Foundations of Probability Theory (MVE140 – MSA150)

Wednesday 11th of January 2017 examination questions

You are allowed to use a dictionary (to and from English) and up to a maximum of 2 double-sided pages of your own written notes. This examination has five problems with a maximum of 20 credit points for a fully satisfactory solution, so the maximal total is 100 credit points. To pass the course, you need to score at least 40 points. A member of staff is available at the examination site around 10:30am and 12pm. Tel. 031 772 3574

Examination Questions

- 1. Let $\xi : \Omega \mapsto \mathbb{R}$ be an arbitrary mapping. Denote by $\sigma(\xi)$ the following collection of subsets of Ω : $\{\xi^{-1}(B) : B \in \mathcal{B}\}$, where B runs through all Borel subsets \mathcal{B} of \mathbb{R} .
 - (a) Show that $\sigma(\xi)$ is a σ -field¹.
 - (b) Find $\sigma(\xi)$ for a mapping ξ taking just two distinct values.
 - (c) When does $\sigma(\xi)$ for such ξ coincide with the set 2^{Ω} of all subsets of Ω ?

Solution. For any $B_1, B_2, \dots \in \mathcal{B}$, $\xi^{-1}(B_1) \cap \xi^{-1}(B_2) = \{\omega : \xi(\omega) \in B_1 \text{ and } \xi(\omega) \in B_2 \text{ and } \dots \} = \xi^{-1}(\cap_i B_i) \in \sigma(\xi) \text{ since } \cap_i B_i \text{ is also in } \mathcal{B}.$ Also, for any $B \in \mathcal{B}$, $(\xi^{-1}(B))^{\mathbf{c}} = \{\omega : \xi(\omega) \in B^{\mathbf{c}}\} = \xi^{-1}(B^{\mathbf{c}}) \in \sigma(\xi).$ When $\xi(\omega) = c_1$ on $S \subset \Omega$ and hence $\xi(\omega) = c_2$ on $\Omega \setminus S$, then $\xi^{-1}(B) = S$, $\Omega \setminus S = S^{\mathbf{c}}, \Omega$ or \emptyset , depending on whether $c_1 \in B, c_2 \in B$, both or none. So $\sigma(\xi) = \{\emptyset, S, S^{\mathbf{c}}, \Omega\}$. This is 2^{Ω} if Ω itself consists of 2 elements, so that S and $S^{\mathbf{c}}$ are one-point sets.

2. Let $\{\xi_n\}$ be a sequence of positive independent identically distributed (i.i.d.) random variables with finite $a = \mathbf{E}\xi$ and $b = \mathbf{E}\xi^{-1}$. Let

¹It is called the σ -field generated by ξ .

 $S_n = \sum_{i=1}^n \xi_i$. Show that

$$\mathbf{E}(S_m/S_n) = \begin{cases} m/n & \text{if } m \le n; \text{ and} \\ 1 + (m-n)a \, \mathbf{E}(1/S_n) & \text{if } m > n. \end{cases}$$

Solution. For $m \leq n$ we have

$$\mathbf{E}\,\frac{S_m}{S_n} = \sum_{i=1}^n \mathbf{E}\,\frac{\xi_i}{S_n} = m\,\mathbf{E}\,\frac{\xi_1}{S_n}.$$

But for m = n, $1 = n \mathbf{E}(\xi_1/S_n)$, hence $\mathbf{E}(S_m/S_n) = m/n$. For m > n,

$$\mathbf{E}\frac{S_m}{S_n} = 1 + \sum_{i=n+1}^m \mathbf{E}\frac{\xi_i}{S_n} = 1 + \sum_{i=n+1}^m \mathbf{E}\xi_i \mathbf{E}\frac{1}{S_n} = 1 + (m-n)a\mathbf{E}S_n^{-1}$$

- 3. Let ξ_1, ξ_2 be two independent Exponentially distributed r.v.'s, their c.d.f.'s are $F_{\xi_1}(x) = 1 e^{-\lambda_1 x}$ and $F_{\xi_1}(x) = 1 e^{-\lambda_2 x}$, respectively, for some $\lambda_1, \lambda_2 > 0$. Find:
 - (a) the distribution of $\eta_1 = \min\{\xi_1, \xi_2\};$
 - (b) the distribution of $\eta_2 = \max{\{\xi_1, \xi_2\}};$
 - (c) the joint distribution of η_2 and η_1 in the case when $\lambda_1 = \lambda_2 = \lambda$;
 - (d) the conditional distribution of η_2 given η_1 in the case when $\lambda_1 = \lambda_2 = \lambda$.

Solution.

