Notes
In the case of misprints or other types of errors please contact SNF.

1 Definitions

Definition 1.1
At time $t < T$ is called an optimal exercise time for the American put with value $\hat{P}(t, S(t), K, T)$ if
\[\hat{P}(t, S(t), K, T) = (K - S(t))_. \]

Definition 2.2
A portfolio process $\{h_S(t), h_B(t)\}_{t \in \mathcal{I}}$ invested in a binomial market is said to be self-financing if
\[h_S(t)S(t-1) + h_B(t)B(t-1) = h_S(t-1)S(t-1) + h_B(t-1)B(t-1) \]
holds for all $t \in \mathcal{I}$.

Definition 2.3
A portfolio process $\{h_S(t), h_B(t)\}_{t \in \mathcal{I}}$ invested in a binomial market is called an arbitrage portfolio if its value $V(t)$ satisfies
\begin{itemize}
 \item $V(0) = 0$,
 \item $V(N, x) \geq 0 \forall x \in \{u, d\}^N$,
 \item There exists $y \in \{u, d\}^N$ such that $V(N, y) > 0$.
\end{itemize}

Definition 3.1
A portfolio process $\{h_S(t), h_B(t)\}_{t \in \mathcal{I}}$ is called predictable if there exists N functions $H_1, ..., H_N$ such that $H_t : (0, \infty)^t \to \mathbb{R}^2$ and
\[(h_S(t), h_B(t)) = H_t(S_0, ..., S(t-1)), \quad t \in \mathcal{I}. \]
Definition 3.2

A **hedging** portfolio for a European derivative with pay-off \(Y = g(S(N)) \) at expiration date \(T = N \) is a portfolio process \(\{(h_S(t), h_B(t))\}_{t \in \mathcal{I}} \) invested in the underlying stock and risk-free asset such that its value \(V(t) \) satisfies \(V(N) = Y \); the latter equality must be satisfied for all possible paths of the price of the underlying stock, i.e., \(V(N,x) = Y(x) \forall x \in \{u,d\}^N \).

Definition 3.3

The binomial (fair) price of a European derivative with pay-off \(Y \) and maturity \(N \) is given by

\[
\Pi_Y(t) := e^{-r(N-T)} \sum_{(x_{t+1},\ldots,x_N) \in \{u,d\}^{N-t}} q_{x_{t+1}} \cdots q_{x_N} Y(x_1,\ldots,x_N).
\]

Definition 4.1

A portfolio process \(\{h_S(t), h_B(t)\}_{t \in \mathcal{I}} \) is said to be hedging an American derivative with intrinsic value \(Y(t) \) if

\[
V(N) = Y(N), \quad V(t) \geq Y(t) \forall t = 0,\ldots,N-1,
\]

where \(V(t) = h_S S(t) + h_B B(t) \) is the value of the portfolio process at time \(t \).

Definition 4.2

The binomial (fair) price \(\hat{\Pi}_Y(t) \) of a standard American derivative with pay-off \(Y(t) = g(S(t)) \) at time \(t \in \{0,1,\ldots,N\} \) is defined by the recurrence formula

\[
\hat{\Pi}_Y(N) = Y(N)
\]

\[
\hat{\Pi}_Y(t) = \max(Y(t), e^{-r} (q_u \hat{\Pi}_Y(t+1) + q_d \hat{\Pi}_Y(t+1)))
\]

Definition 4.3

A replicating portfolio process for an American derivative with intrinsic value \(Y(t) \) is a portfolio process that satisfies \(V(t) = \hat{\Pi}_Y(t) \), for all \(t \in \{0,\ldots,N\} \) (and for all possible paths of the stock price).

