Exam for the course
 Options and Mathematics (CTH[MVE095], GU[MMG810]) 2022/23

For questions call the examiner at +46 (0)31 7723570
August the 23d, 2023 (8.30-12.30)

REMARKS: (1) NO aids permitted (2) Write as clear as possible: if some step is not clearly readable it will be assumed to be wrong

Part I

1. Show that in binomial 1-period model a self-financing arbitrage portfolio exists if and only if $r \notin(d, u)$ (Theorem 2.4). (3 p.) (see the book)
2. State and derive formula for Black-Scholes pricing of an European option with a dividend before the time of maturity (Theorem 6.18).(3 p.) (see the book) Due to a typo in initial task also Theorem 6.13 and Theorem 6.1 are acceptable.
3. Define and explain binomial risk-neutral price of American derivatives as maximum of expectation at time $t=0$ (Definition 5.19). (3 p.) (see the book)
4. Name at least two reasons to buy options on a stock?

Proposed solution: One can secure ones investment in stock by buying an option, or one can secure holding a short position in a stock. On the other hand, one can benefit by guessing moving of a stock price without investing in buying the stock (one take though greater risk if the stock price doesn't move as one expected).

Part II

1. Let $S(t)>0$ be the price at time t of a non-dividend paying stock.

$$
f(S)= \begin{cases}100, & \text { for } x<100 \\ 200-x, & \text { for } 100 \leq x \leq 200 \\ 0, & \text { for } x>200\end{cases}
$$

(a) Find a constant portfolio \mathcal{A} of European calls on a stock and, if applicable, the stock itself and cash, which at time T has the value $V(\mathcal{A})=f(S(T))$.
Proposed solution: 100 units in cash, short 100 units in calls with strike 100, and long in 100 call units with strike 200.
(b) Find a constant portfolio \mathcal{A} of European puts on a stock and, if applicable, the stock itself and cash, which at time T has the value $V(\mathcal{A})=f(S(T))$.
Proposed solution: 100 units short in puts with strike 100 and 100 units long in puts with strike 200.
(c) If annual rate of return on zero coupon 2 years maturity bond, is 10%. The face of the bond is 12100 kr , what is the current price of the bond. (1 p.) Proposed solution: $x \cdot(1.1)^{2}=12100$, $1,21 x=12100, x=10000$. So, current price is 10000 kr .
2. Given is a stock of current value 900 kr , we use to price it a binomial model in which at every time interval the stock has \log-return $\log \frac{4}{3}$ with probability $1 / 3$ and \log-return $\log \frac{2}{3}$ with probability $2 / 3$. We assume that a risk-free zero coupon bond used in the model has a constant price
(a) Find the price at time $t=0$ of a European call with strike 600 , which matures in 2 time intervals.
Proposed solution: $q_{u}=\frac{1-2 / 3}{4 / 3-2 / 3}=1 / 2 . S(0)=900, S(1, u)=$ 1200. $S(1, d)=600, S(2, u, u)=1600, S(2, u, d)=S(2, d, u)=$ $800, S(2, d, d)=400 . Y(2, u, u)=1000, Y(2, u, d)=Y(2, d, u)=$ 200. $\Pi(0)=(1 / 41000+21 / 4200)=350$.
(b) Find the price at time $t=0$ of a American put with strike 700 , which matures in 2 time intervals.
Proposed solution: As American options can be executed at any time we should consider yield at all times. We see that yield is zero except for $Y(1, d)=100$ and $Y(2, d, d)=300$. At time $1 \Pi(1, u)=$ $0, \Pi(1, d)=\max (Y(1, d), 1 / 2 \Pi(2, d, u)+1 / 2 \Pi(2, d, d))=\max (100,150)=$ 150. $\Pi(0)=150 / 2=75$.
(c) Find the price at time $t=0$ of an Asian put which matures in 2 time intervals and can be executed only at time 2 with the pay-off $Y=\left(900-\frac{S(1)+S(2)}{2}\right)_{+}$.
Proposed solution: $\quad Y(2, u, u)=0, Y(2, u, d)=0, Y(2, d, u)=$ $200, Y(2, d, d)=400$, so $\Pi(0)=(1 / 4200+1 / 4400=150$.
3. Given a stock of current value 1000 kr and constant log-volatility $\sigma=4$, which is supposed to pay 3% of is market value as dividends in 3 years time (at $t_{d}=3$) use Black-Scholes model to set prices on following derivatives based on the stock. The interest rate on the risk-free asset is 0.1 . (Observe that you are allowed to give an answer as an expression combining elementary functions, Φ-function and numbers without evaluating it.)
(a) A European call with strike 800 kr and maturity in 1 year. (2 p.) Proposed solution: $d_{+}=(\log (1000 / 800)+(0.1+16 / 2)) / 4$, $d_{-}=(\log (1000 / 800)+(0.1-16 / 2)) / 4$. Price is $1000 \Phi\left(d_{+}\right)-$ $800 e^{-0.1} \Phi\left(d_{-}\right)$.
(b) A standard European derivative with pay-off $Y=(S(T))^{3}$ and maturity in 2 years.

Proposed solution:

$$
\begin{align*}
& V(0)=e^{-0.2} \int_{\mathbf{R}}\left(1000 e^{\left(0.1-4^{2} / 2\right) 2+4 \sqrt{2} y}\right)^{3} e^{-y^{2} / 2} d y / \sqrt{2 \pi}= \tag{2p.}\\
& 10^{9} e^{-0.2+7 \cdot 9 \cdot 6} \int_{\mathbf{R}} e^{12 \sqrt{2} y-y^{2} / 2} d y / \sqrt{2 \pi}= \\
& 10^{9} e^{-0.2+7 \cdot 9 \cdot 6+288} \int_{\mathbf{R}} e^{-(y-12 \sqrt{2})^{2} / 2} d y / \sqrt{2 \pi}=10^{9} e^{-0.2+7 \cdot 9 \cdot 6+288} .
\end{align*}
$$

(c) A European put with strike 1300 kr and maturity in 5 years. (2 p.)

Proposed solution: To account for dividends we replace 1000 för $970 d_{+}=(\log (970 / 800)+(0.1+16 / 2)) / 4, d_{-}=(\log (970 / 800)+$ (0.1-16/2))/4.

$$
P(0,1000,1300,5)=\Phi\left(-d_{-}\right) 1300 e^{-0.5}-\Phi\left(d_{+}\right) 970
$$