- (a) $\mathbf{P}\{\eta_1 > x\} = \mathbf{P}\{\xi_1 > x; \xi_2 > x\} = e^{-\lambda_1}e^{-\lambda_2 x} = e^{-(\lambda_1 + \lambda_2)x}$, so that $\eta_1 \sim \operatorname{Exp}(\lambda_1 + \lambda_2)$.
- (b) $\mathbf{P}{\eta_2 \le x} = \mathbf{P}{\xi_1 \le x; \xi_2 \le x} = (1 e^{-\lambda_1})(1 e^{-\lambda_2 x})$
- (c) If x > y then $\mathbf{P}\{\eta_1 \le x; \eta_2 \le y\} = \mathbf{P}\{\eta_2 \le y\}$ which is $F_{\eta_2}(y)$ above. Consider now the case $x \le y$. Since ξ_1 and ξ_2 are independent, the pair (ξ_1, ξ_2) has joint cdf $F_{(\xi_1, \xi_2)}(x, y) = (1 - e^{-\lambda x})(1 - \varepsilon^{-\lambda y})$ for $x, y \ge 0$ and 0 otherwise. The set $\{(z_1, z_2) \in \mathbb{R}^2_+ : \min\{z_1, z_2\} \le x; \max\{z_1, z_2\} \le y\}$ is the union of two rectangles, each having a vertex at the origin and the opposite vertex in the point (x, y) and (y, x), respectively. By the symmetry, the measure of each of them is $F_{(\xi_1, \xi_2)}(x, y)$, the measure of their intersection is $F_{(\xi_1, \xi_2)}(x, x)$. Hence

$$\mathbf{P}\{\eta_1 \le x; \ \eta_2 \le y\} = 2F_{(\xi_1,\xi_2)}(x,y) - F_{(\xi_1,\xi_2)}(x,x)$$
$$= 1 - e^{-2\lambda x} - 2e^{-\lambda y} + 2e^{-\lambda(x+y)}.$$

(d) Obviously, $\mathbf{P}\{\eta_2 > y \mid \eta_1 = x\} = 1$ for all y < x. Consider $y \ge x$ and put z = y - x > 0. Since ξ_1 and ξ_2 are equally distributed,

$$\mathbf{P}\{\eta_2 > y \mid \eta_1 = x\} = \mathbf{P}\{\xi_2 > y \mid \xi_1 = x; \xi_2 > x\} \mathbf{P}\{\xi_1 < \xi_2\} + \mathbf{P}\{\xi_1 > y \mid \xi_2 = x; \xi_1 > x\} \mathbf{P}\{\xi_1 > \xi_2\} = e^{-\lambda y}/e^{-\lambda x} \cdot 0.5 + e^{-\lambda y}/e^{-\lambda x} \cdot 0.5 = e^{-\lambda z}$$

which corresponds to the distribution of a r.v. $\eta_1 + \xi$, where $\xi \sim \text{Exp}(\lambda)$.

4. Suppose that the amounts R_n you win in *n*-th game of chance are independent identically distributed random variables with a finite mean m and variance σ^2 . It is reasonable to assume that m < 0. Show that $\mathbf{P}\{(R_1 + \cdots + R_n)/n < m/2\} \to 1 \text{ as } n \to \infty$. What is the moral of this result? Solution. Let $S_n = R_1 + \ldots R_n$. Since m < 0 and $\mathbf{E} S_n / n = m$, we have that

$$\mathbf{P}\{S_n/n > m/2\} = \mathbf{P}\{S_n/n - m > -m/2\} = \mathbf{P}\{S_n/n - m > |m|/2\}.$$

Now by the Chebyshov inequality, the later is at most

$$\mathbf{P}\{|S_n/n - m| > |m|/2\} \le \mathbf{var}(S_n/n)/(m^2/4) = 4\sigma^2/(nm^2) \to 0 \text{ as } n \to \infty.$$

Morale: the probability that your total win after n rounds is positive is vanishing when m < 0!

5. Let $\mu_n = \min\{\xi_1, \ldots, \xi_n\}$, where ξ_1, \ldots, ξ_n are independent uniformly distributed on [0, 1] random variables. For which real γ the sequence $n^{\gamma}\mu_n$ has a weak limit? What are these limiting distributions? Solution. For any $\gamma \in [0, 1)$, $\mathbf{P}\{\mu_n > x\} = \mathbf{P}(\bigcup_{i=1}^n \{\xi_i > x\}) = (1 - x)^n$. Therefore, $\mathbf{P}\{n^{\gamma}\mu_n > x\} = (1 - n^{-\gamma}x)^n = \exp\{n\log(1 - n^{-\gamma}x)\}$. We see that when $\gamma = 1$ the last expression tends to e^{-x} which is 1 - F(x) for exponential distribution $\exp(1)$ which is a continuous function. So the limit for all x means the weak convergence. When $\gamma > 1$ the limit is 1 which is the ch.f. of a constant 0. In this case the weak limit is trivial: 0. Finally, there is no limit for $\gamma < 1$.