Definition 4.4

A portfolio process \(\{h_S(t), h_B(t)\}_{t \in \mathcal{I}} \) is said to generate cash flow \(C(t-1), t \in \mathcal{I} \), if

\[
h_S(t) S(t-1) + h_B(t) B(t-1) = h_S(t-1) S(t-1) + h_B(t-1) B(t-1) - C(t-1), t \in \mathcal{I},
\]

or, equivalently

\[
V(t) - V(t-1) = h_S(t) (S(t) - S(t-1)) + h_B(t) (B(t) - B(t-1)) - C(t-1).
\]

Definition 5.4

Two events \(A \) and \(B \) are said to be independent if \(\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B) \).
Definition 5.15
A discrete stochastic process \(\{X_1, X_2, \ldots \} \) on the finite probability space \((\Omega, \mathbb{P})\) is called a martingale if
\[
\mathbb{E}[X_{i+1} | X_1, X_2, \ldots, X_i] = X_i \quad \forall i \geq 1.
\]

Definition 5.19
Let \(\{W(t)\}_{t \in [0,T]} \) be a Brownian motion, \(\alpha \in \mathbb{R} \), and \(\sigma > 0 \). The positive stochastic process \(\{S(t)\}_{t \in [0,T]} \)
\[
S(t) = S(0)e^{\alpha t + \sigma W(t)},
\]
is called a geometric Brownian motion.

Definition 6.1
Consider a European derivative with pay-off \(Y = g(S(T)) \) at the maturity \(T > 0 \). Assume that the price of the underlying stock is given by the geometric brownian motion \(S(t) = S(0)e^{\alpha t + \sigma W(t)} \). The Black-Scholes price \(\Pi_Y(t) \) of the derivative at time \(t \in [0,T] \) is
\[
\Pi_Y(t) = v(t, S(t)) \quad \text{where}
\]
\[
v(t, x) = \frac{e^{-rt}}{\sqrt{2\pi}} \int_{\mathbb{R}} g(xe^{(r-\frac{\sigma^2}{2})\tau+\sigma\sqrt{\tau}y})e^{-\frac{y^2}{2\tau}} dy, \quad \tau = T - t.
\]

2 Theorems

Theorem 1.1
Let \(C(t, S(t), T, K) \) denote the price of a European call, and let \(P(t, S(t), T, K) \) be the price of the corresponding European put. Assume that there exists a risk-free asset in the money market with constant interest rate \(r \). If the dominance principle holds, then for all \(t < T \),

1. The put-call parity holds
\[
S(t) - C(t, S(t), T, K) = Ke^{-r(T-t)} - P(t, S(t), T, K).
\]

2. If \(r \geq 0 \) then \(C(t, S(t), T, K) \geq (S(t) - K)_+ \); the strict inequality holds for \(r > 0 \).

3. If \(r \geq 0 \), the map \(T \mapsto C(t, S(t), T, K) \) is non-decreasing.

4. The maps \(K \mapsto C(t, S(t), T, K) \) and \(K \mapsto P(t, S(t), T, K) \) are convex.

Proof

1. Consider a portfolio \(\mathcal{A} \) which is long one share of the stock and one share of the put option, and short of the call and \(K/B(T) \) shares of the risk-free asset. The value of this portfolio at maturity is
\[
V_\mathcal{A}(T) = S(T) + (K - S(T))_+ - (S(T) - K)_+ - \frac{K}{B(T)} B(T) = 0.
\]
Hence by the dominance principle \(V_A \geq 0 \) for \(t < T \), that is
\[
S(t) + P(t, S(t), K, T) - C(t, S(t), K, T) - Ke^{-r(T-t)} \geq 0.
\]
Now consider the portfolio \(-A\) with the opposite position on each asset. Again we have \(V_{-A}(T) = 0 \) and thus \(V_{-A}(t) = -V_A(t) \geq 0 \) for \(t < T \). Hence
\[
S(t) + P(t, S(t), K, T) - C(t, S(t), K, T) - Ke^{-r(T-t)} \leq 0.
\]
Thus the left hand side in the previous two inequalities must be zero, which gives the put-call parity.

2. We can assume \(S(t) \geq K \) otherwise it’s trivial. By the put-call parity, using that \(P(t, S(t), K, T) \geq 0 \),
\[
C(t, S(t), K, T) = S(t) - Ke^{-r(T-t)} + P(t, S(t), K, T) \geq S(t) - Ke^{-r(T-t)};
\]
the right hand side equals \(S(t) - K \) for \(r = 0 \) and is strictly greater than this quantity for \(r > 0 \). As \(S(t) - K = (S(t) - K)_+ \) for \(S(t) \geq K \), the claim follows.

