Exam for the course “Options and Mathematics” (CTH[MVE095], GU[MMA700]). Period 4, 2013/14

Simone Calogero (TEL: 0767082239)

April 14, 2015

REMARK: No aids permitted

1. Assume that the stock price $S(t)$ follows a 1-period binomial model with parameters $u > d$ and that the interest rate of the bond is $r > 0$. Show that there exists no self-financing arbitrage portfolio invested in the stock and the bond in the interval $t \in [0,1]$ if and only if $d < r < u$ (max 3 points). Show that any derivative on the stock expiring at time $t = 1$ can be hedged in this market (max 2 points).

Solution: See Theorem 3.2 (step 1) in Ref. [3] and Theorem 3.1 in Ref. [4]

2. Let $c(t)$ denote the Black-Scholes price at time t of a European call with strike $K > 0$ and maturity $T > 0$ on a stock with price $S(t)$ and volatility $\sigma > 0$. Let $r > 0$ denote the interest rate of the bond. Compute the following limits:

$$\lim_{K \to 0^+} c(t), \quad \lim_{K \to +\infty} c(t), \quad \lim_{T \to +\infty} c(t), \quad \lim_{\sigma \to 0^+} c(t), \quad \lim_{\sigma \to +\infty} c(t).$$

Each limit gives 1 point if it is correct, 0 otherwise.

Solution: Recall that

$$c(t, x) = x \Phi(d_1) - Ke^{-rT} \Phi(d_2),$$

where

$$d_2 = \log \left(\frac{x}{K} \right) + \frac{r - \frac{1}{2}\sigma^2}{\sigma \sqrt{T}} t, \quad d_1 = d_2 + \sigma \sqrt{T},$$

and where $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}y^2} dy$ is the standard normal distribution. As $\sigma \to 0^+$ we have $d_1 \to d_2$ and

$$d_2 \sim \frac{1}{\sqrt{T}} \log \left(\frac{x}{K} + rT \right) \sigma^{-1}.$$

Hence

$$d_2 \to +\infty, \quad \text{if} \quad x > Ke^{-rT},$$

$$d_2 \to -\infty, \quad \text{if} \quad x < Ke^{-rT},$$

$$d_2 \to 0, \quad \text{if} \quad x = Ke^{-rT},$$

$$d_2 \to +\infty, \quad \text{if} \quad x > Ke^{-rT}.$$
Thus
\[
\lim_{\sigma \to 0^+} \Phi(d_1) = \lim_{\sigma \to 0^+} \Phi(d_2) = 1, \quad \text{if } x > Ke^{-rT}, \\
\lim_{\sigma \to 0^+} \Phi(d_1) = \lim_{\sigma \to 0^+} \Phi(d_2) = 0, \quad \text{if } x < Ke^{-rT}, \\
\lim_{\sigma \to 0^+} \Phi(d_1) = \lim_{\sigma \to 0^+} \Phi(d_2) = \Phi(0), \quad \text{if } x = Ke^{-rT}.
\]
It follows that
\[
\lim_{\sigma \to 0^+} c(t, x) = x - Ke^{-rT} \quad \text{if } x > Ke^{-rT}, \\
\lim_{\sigma \to 0^+} c(t, x) = 0, \quad \text{if } x \leq Ke^{-rT},
\]
i.e., \(\lim_{\sigma \to 0^+} c(t, x) = (x - Ke^{-rT})_+ \). For \(\sigma \to +\infty \) we have \(d_2 \to -\infty \) and \(d_1 \to +\infty \), hence \(\Phi(d_1) \to 1 \) and \(\Phi(d_2) \to 0 \). Thus \(c(t, x) \to x \) as \(\sigma \to +\infty \). As \(K \to 0^+ \), both \(d_1 \) and \(d_2 \) diverge to \(+\infty \), hence
\[
\lim_{K \to 0^+} c(t, x) = x.
\]
For \(K \to +\infty \), \(d_1, d_2 \) diverge to \(-\infty \). Hence the first term in \(c(t, x) \) converges to zero. As the first term in \(c(t, x) \) always dominates the second term (since \(c(t, x) > 0 \)), then the second term also goes to zero and thus
\[
\lim_{K \to +\infty} c(t, x) = 0.
\]
For \(T \to +\infty \) we have \(d_2 \to -\infty \) and \(d_1 \to +\infty \), hence
\[
\lim_{T \to +\infty} c(t, x) = x.
\]

