Foundations of Probability Theory (MVE140 - MSA150)

Wednesday 11th of January 2017 examination questions
You are allowed to use a dictionary (to and from English) and up to a maximum of 2 double-sided pages of your own written notes. This examination has five problems with a maximum of 20 credit points for a fully satisfactory solution, so the maximal total is 100 credit points. To pass the course, you need to score at least 40 points. A member of staff is available at the examination site around 10:30am and 12pm. Tel. 0317723574

Examination Questions

1. Let $\xi: \Omega \mapsto \mathbb{R}$ be an arbitrary mapping. Denote by $\sigma(\xi)$ the following collection of subsets of $\Omega:\left\{\xi^{-1}(B): B \in \mathcal{B}\right\}$, where B runs through all Borel subsets \mathcal{B} of \mathbb{R}.
(a) Show that $\sigma(\xi)$ is a σ-field ${ }^{1}$.
(b) Find $\sigma(\xi)$ for a mapping ξ taking just two distinct values.
(c) When does $\sigma(\xi)$ for such ξ coincide with the set 2^{Ω} of all subsets of Ω ?

Solution. For any $B_{1}, B_{2}, \cdots \in \mathcal{B}, \xi^{-1}\left(B_{1}\right) \cap \xi^{-1}\left(B_{2}\right)=\{\omega: \xi(\omega) \in$ B_{1} and $\xi(\omega) \in B_{2}$ and $\left.\ldots\right\}=\xi^{-1}\left(\cap_{i} B_{i}\right) \in \sigma(\xi)$ since $\cap_{i} B_{i}$ is also in \mathcal{B}. Also, for any $B \in \mathcal{B},\left(\xi^{-1}(B)\right)^{\mathbf{c}}=\left\{\omega: \xi(\omega) \in B^{\mathbf{c}}\right\}=\xi^{-1}\left(B^{\mathbf{c}}\right) \in \sigma(\xi)$. When $\xi(\omega)=c_{1}$ on $S \subset \Omega$ and hence $\xi(\omega)=c_{2}$ on $\Omega \backslash S$, then $\xi^{-1}(B)=S$, $\Omega \backslash S=S^{\mathbf{c}}, \Omega$ or \emptyset, depending on whether $c_{1} \in B, c_{2} \in B$, both or none. So $\sigma(\xi)=\left\{\emptyset, S, S^{\mathbf{c}}, \Omega\right\}$. This is 2^{Ω} if Ω itself consists of 2 elements, so that S and $S^{\mathbf{c}}$ are one-point sets.
2. Let $\left\{\xi_{n}\right\}$ be a sequence of positive independent identically distributed (i.i.d.) random variables with finite $a=\mathbf{E} \xi$ and $b=\mathbf{E} \xi^{-1}$. Let

[^0]$S_{n}=\sum_{i=1}^{n} \xi_{i}$. Show that
\[

\mathbf{E}\left(S_{m} / S_{n}\right)= $$
\begin{cases}m / n & \text { if } m \leq n ; \text { and } \\ 1+(m-n) a \mathbf{E}\left(1 / S_{n}\right) & \text { if } m>n\end{cases}
$$
\]

Solution. For $m \leq n$ we have

$$
\mathbf{E} \frac{S_{m}}{S_{n}}=\sum_{i=1}^{n} \mathbf{E} \frac{\xi_{i}}{S_{n}}=m \mathbf{E} \frac{\xi_{1}}{S_{n}}
$$

But for $m=n, 1=n \mathbf{E}\left(\xi_{1} / S_{n}\right)$, hence $\mathbf{E}\left(S_{m} / S_{n}\right)=m / n$.
For $m>n$,

$$
\mathbf{E} \frac{S_{m}}{S_{n}}=1+\sum_{i=n+1}^{m} \mathbf{E} \frac{\xi_{i}}{S_{n}}=1+\sum_{i=n+1}^{m} \mathbf{E} \xi_{i} \mathbf{E} \frac{1}{S_{n}}=1+(m-n) a \mathbf{E} S_{n}^{-1}
$$

3. Let ξ_{1}, ξ_{2} be two independent Exponentially distributed r.v.'s, their c.d.f.'s are $F_{\xi_{1}}(x)=1-e^{-\lambda_{1} x}$ and $F_{\xi_{1}}(x)=1-e^{-\lambda_{2} x}$, respectively, for some $\lambda_{1}, \lambda_{2}>0$. Find:
(a) the distribution of $\eta_{1}=\min \left\{\xi_{1}, \xi_{2}\right\}$;
(b) the distribution of $\eta_{2}=\max \left\{\xi_{1}, \xi_{2}\right\}$;
(c) the joint distribution of η_{2} and η_{1} in the case when $\lambda_{1}=\lambda_{2}=\lambda$;
(d) the conditional distribution of η_{2} given η_{1} in the case when $\lambda_{1}=$ $\lambda_{2}=\lambda$.

Solution.

