1. (Binomial model with $T = 2$, $u = -d > 0$, and $e^r = \frac{1}{2}(e^u + e^d)$) A derivative of European type pays the amount

$$Y = \left| \frac{S(T)}{S(0)} - 1 \right|$$

at time of maturity T. Find $\Pi_Y(0)$.

Solution. We have that

$$q_u = \frac{e^r - e^d}{e^u - e^d} = \frac{1}{2}(e^u + e^d) - e^d = \frac{1}{2}$$

and if $v(t) = \Pi_Y(t)$,

$$\begin{cases}
 v(2) | X_1 = u, X_2 = u = e^{2u} - 1 \\
 v(2) | X_1 = u, X_2 = d = 0 \\
 v(2) | X_1 = d, X_2 = u = 0 \\
 v(2) | X_1 = d, X_2 = d = 1 - e^{-2u}.
\end{cases}$$

Now

$$\begin{cases}
 v(1) | X_1 = u = \frac{e^{-r}}{2}(e^{2u} - 1) \\
 v(1) | X_1 = d = \frac{e^{-r}}{2}(1 - e^{-2u})
\end{cases}$$

and

$$\Pi_Y(0) = e^{-r} \left(\frac{e^{-r}}{4}(e^{2u} - 1) + \frac{e^{-r}}{4}(1 - e^{-2u}) \right)$$

$$= e^{-2r} \left(\frac{e^{2u} - e^{-2u}}{4} \right) = \frac{e^{2u} - e^{-2u}}{(e^u + e^{-u})^2} = \frac{e^u - e^{-u}}{e^u + e^{-u}}.$$
2. Let $Z(t) = (Z_1(t), Z_2(t)), t \geq 0$, be a standard Brownian motion in the plane. Find

$$\text{Var}(e^{Z_1(t)} - e^{Z_2(t)}).$$

Solution. The random variables $Z_1(t), Z_2(t) \in N(0,t)$ are independent and

$$E \left[e^{aG} \right] = e^{a^2}$$
if $G \in N(0,1)$ and $a \in \mathbb{R}$. Accordingly from these properties,

$$E \left[e^{Z_1(t)} - e^{Z_2(t)} \right] = e^t - e^t = 0$$

and

$$E \left[(e^{Z_1(t)} - e^{Z_2(t)})^2 \right] = E \left[e^{2Z_1(t)} \right] - 2E \left[e^{Z_1(t)} e^{Z_2(t)} \right] + E \left[e^{2Z_2(t)} \right]$$

$$= 2e^{2t} - 2E \left[e^{Z_1(t)} \right] E \left[e^{Z_2(t)} \right] = 2e^{2t} - 2e^t.$$

The above formulas give

$$\text{Var}(e^{Z_1(t)} - e^{Z_2(t)}) = 2e^t(e^t - 1).$$

Alternative solution. Since $e^{Z_1(t)}$ and $-e^{Z_2(t)}$ are independent

$$\text{Var}(e^{Z_1(t)} - e^{Z_2(t)}) = \text{Var}(e^{Z_1(t)}) + \text{Var}(-e^{Z_2(t)})$$

$$= 2\text{Var}(e^{Z_1(t)}) = 2(E \left[e^{2Z_1(t)} \right] - (E \left[e^{Z_1(t)} \right])^2)$$

$$= 2e^{2t} - 2e^t = 2e^t(e^t - 1).$$

3. (Black-Scholes model) A stock price process $(S(t))_{t \geq 0}$ is governed by the equation

$$S(t) = S(0)e^{(\mu - \frac{\sigma^2}{2})t + \sigma W(t)}, \; t \geq 0,$$

where $\mu > r$. If T and K denote strictly positive real numbers, show that

$$E \left[(S(T) - K)^+ \right] > e^{rT} c(0, S(0), K, T).$$
Solution. If $a > 0$ and

\[f(x, a) = (S(0)e^{(a-\frac{\sigma^2}{2})T-\sigma\sqrt{T}x} - K)^+, \quad x \in \mathbb{R}, \]

then

\[E \left[(S(T) - K)^+ \right] = \int_{-\infty}^{\infty} f(x, \mu)\varphi(x)dx \]

and

\[e^{\mu T}c(0, S(0), K, T) = \int_{-\infty}^{\infty} f(x, r)\varphi(x)dx. \]

Since $\mu > r$ we have $f(x, \mu) \geq f(x, r)$ with strict inequality if

\[x < \frac{1}{\sigma\sqrt{T}} \left(\ln \frac{S(0)}{K} + (\mu - \frac{\sigma^2}{2})T \right). \]

Hence

\[\int_{-\infty}^{\infty} f(x, \mu)\varphi(x)dx > \int_{-\infty}^{\infty} f(x, r)\varphi(x)dx \]

which proves that

\[E \left[(S(T) - K)^+ \right] > e^{\mu T}c(0, S(0), K, T). \]

Alternative solution. For any strictly positive real number a the Black-Scholes theory yields

\[f(a) = \text{def} \quad e^{-aT}\int_{-\infty}^{\infty} (S(0)e^{(a-\frac{\sigma^2}{2})T-\sigma\sqrt{T}x} - K)^+dx \]

\[= S(0)\Phi(d_1(a)) - Ke^{-aT}\Phi(d_2(a)) \]

where

\[d_1(a) = \frac{\ln \frac{S(0)}{K} + (a + \frac{\sigma^2}{2})T}{\sigma\sqrt{T}} \]

and

\[d_2(a) = \frac{\ln \frac{S(0)}{K} + (a - \frac{\sigma^2}{2})T}{\sigma\sqrt{T}} = d_1(a) - \sigma\sqrt{T}. \]
Hence
\[f'(a) = S(0)\varphi(d_1(a)) \frac{1}{\sigma \sqrt{T}} - Ke^{-aT}\varphi(d_2(a)) \frac{1}{\sigma \sqrt{T}} + KTe^{-aT}\Phi(d_2(a)). \]

But
\[S(0)\varphi(d_1(a)) - Ke^{-aT}\varphi(d_2(a)) = 0 \]
(cf the proof of Theorem 5.3.1 in the textbook) and we get
\[f'(a) = KTe^{-aT}\Phi(d_2(a)). \]

Hence
\[\frac{d}{da} (e^{aT} f(a)) = Te^{aT} f(a) + KT\Phi(d_2(a)) > 0 \]
and if \(\mu > r \), we get
\[E \left[(S(T) - K)^+ \right] = e^{\mu T} f(\mu) > e^{r T} f(r) = e^{r T} c(0, S(0), K, T). \]

4. (Dominance principle) Show that the map
\[K \rightarrow c(t, S(t), K, T), \ K > 0 \]
is convex.

5. (Black-Scholes model) Suppose \(K, T, \) and \(\sigma \) are strictly positive real numbers.

(a) Let \(S = (S(t))_{t \geq 0} \) be a stock price process with volatility \(\sigma \). State the price of a European call on \(S \) with maturity \(T \) and strike price \(K \).

(b) Suppose the value of one US dollar at time \(t \) equals \(\xi(t) \) Swedish crowns and that the price process \((\xi(t))_{0 \leq t \leq T}\) is a geometric Brownian motion with volatility \(\sigma \). Moreover, denote by \(r_f \) and \(r \) the US and Swedish interest rates, respectively.

Consider the right but not the obligation to buy one US dollar at the price \(K \) Swedish crowns at time \(T \). Use Part (a) to derive the price of this derivative at time \(t \) expressed in Swedish crowns.