Foundations of Probability Theory (MVE140 – MSA150)

Saturday 16th of January 2021 examination questions

This examination has five problems with a maximum of 20 credit points for a fully satisfactory solution, so the maximal total is 100 credit points. To pass the course, you need to score at least 40 points (50 if you are a PhD student). You should keep a zoom session with a camera on showing you working for the whole duration of the exam. A recording will be made which will be deleted soon after the results are released.

Examination Questions

- 1. An urn contains N balls numbered from 1 to N. A ball is drawn at random from the urn, its number is recorded. Let X be the maximal number after n draws. Find the distribution of X when
 - a) the drawn ball is returned back to the urn after its number is recorded;
 - b) the drawn ball is removed from the subsequent draws. In this case, it is assumed that $n \leq N$.

Solution.

a) Note that $X \leq k, k = 1, ..., N$ when each time only the balls with numbers 1 to k were drown, so the probability of this is $(k/N)^n$. Then

$$\mathbf{P}\{X=k\} = \mathbf{P}\{X \le k\} - \mathbf{P}\{X \le k-1\} = \frac{k^n - (k-1)^n}{N^n}, \ k = 1, \dots, N.$$

b) For $X = k, n \le k \le N$ the ball numbered k must be drawn and the other n-1 balls must be within the numbers 1 to k-1. There are $\binom{k-1}{n-1}$ such choices. Overall, there are $\binom{N}{n}$ variants, all equiprobable, thus

$$\mathbf{P}\{X=k\} = \frac{\binom{k-1}{n-1}}{\binom{N}{n}}, \quad n \le k \le N.$$

- 2. Let ξ_i, ξ_2 be two independent Binomially distributed random variables with parameters (n_1, p) and (n_2, p) respectively (p is the same for both). Find
 - a) the conditional distribution of ξ_1 given their sum $S = \xi_1 + \xi_2 = m$, $0 \le m \le n_1 + n_2$;
 - b) the conditional expectation $\mathbf{E}[\xi_1|S]$ (you might wish to consider the indicators χ_i of the success in the *i*-th trial).

Solution.

a) Since $S \sim \text{Bin}(n_1 + n_2, p)$ then, using independence, for $0 \le k \le m$,

$$\mathbf{P}\{\xi_1 = k \mid S = m\} = \frac{\mathbf{P}\{\xi_1 = k, \xi_2 = m - k\}}{\mathbf{P}\{S = m\}}$$
$$= \frac{\binom{n_1}{k} p^k (1-p)^{n_1-k} \binom{n_2}{m-k} p^{m-k} (1-p)^{n_2-m+k}}{\binom{n_1+n_2}{m}} = \frac{\binom{n_1}{k} \binom{n_2}{m-k}}{\binom{n_1+n_2}{m}}$$

which is independent of p.

b) Let χ_i , $i = 1, ..., n_1 + n_2$, be the indicators of the success in he *i*-th trial. Then

$$\mathbf{P}\{\chi_i = 1 \mid S = m\} = \frac{\binom{n_1 + n_2}{m-1}}{\binom{n_1 + n_2}{m}} = \frac{m}{n_1 + n_2}.$$

For this, you either repeat the above reasoning or, since χ_i 's are identically conditionally distributed, just use the previous distribution with k = 1, $n_1 = 1$ and $n_2 = n_1 + n_2 - 1$. Thus $\mathbf{E}[\chi_i \mid S = m] = m/(n_1 + n_2)$, i.e. $\mathbf{E}[\chi_i \mid S] = S/(n_1 + n_2)$, implying

$$\mathbf{E}[\xi_1 \mid S] = \sum_{i=1}^{n_1} \mathbf{E}[\chi_i \mid S] = \frac{Sn_1}{n_1 + n_2}$$

3. Let ξ_1, ξ_2, \ldots is a sequence of random variables defined on the same probability space $(\Omega, \mathcal{F}, \mathbf{P})$. Show that the set $C = \{\omega \in \Omega : \xi_n(\omega) \text{ converges}\}$ is an \mathcal{F} -measurable set. Show that there exists a random variable ξ (i.e. an \mathcal{F} -measurable mapping from Ω to \mathbb{R}) such that $\xi(\omega) = \lim_{n \to \infty} \xi_n(\omega)$ for all $\omega \in C$. Solution. By the Cauchy criterion, a sequence of numbers $\xi_n(\omega)$ converges if for all $k \in \mathbb{N}$ there is an n such that for all $m_1, m_2 \ge n$ one has $|\xi_{m_1}(\omega) -$

 $|\xi_{m_2}(\omega)| < 1/k$. Thus

$$C = \bigcap_{k \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} \bigcap_{m_1 \ge n} \bigcap_{m_2 \ge n} \{ \omega : |\xi_{m_1}(\omega) - \xi_{m_2}(\omega)| < 1/k \}$$

The difference of measurable functions is a measurable function, therefore $\{\omega : |\xi_{m_1}(\omega) - \xi_{m_2}(\omega)| < 1/k\} \in \mathcal{F}$ and hence $C \in \mathcal{F}$ as a countable union and intersections of measurable sets.