(a) $\mathbf{P}\left\{\eta_{1}>x\right\}=\mathbf{P}\left\{\xi_{1}>x ; \xi_{2}>x\right\}=e^{-\lambda_{1}} e^{-\lambda_{2} x}=e^{-\left(\lambda_{1}+\lambda_{2}\right) x}$, so that $\eta_{1} \sim \operatorname{Exp}\left(\lambda_{1}+\lambda_{2}\right)$.
(b) $\mathbf{P}\left\{\eta_{2} \leq x\right\}=\mathbf{P}\left\{\xi_{1} \leq x ; \xi_{2} \leq x\right\}=\left(1-e^{-\lambda_{1}}\right)\left(1-e^{-\lambda_{2} x}\right)$
(c) If $x>y$ then $\mathbf{P}\left\{\eta_{1} \leq x ; \eta_{2} \leq y\right\}=\mathbf{P}\left\{\eta_{2} \leq y\right\}$ which is $F_{\eta_{2}}(y)$ above. Consider now the case $x \leq y$. Since ξ_{1} and ξ_{2} are independent, the pair $\left(\xi_{1}, \xi_{2}\right)$ has joint cdf $F_{\left(\xi_{1}, \xi_{2}\right)}(x, y)=\left(1-e^{-\lambda x}\right)\left(1-\varepsilon^{-\lambda y}\right)$ for $x, y \geq 0$ and 0 otherwise. The set $\left\{\left(z_{1}, z_{2}\right) \in \mathbb{R}_{+}^{2}: \min \left\{z_{1}, z_{2}\right\} \leq x ; \max \left\{z_{1}, z_{2}\right\} \leq y\right\}$ is the union of two rectangles, each having a vertex at the origin and the opposite vertex in the point (x, y) and (y, x), respectively. By the symmetry, the measure of each of them is $F_{\left(\xi_{1}, \xi_{2}\right)}(x, y)$, the measure of their intersection is $F_{\left(\xi_{1}, \xi_{2}\right)}(x, x)$. Hence

$$
\begin{aligned}
& \mathbf{P}\left\{\eta_{1} \leq x ; \eta_{2} \leq y\right\}=2 F_{\left(\xi_{1}, \xi_{2}\right)}(x, y)-F_{\left(\xi_{1}, \xi_{2}\right)}(x, x) \\
& =1-e^{-2 \lambda x}-2 e^{-\lambda y}+2 e^{-\lambda(x+y)} .
\end{aligned}
$$

(d) Obviously, $\mathbf{P}\left\{\eta_{2}>y \mid \eta_{1}=x\right\}=1$ for all $y<x$. Consider $y \geq x$ and put $z=y-x>0$. Since ξ_{1} and ξ_{2} are equally distributed,

$$
\begin{aligned}
& \mathbf{P}\left\{\eta_{2}>y \mid \eta_{1}=x\right\}=\mathbf{P}\left\{\xi_{2}>y \mid \xi_{1}=x ; \xi_{2}>x\right\} \mathbf{P}\left\{\xi_{1}<\xi_{2}\right\} \\
& +\mathbf{P}\left\{\xi_{1}>y \mid \xi_{2}=x ; \xi_{1}>x\right\} \mathbf{P}\left\{\xi_{1}>\xi_{2}\right\} \\
& \quad=e^{-\lambda y} / e^{-\lambda x} \cdot 0.5+e^{-\lambda y} / e^{-\lambda x} \cdot 0.5=e^{-\lambda z}
\end{aligned}
$$

which corresponds to the distribution of a r.v. $\eta_{1}+\xi$, where $\xi \sim \operatorname{Exp}(\lambda)$.
4. Suppose that the amounts R_{n} you win in n-th game of chance are independent identically distributed random variables with a finite mean m and variance σ^{2}. It is reasonable to assume that $m<0$. Show that $\mathbf{P}\left\{\left(R_{1}+\cdots+R_{n}\right) / n<m / 2\right\} \rightarrow 1$ as $n \rightarrow \infty$. What is the moral of this result?

Solution. Let $S_{n}=R_{1}+\ldots R_{n}$. Since $m<0$ and $\mathbf{E} S_{n} / n=m$, we have that

$$
\mathbf{P}\left\{S_{n} / n>m / 2\right\}=\mathbf{P}\left\{S_{n} / n-m>-m / 2\right\}=\mathbf{P}\left\{S_{n} / n-m>|m| / 2\right\} .
$$

Now by the Chebyshov inequality, the later is at most
$\mathbf{P}\left\{\left|S_{n} / n-m\right|>|m| / 2\right\} \leq \operatorname{var}\left(S_{n} / n\right) /\left(m^{2} / 4\right)=4 \sigma^{2} /\left(n m^{2}\right) \rightarrow 0$ as $n \rightarrow \infty$.
Morale: the probability that your total win after n rounds is positive is vanishing when $m<0$!
5. Let $\mu_{n}=\min \left\{\xi_{1}, \ldots, \xi_{n}\right\}$, where ξ_{1}, \ldots, ξ_{n} are independent uniformly distributed on $[0,1]$ random variables. For which real γ the sequence $n^{\gamma} \mu_{n}$ has a weak limit? What are these limiting distributions?
Solution. For any $y \in[0,1), \mathbf{P}\left\{\mu_{n}>x\right\}=\mathbf{P}\left(\cup_{i=1}^{n}\left\{\xi_{i}>x\right\}\right)=(1-x)^{n}$. Therefore, $\mathbf{P}\left\{n^{\gamma} \mu_{n}>x\right\}=\left(1-n^{-\gamma} x\right)^{n}=\exp \left\{n \log \left(1-n^{-\gamma} x\right\}\right.$. We see that when $\gamma=1$ the last expression tends to e^{-x} which is $1-F(x)$ for exponential distribution $\operatorname{Exp}(1)$ which is a continuous function. So the limit for all x means the weak convergence. When $\gamma>1$ the limit is 1 which is the ch.f. of a constant 0 . In this case the weak limit is trivial: 0 . Finally, there is no limit for $\gamma<1$.

[^0]: ${ }^{1}$ It is called the σ-field generated by ξ.