3. Consider a portfolio \(A \) which is long one call with maturity \(T_2 \) and strike \(K \) and short one call with maturity \(T_1 \) and strike \(K \), where \(T_2 > T_1 \geq t \). By claim 2 we have
\[
C(T_1, S(T_1), K, T_2) \geq (S(T_1) - K)_+ = C(t, S(T_1), K, T_1),
\]
i.e. \(V_A(T_1) \geq 0 \) for \(t < T_1 \). Hence \(V_A(t) \geq 0 \) i.e. \(C(t, S(t), K, T_2) \geq C(t, S(t), K, T_1) \), which is the claim.

4. We prove the statement for call options, the argument for put options being the same. Let \(K_0, K_1 > 0 \) and \(0 < \lambda < 1 \) be given. Consider a portfolio \(A \) which is short one share with strike \(\lambda K_0 + (1 - \lambda)K_1 \) and maturity \(T \), long \(\lambda \) shares of a call with strike \(K_1 \) and maturity \(T \), long \((1 - \lambda) \) shares of a call with strike \(K_0 \) and maturity \(T \). The value of this portfolio at maturity is
\[
V_A(T) = -(S(T) - (\lambda K_1 + (1 - \lambda)K_0))_+ + \lambda(S(T) - K_1)_+ + (1 - \lambda)(S(T) - K_0)_+.
\]
The convexity of the function \(f(x) = (S(T) - x)_+ \) gives \(V_A(T) \geq 0 \), and so \(V_A(t) \geq 0 \) by the dominance principle. The latter inequality is
\[
C(t, S(t), \lambda K_1 + (1 - \lambda)K_0, T) \leq \lambda C(t, S(t), K_1, T) + (1 - \lambda)C(t, S(t), K_0, T),
\]
which is the claim for call options.

Theorem 2.1

Let \(\{h_S(t), h_B(t)\}_{t \in \mathcal{I}} \) be a self-financing portfolio process with value \(V(N) \) at time \(t = N \). Define
\[
q_u = \frac{e^r - e^d}{e^u - e^d}, \quad q_d = 1 - q_u.
\]
Then for \(t = 0, \ldots, N - 1 \), \(V(t) \) is given by
\[
V(t) = e^{-r(N-t)} \sum_{(x_{t+1}, \ldots, x_N) \in \{u,d\}^{N-t}} q_{x_{t+1}} \cdots q_{x_N} V(N, x).
\]
In particular we have the initial value
\[V(0) = e^{-rN} \sum_{x \in \{u,d\}} q_u^{N_u(x)} q_d^{N_d(x)} V(N,x). \]

Moreover the portfolio satisfies the recurrence formula
\[V(t - 1) = e^{-r}[q_u V_u(t) + q_d V_d(t)], \quad t \in \mathcal{I}, \]
where
\[V_u(t) = h_S(t) S(t - 1) e^u + h_B(t) B(t - 1) e^r, \]
\[V_d(t) = h_S(t) S(t - 1) e^d + h_B(t) B(t - 1) e^d. \]

Proof

We prove it by induction for \(t = 0, ..., N - 1 \).

Step 1

We begin with \(t = N - 1 \). Then
\[V(N - 1) = e^{-r}[q_u V(N, (x_1, ..., x_{N-1}, u)) + q_d V(N, (x_1, ..., x_{N-1}, d))] . \tag{1} \]

Here, we have
\[V(N, (x_1, ..., x_{N-1}, u)) = h_S(N) S(N - 1) e^u + h_B(N) B(N - 1) e^r, \]
similarly for \(V(N, (x_1, ..., x_{N-1}, d)) \) but \(u \) replaced with \(d \), which follows by the definition of portfolio value. Thus \(V(N - 1) \) is equal to
\[
V(N - 1) \\
= e^{-r}[q_u (h_S(N) S(N - 1) e^u + h_B(N) B(N - 1) e^r) \\
\quad + q_d (h_S(N) S(N - 1) e^d + h_B(N) B(N - 1) e^r)] \\
= e^{-r}[h_S(N) S(N - 1) e^r + h_B(N) B(N - 1) e^r] \\
= h_S(N) S(N - 1) + h_B(N) B(N - 1),
\]

since \(e^u q_u + e^d q_d = e^r \) and \(q_u + q_d = 1 \). This proves the claim for \(t = N - 1 \), by the definition of self-financing portfolios.

