Foundations of Probability Theory (MVE140 - MSA150)

Wednesday 16th of January 2019 examination questions
You are allowed to use a dictionary (to and from English) and up to a maximum of one double-sided page of your own handwritten notes. This examination has five problems with a maximum of 20 credit points for a fully satisfactory solution, so the maximal total is 100 credit points. To pass the course, you need to score at least 40 points (50 if you are a PhD student). A member of staff is available at the examination site around 10:30am and noon.

Examination Questions

1. Let \mathcal{F} be the system of segments $\left\{\left[0,2^{-n}\right), n \in \mathbb{N}\right\}$ in \mathbb{R}.
(a) Is \mathcal{F} a σ-field?
(b) Describe the σ-filed $\sigma(\mathcal{F})$ it generates.
(c) Which functions from \mathbb{R} to \mathbb{R} are $\sigma(\mathcal{F})$-measurable?

Solution.

(a) No, because, e.g., $[0,1 / 4) \cup[0,1 / 2]^{\mathrm{c}}$ is not of the type $\left[0,2^{-n}\right)$.
(b) $\sigma(\mathcal{F})$ consists of $(-\infty, 0),[1 / 2,+\infty)$, the semi-intervals of the type [$2^{-m-1}, 2^{-n}$) and their countable unions.
(c) Measurable functions are the ones which are constants on the sets from $\sigma(\mathcal{F})$ above (in particular, they are right-continuous).
2. We toss a coin which shows a Head with probability p until two consecutive Heads or Tails appear. What is the probability that an even number of tosses will be required?

Solution. If $H H$ appear at the tosses number $2 k-1$ and $2 k$, then the previous tosses must be alternating Head-Tail ending with Tail at toss number $2 k-2$. The probability of this is $p^{2}(p(1-p))^{k-1}$. Similarly, the probability of TailTail first observed at tosses $2 k-1$ and $2 k:(1-p)^{2}(p(1-p))^{k-1}$. Altogether,

$$
\left(p^{2}+(1-p)^{2}\right) \sum_{k=1}^{\infty}(p(1-p))^{k-1}=\frac{p^{2}+(1-p)^{2}}{1-p(1-p)}
$$

3. The joint density of the random vector (ξ, η) is given by the density $f_{(\xi, \eta)}(x, y)=y e^{-y(x+1)}, x, y>0$. Find
(a) the marginal distributions of ξ and η;
(b) the expectation and variance of ξ and η;
(c) The conditional c.d.f. $F_{\xi \mid \eta}(x \mid y)$;
(d) The conditional expectation $\mathbf{E}[\xi \mid \eta]$ and its distribution.

Solution.

(a) By integration, $f_{\xi}(x)=\int y e^{-y(x+1)} d y=1 /(1+x)^{2}$. Similarly, $f_{\eta}(y)=$ e^{-y} which is $\operatorname{Exp}(1)$-distribution.
(b) $\mathbf{E} \xi=\int_{0}^{\infty} x /(1+x)^{2} d x=+\infty=\operatorname{var} \xi, \mathbf{E} \eta=1=\operatorname{var} \eta$.
(c) $f_{\xi \mid \eta}(x \mid y)=\frac{y e^{-y(x+1)}}{e^{-y}}=y e^{-y x}$, hence $F_{\xi \mid \eta}(x \mid y)=1-e^{-y x}$, i.e. $\operatorname{Exp}(y)-$ distribution. Thus the mean is:
(d) $\zeta=\mathbf{E}[\xi \mid \eta]=1 / \eta$. Its p.d.f. is then $F_{\zeta}(z)=\mathbf{P}\{1 / \eta \leq z\}=\mathbf{P}\{\eta>$ $1 / z\}=e^{-1 / z} \mathbb{I}\{z>0\}$.
4. Show that if a sequence of random variables ξ_{n} on the same probability space converges to ξ in distribution (weakly) and a sequence of random variables η_{n} on the same space converges to a constant c in probability, then $\eta_{n} \xi_{n} \rightarrow c \xi$ in distribution.