Next, for all $\omega \in C$ then there exist a number $\xi(\omega)$ also generally depending on ω , such that $\xi(\omega) = \lim_{n \to \infty} \xi_n(\omega)$. Set, for instance, $\xi(\omega) = 0$ for $\omega \in \Omega \setminus C$. Then, for x < 0,

$$\xi^{-1}((-\infty, x]) = \{ \omega : \xi(\omega) \le x \} = C \bigcap \{ \xi \le x \}$$
$$= C \bigcap \cap_k \cup_n \cap_{m \ge n} \{ \xi_m \, \mathrm{I}_C \le x + 1/k \} \in \mathcal{F}$$

because ξ_m are measurable functions for all m. Similarly, for $x \ge 0$,

$$\{\omega: \xi(\omega) \le x\} = C \cap \{\xi \le x\} \cup C^{\mathbf{c}} \in \mathcal{F}.$$

Since $(-\infty, x]$ are generating sets for the Borel σ -field, then $\xi^{-1}(B) \in \mathcal{F}$ for all Borel B, i.e. ξ is a random variable.

4. Let ξ and η be independent random variables each having Exponential $\operatorname{Exp}(\lambda)$ distribution. Denote $\zeta = \xi + \eta$. Find the joint density of the pair (ξ, ζ) and deduce that the conditional density of ξ given $\zeta = t$ corresponds to the uniform distribution on (0, t). In other words, knowing $\xi + \eta$ bears no information on the value of ξ ! Find $\mathbf{E}[\xi \mid \zeta]$ and the expectation of it.

Solution. The density of ξ (and also of η) is $f_{\xi}(x) = \lambda e^{-\lambda x} = f_{\eta}(x), x \ge 0$. The conditional density of $\xi + \eta$ given $\xi = x$ corresponds to the density of $x + \eta$ so it is $f_{\xi+\eta|\xi}(t|x) = \lambda e^{-\lambda(t-x)}$ for $t \ge x$ and 0 otherwise. Thus the joint density is

$$f_{\xi,\xi+\eta}(x,t) = f_{\xi+\eta|\xi}(t|x)f_{\xi}(x) = \lambda^2 e^{-\lambda t} \, \mathrm{I\!I}\{0 \le x \le t\}.$$

Therefore,

$$f_{\xi|\xi+\eta}(x|t) = f_{\xi,\xi+\eta}(x,t)/f_{\xi+\eta}(t)$$

= $f_{\xi,\xi+\eta}(x,t) \left[\int_{0}^{t} f_{\xi,\xi+\eta}(x,t) \, dx \right]^{-1}$
= $\lambda^{2} e^{-\lambda t} \left[t \lambda^{2} e^{-\lambda t} \right]^{-1} \mathrm{I\!I} \{ 0 \le x \le t \} = t^{-1} \mathrm{I\!I} \{ 0 \le x \le t \}.$

The density (a function of x!) is a constant t^{-1} on the interval [0, t], i.e. the distribution is uniform. Its mean is t/2 so that $\mathbf{E}[\xi \mid \zeta] = \zeta/2$. By the Full expectation formlula, $\mathbf{E} \mathbf{E}[\xi \mid \zeta] = \mathbf{E} \xi = 1/\lambda$. It is also clear from $\mathbf{E} \zeta/2 = (\mathbf{E} \xi + \mathbf{E} \eta)/2 = 1/\lambda$.

5. Let {ξ_n} be a sequence of random variables with the following distribution symmetrical with respect to a point a: ξ_n takes values -n^α + a and n^α + a for some α with equal probabilities. Characterise the sequences of normalising constants {c_n} for which the sequence c_nξ_n has a weak limit. When does this limit is non-trivial (i.e. it is not a constant)? Solution. The characteristic function: φ_{ξ_n}(t) = e^{iat}(0.5e^{-itn^α} + 0.5e^{itn^α}) = e^{iat} cos(tn^α). Thus φ_{c_nξ_n}(t) = e^{iac_nt} cos(tc_nn^α) which has a limit as n → ∞ iff both terms have a limit, i.e. when c_nn^α → C₁ < ∞ and c_n → C₂ < ∞. Thus, either α < 0 and 0 ≤ C₂ < ∞ or α = 0 and C₂ = 0 or α > 0 and C₂ = 0, then φ_{cnξ_n}(t) → e^{iaC₂t}, i.e. the limit is trivial corresponding to the constant aC₂. Alternatively, either α = 0 and 0 < C₂ < ∞, then φ_{cnξ_n}(t) → e^{iaC₂t}, i.e. the limit is a random variable taking values aC₂-1 and aC₂ + 1 with equal probabilities. Or α > 0 and 0 < C₁ < ∞, in which case φ_{cnξ_n}(t) → (0.5e^{-itC₁} + 0.5e^{itC₁}), i.e. the limit is a symmetric random variable taking values -C₁ and C₁ with equal probabilities.