Step 2

Now assume this is true at \(t + 1 \) i.e.
\[V(t + 1) = e^{-r(N-t-1)} \sum_{(x_{t+2}, ..., x_N) \in \{u,d\}^{N-t-1}} q_{x_{t+2}} \cdots q_{x_N} V(N, x). \tag{2} \]
Step 3
We now prove it at time t. Let
\[
V^u(t + 1) := h_S(t + 1)S(t)e^u + h_B(t + 1)B(t)e^r \quad \text{assuming } x_{t+1} = u, \\
V^d(t + 1) := h_S(t + 1)S(t)e^d + h_B(t + 1)B(t)e^r \quad \text{assuming } x_{t+1} = d.
\]

This gives us
\[
e^{-r}[q_u V^u(t + 1) + q_d V^d(t + 1)] = h_S(t + 1)S(t) + h_B(t + 1)B(t).
\]

By the self financing property we have
\[
e^{-r}[q_u V^u(t + 1) + q_d V^d(t + 1)] = V(t),
\]
which proves that V satisfies the recurrence formula. Moreover, with the induction hypothesis we have
\[
V^u(t + 1) = e^{-r(N-t-1)} \sum_{(x_{t+2}, \ldots, x_N) \in \{u,d\}^{N-t-1}} q_{x_{t+2}} \cdots q_{x_N} V(N, x_1, \ldots, x_{t+1}, u, x_{t+2}, \ldots, x_N), \\
V^d(t + 1) = e^{-r(N-t-1)} \sum_{(x_{t+2}, \ldots, x_N) \in \{u,d\}^{N-t-1}} q_{x_{t+2}} \cdots q_{x_N} V(N, x_1, \ldots, x_{t+1}, d, x_{t+2}, \ldots, x_N),
\]
using these, with equation (2), we obtain
\[
V(t) = e^{-r(N-T)} \sum_{(x_{t+1}, \ldots, x_N) \in \{u,d\}^{N-t}} q_{x_{t+1}} \cdots q_{x_N} V(N, x).
\]

Theorem 2.2
The binomial market is arbitrage free iff $r \in (d, u)$.

Proof
The proof is divided into 2 steps, first we prove the claim for the 1-period model. The generalization for the multiperiod model $N > 1$ is carried out in step 2.

Step 1
Let the portfolio position in the 1-period model be constant, (thus be self-financing over $[0, 1]$), i.e. let
\[
h_S(0) = h_S(1) = h_S, \quad h_B(0) = h_B(1) = h_B. \quad (3)
\]
The portfolio value at $t = 0$ is
\[
V(0) = h_S S_0 + h_B B_0, \quad (4)
\]
while at time $t = 1$ it is
\[
V(1) = \begin{cases}
V(1, u) = h_S S_0 e^u + h_B B_0 e^r & \text{if stock goes up at } t = 1 \\
V(1, d) = h_S S_0 e^d + h_B B_0 e^r & \text{if stock goes down at } t = 1
\end{cases} \quad (5)
\]
Thus the portfolio is an arbitrage if \(V(0) = 0 \), i.e.
\[h_S S_0 + h_B B_0 = 0, \]
if \(V(1) \geq 0 \) i.e.
\[h_S S_0 e^u + h_B B_0 e^r \geq 0, \]
\[h_S S_0 e^d + h_B B_0 e^r \geq 0, \]
and if at least one of the two inequalities in (7) is strict. Now assume that \((h_S, h_B)\) is an arbitrage portfolio. From (6) we have \(h_S S_0 = -h_B B_0 \), thus (7) becomes
\[h_S S_0 (e^u - e^r) \geq 0, \]
\[h_S S_0 (e^d - e^r) \geq 0. \]
We have \(h_S \neq 0 \) since at least one of the inequalities must be strict. Assuming \(h_S > 0 \) then we obtain from the two inequalities above that \(d \geq r \). Instead, assuming \(h_S < 0 \) we instead obtain \(r \geq u \). Hence the existence of an arbitrage portfolio implies \(r \geq u \) or \(r \leq d \), i.e. \(r \notin (d, u) \). Which proves that for \(r \in (d, u) \) there is no arbitrage portfolio for the 1-period model. Now we need to prove that \(r \in (d, u) \) is necessary for the absence of arbitrages, we construct an arbitrage portfolio when \(r \notin (d, u) \). Assume \(r \leq d \), pick \(h_S = 1 \) and \(h_B = -S_0 / B_0 \). Then \(V(0) = 0 \). Further, \(h_S S_0 e^d + h_B B_0 e^r \geq 0 \) is trivially satisfied, and since \(u > d \) we have
\[h_S S_0 e^u + h_B B_0 e^r = S_0 (e^u - e^r) > S_0 (e^d - e^r) \geq 0. \]
This shows that one can construct an arbitrage portfolio when \(r \leq d \), a similiar argument is done for \(r \geq u \). We now continue with step 2.