3. Consider an American put option with strike \(K = 3/4 \) at the maturity time \(T = 2 \). Let the price \(S(t) \) of the underlying stock be given by the binomial model with parameters
\[
e^u = \frac{7}{4}, \quad e^d = \frac{1}{2}, \quad e^r = \frac{9}{8}.
\]
Assume \(S(0)=1 \). Compute the fair price of the derivative (max 2 points) and the hedging portfolio (max 2 points) at each time \(t = 0, 1, 2 \). Verify if the put-call parity holds at all times (max 1 point).
Solution: The binomial tree for the stock price is

When the price of the stock in the paths above is within a box, the put option is in the money. In fact, the binomial tree for the intrinsic value $Y(t)$ of the American put is

Now we compute the value $\hat{\Pi}_{put}(t)$ of the American put option. At time of maturity is given by the pay-off. At times $t = 0, 1$ we use the recurrence formula

$$\hat{\Pi}_{put}(t) = \max(Y(t), e^{-r}(q_u \hat{\Pi}_{put}^u(t + 1)) + q_d \hat{\Pi}_{put}^d(t + 1)),$$
where in this case we have \(q_u = q_d = 1/2 \). At time \(t = 1 \) we have
\[
\hat{\Pi}_{\text{put}}(1) = \max \left[Y(1), \frac{4}{9}(\hat{\Pi}_{\text{put}}^u(2) + \hat{\Pi}_{\text{put}}^d(2)) \right] \\
= \max \left[Y(1), \frac{4}{9} \left(\left(\frac{3}{4} - \frac{7}{4} S(1) \right)_+ + \left(\frac{3}{4} - \frac{1}{2} S(1) \right)_+ \right) \right].
\]
Since
\[
Y^u(1) = \left(\frac{3}{4} - \frac{7}{4} \right)_+ = 0, \quad Y^d(1) = \left(\frac{3}{4} - \frac{1}{2} \right)_+ = \frac{1}{4},
\]
we find
\[
\hat{\Pi}_{\text{put}}^u(1) = \max[0, 0] = 0, \quad \hat{\Pi}_{\text{put}}^d(1) = \max \left[\frac{1}{4}, \frac{2}{9} \right] = \frac{1}{4}
\]
and so
\[
\hat{\Pi}_{\text{put}}(0) = \max \left[Y(0), \frac{4}{9}(\hat{\Pi}_{\text{put}}^u(1) + \hat{\Pi}_{\text{put}}^d(1)) \right] = \frac{1}{9}.
\]
Hence the price of the American put corresponding to the different paths of the stock price is as follows:

This concludes the first part of the exercise (2 points). The hedging portfolio is computed by the formulas, for \(t = 1, 2 \),
\[
\hat{h}_S(t) = \frac{1}{S(t-1)} \frac{\hat{\Pi}_{\text{put}}^u(t) - \hat{\Pi}_{\text{put}}^d(t)}{e^u - e^d}, \tag{3}
\]
\[
\hat{h}_B(t) = \frac{e^{-r}}{B(t-1)} \frac{e^u \hat{\Pi}_{\text{put}}^d(t) - e^d \hat{\Pi}_{\text{put}}^u(t)}{e^u - e^d}. \tag{4}
\]
Hence
\[
\begin{align*}
 h_S(2) &= 0 \quad \text{if } S(1) = 7/4 \\
 h_S(2) &= -\frac{4}{5} \quad \text{if } S(1) = 1/2 \\
 h_S(1) &= -\frac{1}{5}.
\end{align*}
\]
\[
\begin{align*}
 h_B(2) &= 0 \quad \text{if } S(1) = 7/4 \\
 h_B(2) &= \frac{224}{405} \quad \text{if } S(1) = 1/2 \\
 h_B(1) &= \frac{14}{45} \frac{1}{B_0}.
\end{align*}
\]

where \(B_0 = B(0) \) is the initial value of the bond. This concludes the second part of the exercise (2 points). The put-call carity should not hold in this case, because the option is American. To verify this we compute first the fair price \(\hat{\Pi}_{call}(t) \) of the American call with the same parameters of the put option; we find easily

\[
\begin{align*}
 \hat{\Pi}_{call}(2) &= \frac{37}{16} \\
 \hat{\Pi}_{call}(1) &= \frac{39}{36} \\
 \hat{\Pi}_{call}(0) &= \frac{41}{81} \\
 \hat{\Pi}_{call}(2) &= \frac{1}{8} \\
 \hat{\Pi}_{call}(1) &= \frac{1}{18} \\
 \hat{\Pi}_{call}(2) &= 0
\end{align*}
\]

Letting \(Q(t) = \hat{\Pi}_{call}(t) - \hat{\Pi}_{put}(t) - S(t) + Ke^{-r(2-t)} \), \(t = 0, 1, 2 \), we find easily that \(Q = 0 \) only at maturity and when \(S(1) = 7/4 \).