Foundations of Probability Theory (MVE140 - MSA150)

Friday 6th of April 2018 examination questions
You are allowed to use a dictionary (to and from English) and up to a maximum of 2 double-sided pages of your own written notes. This examination has five problems with a maximum of 20 credit points for a fully satisfactory solution, so the maximal total is 100 credit points. To pass the course, you need to score at least 40 points.

Examination Questions

1. m men and w women seat themselves at random in $m+w$ seats around an oval table. Find the probability that all the women (and hence all the men) will be adjacent.
2. Two points p and q are chosen randomly and uniformly from $[0,1]$. What is probability that both roots of the equation $x^{2}+p x+q=0$ are
a. real;
b. positive.
3. Proportion p in a large population suffers from a disease, a person can be identified as a carrier by the presence of a particular pathogen in the blood. To identify the carriers, the following two-stage procedure is applied. The blood of k people is mixed and the mixture is then analysed for presence of the pathogen. If the result is negative, it means that all k people are free from the disease. Contrarily, if the test is positive, the blood of each of the k people is then tested. So it then takes $k+1$ tests to identify all infected people.
a. Find the expectation of the required number of tests.
b. Knowing p, for which value of k the minimum of the expectation is attained?
4. Random variables ξ_{1}, \ldots, x_{n} are independent and normally distributed with mean a and variance σ^{2}. Find the joint (two-dimensional) distribution of the vector

$$
S_{m}=\sum_{k=1}^{m} \xi_{k}, S_{n}=\sum_{k=1}^{n} \xi_{k}, m<n .
$$

5. Let ξ_{1}, ξ_{2}, \ldots are independent exponentially distributed random variables with parameter 1 and $\zeta_{n}=\max \left\{\xi_{1}, \ldots, \xi_{n}\right\}$.
a. Find the limiting distribution of $n^{-\gamma} \zeta_{n}$ for $\gamma>0$.
b. For which sequence $\left\{a_{n}\right\}$, the limit of $\zeta_{n}-a_{n}$ has a non-degenerate limiting distribution?