Step 2

Again let \(r \notin (d, u) \), we’ve shown that in the 1-period model there exists an arbitrage portfolio \((h_S, h_B)\). Now by investing the whole value of the portfolio \((h_S, h_B)\) at \(t = 1 \) in the risk-free asset, we can build a self-financing arbitrage portfolio process \(\{h_S(t), h_B(t)\}_{t \in \mathbb{I}} \) for the multiperiod model. This portfolio satisfies \(V(0) = 0 \) and \(V(N, x) = V(1, x) e^{r(N-1)} \geq 0 \) along every path \(x \in \{u, d\}^N \). Moreover, \((h_S, h_B)\) is an arbitrage, therefore \(V(1, y) > 0 \) for some \(y \in \{u, d\}^N \), hence \(V(N, y) > 0 \). The constructed self-financing portfolio process \(\{h_S(t), h_B(t)\}_{t \in \mathbb{I}} \) is an arbitrage, now we have to prove the “only if” part for the multiperiod model. By Theorem 2.1
\[V(0) = e^{-rN} \sum_{x \in \{u, d\}^N} (q_u)^{N_u(x)} (q_d)^{N_d(x)} V(N, x). \]
Now assume that the portfolio is an arbitrage. Then \(V(0) = 0 \) and \(V(N, x) \geq 0 \). We can consider only paths such that \(V(N, x) > 0 \) which exists since the portfolio is an arbitrage. But then (11) can be zero only if one of \(q_u \) or \(q_d \) is zero, or if opposite signs. Since \(u > d \) we have
\[q_u = 0, \quad \text{resp. } q_d = 0 \Rightarrow r = d, \quad \text{resp. } u = r \]
\[(q_u > 0, q_d < 0), \quad \text{resp. } (q_u < 0, q_d > 0) \Rightarrow u < r, \quad \text{resp. } r < d. \]
We conclude that the existence of a self-financing arbitrage portfolio entails \(r \notin (d, u) \) which completes the proof.
Theorem 3.2
Consider a standard European derivative with pay-off $Y = g(S(N))$ at the time of maturity N. Then the portfolio given by

$$h_S(0) = h_S(1), \quad h_B(0) = h_B(1),$$

and for $t \in \mathcal{I}$,

$$h_S(t) = \frac{1}{S(t-1)} \frac{\Pi^u_Y(t) - \Pi^d_Y(t)}{e^u - e^d},$$

$$h_B(t) = \frac{e^{-r}}{B(t-1)} \frac{e^u \Pi^u_Y(t) - e^d \Pi^u_Y(t)}{e^u - e^d},$$

is a self-financing, predictable, hedging portfolio.

Proof
We begin proving the hedging property, we have

$$V(t) = h_S(t)S(t) + h_B(t)B(t) = \frac{S(t)}{S(t-1)} \frac{\Pi^u_Y(t) - \Pi^d_Y(t)}{e^u - e^d} + \frac{e^{-r}B(t)}{B(t-1)} \frac{e^u \Pi^u_Y(t) - e^d \Pi^u_Y(t)}{e^u - e^d}. $$

Here $e^{-r}B(t)/B(t-1) = 1$ and $S(t)/S(t-1)$ is either e^u or e^d depending on $S(t)$. Using these two values we obtain $V^u_Y(t) = \Pi^u_Y(t)$, and $V^d_Y(t) = \Pi^d_Y(t)$, that is $V(t) = \Pi_Y(t)$ i.e. replicating the derivative. In particular, for $t = N$ we have $V(N) = \Pi_Y(N) = Y$, hence the portfolio is hedging the derivative.