Solution. For any $\varepsilon>0$ and a real x,

$$
\begin{aligned}
F_{n}(x) \stackrel{\text { def }}{=} \mathbf{P}\left\{\eta_{n} \xi_{n} \leq x\right\}=\mathbf{P}\left\{\eta_{n} \xi_{n} \leq\right. & \left.x ;\left|\eta_{n}-c\right| \leq \varepsilon\right\}+\mathbf{P}\left\{\eta_{n} \xi_{n} \leq x ;\left|\eta_{n}-c\right|>\varepsilon\right\} \\
& \leq \mathbf{P}\left\{\xi_{n} \leq \frac{x}{c-\varepsilon}\right\}+\mathbf{P}\left\{\left|\eta_{n}-c\right|>\varepsilon\right\} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \mathbf{P}\left\{\eta_{n} \xi_{n} \leq x\right\} \geq \mathbf{P}\left\{\eta_{n} \xi_{n} \leq x ;\left|\eta_{n}-c\right| \leq \varepsilon\right\} \\
\geq & \mathbf{P}\left\{(c+\varepsilon) \xi_{n} \leq x ;\left|\eta_{n}-c\right| \leq \varepsilon\right\}=\mathbf{P}\left\{\xi_{n} \leq \frac{x}{c+\varepsilon}\right\}-\mathbf{P}\left\{\xi_{n} \leq \frac{x}{c+\varepsilon} ;\left|\eta_{n}-c\right|>\varepsilon\right\}
\end{aligned}
$$

Since $\mathbf{P}\left\{\left|\eta_{n}-c\right|>\varepsilon\right\} \rightarrow 0$, we get

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left\{\xi_{n} \leq \frac{x}{c+\varepsilon}\right\} \leq \liminf F_{n}(x) \leq \lim \sup F_{n}(x) \leq \lim _{n \rightarrow \infty} \mathbf{P}\left\{\xi_{n} \leq \frac{x}{c-\varepsilon}\right\}
$$

If F_{ξ} is continuous at x / c, i.e. $F_{c \xi}$ is continuous at x, it is also continuous in its sufficiently small neighbourhood, thus, using that $\xi_{n} \rightarrow \xi$ in distribution, we have that for all small enough ε,

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left\{\xi_{n} \leq \frac{x}{c \pm \varepsilon}\right\}=\mathbf{P}\left\{\xi \leq \frac{x}{c \pm \varepsilon}\right\} .
$$

Now take the limit $\varepsilon \downarrow 0$ and get $F_{n}(x) \rightarrow F_{\xi}(x / c)=F_{c \xi}(x)$, that is required.
5. Let $\xi_{i}, i=1,2, \ldots$ be non-negative independent identically distributed random variables with the mean m and variance σ^{2}. Find the weak limit of $\sqrt{\sum_{i=1}^{n} \xi_{i}}-\sqrt{n m}$.
Hint: Use the Central Limit theorem and the fact formulated in the previous question (even if you have not proved it).

Solution. Let $S_{n}=\sum_{i=1}^{n} \xi_{i}$. Then

$$
\sqrt{S_{n}}-\sqrt{n m}=\frac{S_{n}-n m}{\sqrt{S_{n}}+\sqrt{m n}}=\frac{S_{n}-n m}{\sqrt{n} \sigma} \frac{\sigma}{\sqrt{S_{n} / n}+\sqrt{m}} .
$$

By the CLT, the first fraction weakly converges to the standard Normal law $\mathcal{N}(0,1)$. The second, by the Law of Large Numbers converges in probability to $\sigma /(2 \sqrt{m})$. Thus, by the previous question, the weak limiting distribution is Normal $\mathcal{N}\left(0, \sigma^{2} /(4 m)\right)$.

