq C_{2}<\infty$ or $\alpha=0$ and $C_{2}=0$ or $\alpha>0$ and $C_{2}=0$, then $\varphi_{c_{n} \xi_{n}}(t) \rightarrow e^{i a C_{2} t}$, i.e. the limit is trivial corresponding to the constant $a C_{2}$. Alternatively, either $\alpha=0$ and $0<C_{2}<\infty$, then $\varphi_{c_{n} \xi_{n}}(t) \rightarrow$ $e^{i a C_{2} t}\left(0.5 e^{-i t}+0.5 e^{i t}\right)$, i.e. the limit is a random variable taking values $a C_{2}-1$ and $a C_{2}+1$ with equal probabilities. Or $\alpha>0$ and $0<C_{1}<\infty$, in which case $\varphi_{c_{n} \xi_{n}}(t) \rightarrow\left(0.5 e^{-i t C_{1}}+0.5 e^{i t C_{1}}\right)$, i.e. the limit is a symmetric random variable taking values $-C_{1}$ and C_{1} with equal probabilities.

