MVE140/MSA150

Examination for the course Foundations of Probability Theory,

Saturday, 16 January 2010, 08.30-13.30 in the V house.

Examiner: Torgny Lindvall. Telephone connect. 3574 or mobile 0705-987486.

Teacher available at the examination site around 10.00 and 11.45.

Facilities: Dictionaries, from and into English.

A completely solved problem gives 5 credit points.

We suppose that events and random variables are defined on a probability space that we call $(\Omega, \mathcal{F}, \mathbf{P})$.

- 1. The random variable Y is uniformly distributed on [0,1]. Determine the density function, expectation and variance of \sqrt{Y} .
- 2. The random variable X has density function $e^{-x/2}/\sqrt{2\pi}$, $x \in R$, i.e., it is normally distributed. Find the moment generating function of X, and use that to determine $\mathbf{E}[X]$ and $\mathbf{Var}[X]$.
- 3. We say that a random variable X is discrete if there exists a countable set $A = \{a_1, a_2, \ldots\}$ such that $P(X \in A) = 1$. Show the existence of a discrete variable with a strictly increasing distribution function. Hint: you have to find a countable set which is dense.
- 4. The random variables X and X_1, X_2, \ldots have all absolute values bounded by a constant K. Prove the following Bounded-Convergence Theorem: if $X_n \to X$ in probability as $n \to \infty$, then $\mathbf{E}[X_n] \to \mathbf{E}[X]$ as $n \to \infty$.
- 5. Give an example of a sequence X_1, X_2, \ldots of non-negative random variables such that $\mathbf{E}[X_n] \to \infty$ as $n \to \infty$, but $X_n \to 0$ a.s. as $n \to \infty$.
- 6. A symmetric dice is thrown N times, where N is Poisson distributed with parameter λ . Also, N is independent of the sequence of the numbers of spots shown. Let S_N denote the number of times the dice shows six spots. Determine the distribution of S_N .

Short solutions to Foundations of Probability Theory 16 January 2010. Examiner: Torgny Lindvall.

- 1. We let \sqrt{Y} be denoted by X, and we obtain that $F_X(x) = \mathbf{P}(X \le x) = \mathbf{P}(Y \le x^2) = x^2$ for $x \in [0, 1]$, so $f_X(x) = 2x$. We get $\mathbf{E}[X] = \int_0^1 x \cdot 2x \, dx = 2/3$, $\mathbf{E}[X^2] = \int_0^1 x^2 \cdot 2x \, dx = 1/2$, which gives $\mathbf{Var}[X] = \mathbf{E}[X^2] \mathbf{E}[X]^2 = 1/18$.
- 2. Cf. Williams, 5.3 C, p.147, and 5.3 G, p.153. We find that $M_X(s) = e^{s^2/2}$, $\mathbf{E}[X] = M_X'(0) = 0$, and $\mathbf{Var}[X] = \mathbf{E}[X^2] = M_X''(0) = 1$.
- 3. Let A be the set of rational numbers; it is countable and dense. With a_i denoting the i:th rational number, $i=1,2,\ldots$, and with X such that $\mathbf{P}(X=a_i)=2^{-i}$, we have produced a random variable with a strictly increasing distribution function. Indeed, for any $x,y,\ x< y$, we find that $F_X(y)-F_X(x)=\mathbf{P}(x< X\leq y)\geq \mathbf{P}(\{a\})>0$ where a is any rational number $\in (x,y]$.
- 4. Cf. W-s, 3.4 L, p.65. Notice that convergence in probability is exactly what W-s uses in his "Heuristic proof"!
- 5. Let $X_1, X_2, ...$ be random variables such that $\mathbf{P}(X_n = n^3) = n^{-2}$, and $\mathbf{P}(X_n = 0) = 1 n^{-2}$. Then $\mathbf{E}[X_n] = n$, but due to the first Borel-Cantelli Lemma, $\mathbf{P}(X_n > 0 \text{ i.o.}) = 0$, so $X_n \to 0$ a.s. as $n \to \infty$. Notice that no condition on the X_n :s, such as independence, is needed!
- 6. Cf. W-s, 9.1 J, p.393. We use the statement of Exercise Ja and find that the probability generating generating function of S_N , g_{S_N} , satisfies $g_{S_N}(s) = g_N(g_{X_1}(s))$, where $X_i = 1$ if the dice shows six spots at the i:th throw, and $X_i = 0$ otherwise, for $i = 1, 2, \ldots$ With 1/6 denoted by p for convenience, we have $g_N(s) = \exp(\lambda(s-1))$, and $g_{X_1}(s) = 1 p + ps$, so we obtain $g_{S_N}(s) = \exp(\lambda(1-p+ps-1)) = \exp(\lambda p(s-1))$. Using the uniqueness theorem for pgf:s, we find that S_N is Poisson distributed with parameter $\lambda/6$.

It is also possible to find that using direct calculations after conditioning w.r.t. to N, but that is less elegant.