Now, proving the self-financing property, we have

$$h_S(t)S(t-1) + h_B(t)B(t-1) = \frac{\Pi^u_Y(t)(1 - e^{d-r}) + \Pi^d_Y(t)(e^{u-r} - 1)}{e^u - e^d} = \Pi_Y(t-1),$$

by using the definition of q_u, q_d as well as the recurrence formula. Also we already know that the portfolio is replicating the derivative, i.e. $V(t-1) = \Pi_Y(t-1)$, therefore

$$h_S(t)S(t-1) + h_B(t)B(t-1) = V(t-1).$$

Finally, the portfolio is predictable, since

$$\Pi_Y := e^{-r(N-t)} \sum_{(x_{t+1}, ..., x_N) \in \{u,d\}^{N-t}} q_{x_{t+1}} \cdots q_{x_N} g(S(t) \exp(x_{t+1} + \ldots + x_N)),$$

therefore, we have

$$\Pi^u_Y(t) := e^{-r(N-t)} \sum_{(x_{t+1}, ..., x_N) \in \{u,d\}^{N-t}} q_{x_{t+1}} \cdots q_{x_N} g(S(t-1) e^u \exp(x_{t+1} + \ldots + x_N)),$$

hence $\Pi^u_Y(t)$ is a deterministic function of $S(t-1)$ and the same property holds for $\Pi^d_Y(t)$. Thus $h_S(t), h_B(t)$ are deterministic functions of $S(t-1)$, which proves that the portfolio is predictable.
Theorem 4.1
Consider a standard American derivative with intrinsic value $Y(t)$ and let $\hat{\Pi}_Y(t)$ be its binomial fair price. Define the portfolio process $\{\hat{h}_S(t), \hat{h}_B(t)\}_{t \in \mathcal{I}}$ and the cash flow process $C(t)$ recursively as follows:

\begin{align*}
C(0) &= 0, \quad C(t-1) = \hat{\Pi}_Y(t-1) - e^{-r}[q_u\hat{\Pi}_u(t) + q_d\hat{\Pi}_d(t)], \quad t \in \{2, ..., N\} \quad (13) \\
\hat{h}_S(1) &= \hat{h}_S(0), \quad \hat{h}_B(1) = \hat{h}_B(0), \quad (14)
\end{align*}

and for $t \in \{1, ..., N\},$

\begin{align*}
\hat{h}_S(t) &= \frac{1}{S(t-1)} \frac{\hat{\Pi}_u(t) - \hat{\Pi}_d(t)}{e^u - e^d}, \quad (15) \\
\hat{h}_B(t) &= \frac{e^{-r}}{B(t-1)} \frac{e^u\hat{\Pi}_d(t) - e^d\hat{\Pi}_u(t)}{e^u - e^d}. \quad (16)
\end{align*}

Then the value of this portfolio process satisfies

\begin{align*}
V(t) &= \hat{\Pi}_Y(t) \forall t \in \{0, ..., N\}, \quad (17)
\end{align*}

and

\begin{align*}
V(t-1) &= \hat{h}_S(t)S(t-1) + \hat{h}_B(t)B(t-1) + C(t-1), \quad \forall t \in \mathcal{I}. \quad (18)
\end{align*}

Proof
By using the equations (13), (14), (15), (16) into equations (17) and (18) we obtain

\begin{align*}
V^u(t) = \hat{h}_S(t)S(t-1)e^u + \hat{h}_B(t)B(t-1)e^d = \hat{\Pi}_u(t),
\end{align*}

similiar calculations proves $V^d(t) = \hat{\Pi}_d(t)$, hence (17) holds. Also replacing equations (13), (14), (15), (16) into the right hand side of (18), the latter is equal to $\hat{\Pi}_Y(t-1)$, which we proved is equal to $V(t-1)$, hence (18) holds.

Theorem 5.3
If $r \notin (d,u)$ there is no probability measure \mathbb{P}_p on the sample space Ω_N such that the discounted stock price $\{\hat{S}(t)\}_{t \in \mathcal{I}}$ is a martingale. For $r \in (d,u),$ $\{\hat{S}(t)\}_{t \in \mathcal{I}}$ is a martingale with respect to the probability measure \mathbb{P}_q where

\begin{align*}
q = \frac{e^r - e^d}{e^u - e^d}.
\end{align*}

Moreover \mathbb{P}_q is the only probability measure on Ω_N for which $\{\hat{S}(t)\}_{t \in \mathcal{I}}$ is a martingale.

Proof
By definition $\{\hat{S}(t)\}_{t \in \mathcal{I}}$ is a martingale if and only if

\begin{align*}
\mathbb{E}[e^{-rt}S(t)|\hat{S}(1), ..., \hat{S}(t-1)] = e^{-r(t-1)}S(t-1), \forall t \in \mathcal{I}. \quad (19)
\end{align*}
Clearly, conditioning on $\hat{S}(1), \ldots, \hat{S}(t-1)$ is the same as taking the expectation conditional to $S(1), \ldots, S(t-1)$, hence (19) is equivalent to
\[
\mathbb{E}[S(t)|S(1), \ldots, S(t-1)] = e^t S(t-1), \forall t \in \mathcal{I}.
\]
Moreover
\[
\mathbb{E}[S(t)|S(1), \ldots, S(t-1)] = \mathbb{E}[S(t-1) \frac{S(t)}{S(t-1)}|S(1), \ldots, S(t-1)],
\]
however since $S(t-1)$ is known, and because $S(t)/S(t-1)$ is either e^u with probability p, or e^d with probability $1-p$, and is independent of $S(1), \ldots, S(t-1)$, it follows that
\[
\mathbb{E}[S(t)|S(1), \ldots, S(t-1)] = S(t-1)(e^u p + e^d (1-p)).
\]
Therefore $\mathbb{E}[S(t)|S(1), \ldots, S(t-1)] = e^t S(t-1)$ holds iff $e^r = e^u p + e^d (1-p)$. The latter has a solution $p \in (0,1)$ iff $r \in (d,u)$, when it exists it is given by $p = q$.

Theorem 5.4

Let $\mathbb{E}_p[\cdot]$ denote the expectation in the probability measure \mathbb{P}_p. We have
\[
\mathbb{E}_p[S(N)] = S(0)(e^u p + e^d (1-p))^N, \quad \mathbb{E}_q[S(N)] = S(0)e^{rN}.
\]

Proof

We prove only the first formula because the second formula follows by the first one using that $e^u q + e^d (1 - q) = e^r$. We have
\[
\mathbb{E}_p[S(N)] = \mathbb{E}_p[S(0) \exp(X_1 + \ldots + X_N)] = S(0)\mathbb{E}_p[Y],
\]
where Y is the random variable $Y = \exp(X_1 + \ldots + X_2) = \exp(u N_H(\omega) + d N_T(\omega)), \omega \in \Omega$. Now using that $N_T = N - N_H$ it follows that
\[
\mathbb{E}_p[S(N)] = S(0) \sum_{\omega \in \Omega_N} e^{u N_H + d N_T} p^{N_H} (1-p)^{N_T} = S(0) e^{dN} (1-p)^N \sum_{\omega \in \Omega_N} \left(\frac{e^u p}{e^d (1-p)} \right)^{N_H}.
\]
Now, since for $k = 0, \ldots, N$ there is $\binom{N}{k}$ sample points $\omega \in \Omega_N$ such that $N_H(\omega) = k$, we rewrite the above expression and using the binomial theorem, we obtain the following
\[
\mathbb{E}_p[S(N)] = S(0) e^{N_d} (1-p)^N \sum_{k=0}^{N} \binom{N}{k} \left(\frac{e^u p}{e^d (1-p)} \right)^k = S(0) e^{N_d} (1-p)^N \left(1 + \frac{e^u p}{e^d (1-p)} \right)^N
\]
\[
= S(0)(e^d (1-p)e^u p)^N.
\]

Theorem 5.10

The density of the random variable $S(t)$ is given by
\[
f_{S(t)}(x) = \frac{\mathbb{1}_{x>0}}{x \sigma \sqrt{2\pi t}} \exp \left(-\frac{(\log x - \log S(0) - at)^2}{2 \sigma^2 t} \right),
\]
where $\mathbb{1}_{x>0}$ is the indicator function of the set $x > 0$.

Proof
The density of $S(t)$ is given by
\[f_S(t)(x) \frac{d}{dx} F_S(t)(x), \]
where $F_S(t)$ is the distribution of $S(t)$, i.e.,
\[F_S(t)(x) = P(S(t) \leq x). \]
Clearly, $f_S(t) = F_S(t) = 0$ for $x \leq 0$. For $x > 0$ we use that
\[S(t) \leq x \quad \text{if and only if} \quad W(t) \leq \frac{1}{\sigma} \left(\log \frac{x}{S(0)} - \alpha t \right) := A(x). \]
Thus
\[P(S(t) \leq x) = P(-\infty < W(t) \leq A(x)) = \frac{1}{\sqrt{2\pi t}} \int_{-\infty}^{A(x)} e^{-\frac{y^2}{2t}} dy, \]
where for the second equality we used that $W(t) \in \mathcal{N}(0, t)$. Hence
\[f_S(t)(x) = \frac{d}{dx} \left(\frac{1}{\sqrt{2\pi t}} \int_{-\infty}^{A(x)} e^{-\frac{y^2}{2t}} dy \right) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{A(x)^2}{2t}} \frac{dA(x)}{dx} \]
for $x > 0$, that is
\[f_S(t)(x) = \frac{1}{\sigma x \sqrt{2\pi t}} \exp \left(-\frac{(\log x - \log S(0) - \alpha t)^2}{2\sigma^2 t} \right), \quad x > 0. \]

Theorem 6.2
The Black-Scholes price at time t of a European call option with strike $K > 0$, maturity time $T > 0$ is given by $C(t, S(t))$ where
\[C(t, x) = x \Phi(d_1) - Ke^{-rT} \Phi(d_2), \quad d_2 = \frac{\log \left(\frac{x}{K} \right) + \left(r - \frac{1}{2} \sigma^2 \right) T}{\sigma \sqrt{T}}, \quad d_1 = d_2 + \sigma \sqrt{T}, \quad (23) \]
where Φ is the standard normal distribution. The Black-Scholes price of the corresponding put option is given by $P(t, S(t))$ where
\[P(t, x) = -x \Phi(-d_1) + Ke^{-rT} \Phi(-d_2). \]
Moreover the put-call parity holds
\[C(t, S(t)) - P(t, S(t)) = S(t) - Ke^{-rT}. \quad (24) \]
Proof

We derive the price for call options, since the argument is similiar for put options. Recall the pay-off function \(g(z) = (z - K)_+ \), we have

\[
C(t, x) = e^{-rt} \sqrt{2\pi} \int_R g \left(x e^{(r-\frac{\sigma^2}{2})+\sigma \sqrt{\tau} y} - K \right) e^{-\frac{y^2}{2}} dy.
\]

Note that \(g \) is nonzero when \(x e^{(r-\frac{\sigma^2}{2})+\sigma \sqrt{\tau} y} - K \), i.e. when \(y > -d_2 \). Thus using \(-\frac{1}{2}y^2 + \sigma \sqrt{\tau} y = -\frac{1}{2}(y - \sigma \sqrt{\tau})^2 + \frac{a^2 \tau}{2} \). Thus we obtain

\[
C(t, x) = e^{-rt} \frac{1}{\sqrt{2\pi}} \left(x e^{r \frac{-\sigma^2}{2} + d_2^2} \int_{-d_2}^{\infty} e^{-\frac{1}{2}(y-\sigma \sqrt{\tau})^2} dy - K \int_{-d_2}^{\infty} e^{-\frac{y^2}{2}} dy \right) =
\]

Now consider the left integral with the change of variables \(u = y - \sigma \sqrt{\tau} \), which gives the lower integral limit \(u = -d_2 - \sigma \sqrt{\tau} = -d_1 \). Now since we have two integrals of even functions, symmetric around zero, we have

\[
C(t, x) = e^{-rt} \frac{1}{\sqrt{2\pi}} \left(x e^{r \frac{-\sigma^2}{2} + d_1^2} \int_{-d_1}^{\infty} e^{-\frac{1}{2}u^2} du - K \int_{-d_2}^{\infty} e^{-\frac{y^2}{2}} dy \right) =
\]

Finally, the put-call parity follows since

\[
C(t, x) - P(t, x) = x \Phi(d_1) - Ke^{-rt} \Phi(d_2) - (-x \Phi(-d_1) + Ke^{-rt} \Phi(-d_2)) =
\]

since \(\Phi(u) + \Phi(-u) = 1 \). Thus the claims follows.