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Uppgifter

1. (Fourierserier gör det rätt — närmevärdet blir helt rätt!) L̊at
{ϕn}n∈N vara ortonormala i ett Hilbert-rum H. Om f ∈ H, och∑

n∈N
cnϕn ∈ H,

bevisa att
∥f −

∑
n∈N

⟨f, ϕn⟩ϕn∥ ≤ ∥f −
∑
n∈N

cnϕ∥.

(English: Fourier series pass the test, they can approximate
the best!) Let {ϕn}n∈N be an orthonormal set in a Hilbert space H.
If f ∈ H, and ∑

n∈N
cnϕn ∈ H,

then
∥f −

∑
n∈N

⟨f, ϕn⟩ϕn∥ ≤ ∥f −
∑
n∈N

cnϕ∥.

(10p)

2. (Besselfunktionerna är genererade av en funktion som är ex-
ponentierad). Bevisa att Besselfunktionerna Jn uppfyller

∞∑
n=−∞

Jn(x)z
n = e

x
2
(z− 1

z
), x ∈ R, z ∈ C \ {0}.

(English: The Bessel functions are generated by a function
that’s exponentiated) Prove that for all x ∈ R and for all z ∈ C
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with z ̸= 0, the Bessel functions, Jn, satisfy

∞∑
n=−∞

Jn(x)z
n = e

x
2
(z− 1

z
).

3. Beräkna, beroende p̊a a: (Compute depending on a):

∞∑
n=2

a2

4n2 − 4n+ 1
.

(10p)

4. Lös problemet: (solve):
ut(x, t)− uxx(x, t) = (x cos(t))3, t > 0, 0 < x < 2,

u(0, t) = 0, t > 0,

u(2, t) = 0, t > 0,

u(x, 0) = 5x, 0 ≤ x ≤ 2.

(Note that certain integrals do not need to be calculated - they must
be correctly stated with correct integrand and limits of integration -
but need not be calculated.) (10 p)

5. Lös problemet (solve):

ut(r, θ, t) = ∆u(r, θ, t) + sin(r), 0 < t, 0 < r < 1, −π < θ < π,

u(1, θ, t) = 0,

u(r, θ, 0) = r3.

(Note that certain integrals do not need to be calculated - they must
be correctly stated with correct integrand and limits of integration -
but need not be calculated.)

(10p)

6. Lös problemet (solve):

ut − uxx = 0, x, t > 0,

u(0, t) = 0,

u(x, 0) =
1

1 + x2
.
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(Note that certain integrals do not need to be calculated - they must
be correctly stated with correct integrand and limits of integration -
but need not be calculated.) (10p)

7. L̊at f vara en kontinuerlig udda funktion p̊a [−1, 1]. Funktionen p(x)
är ett polynom av grad mindre än eller lika med 8 som minimerar

∥f(x)− p(x)∥ =

√∫ 1

−1
(f(x)− p(x))2dx.

Visa att p(x) ocks̊a är en udda funktion.
(English) Let f be a continuous odd function on [−1, 1]. The function
p(x) is a polynomial of degree at most 8 that minimizes

∥f(x)− p(x)∥ =

√∫ 1

−1
(f(x)− p(x))2dx.

Show that p is also an odd function.

8. Lös den partiella differentialekvationen (solve):

ut + ux + u = 0, x > 0, t > 0,

u(0, t) = cos(t),

u(x, 0) = 0.

(10p)

3



1 Fun facts!

1.1 The Laplace operator

The Laplace operator in two and three dimensions is respectively

∆ = ∂xx + ∂yy, ∂xx + ∂yy + ∂zz.

In polar coordinate in two dimensions

∆ = ∂rr + r−1∂r + r−2∂θθ.

In cylindrical coordinates in three dimensions

∆ = ∂rr + r−1∂r + r−2∂θθ + ∂zz.

1.2 How to solve first order linear ODEs

If one has a first order linear differential equation, then it can always be
arranged in the following form, with u the unknown function and p and g
specified in the ODE:

u′(t) + p(t)u(t) = g(t).

We compute in this case a function traditionally called µ known as the
integrating factor,

µ(t) := exp

(∫ t

0
p(s)ds

)
.

For this reason we call this method the Mµthod. When computing the
integrating factor the constant of integration can be ignored, because we
will take care of it in the next step. We compute∫ t

0
µ(s)g(s)ds =

∫ t

0
µ(s)g(s)ds+ C.

Don’t forget the constant here! That’s why we use a capital C. The solution
is:

u(t) =

∫ t
0 (µ(s)g(s)ds) + C

µ(t)
.
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1.3 How to solve second order linear ODEs

Theorem 1 (Basis of solutions for linear, constant coefficient, homogeneous
second order ODEs). Consider the ODE, for the unknown function u that
depends on one variable, with constants b and c given in the equation:

au′′ + bu′ + cu = 0, a ̸= 0.

A basis of solutions is one of the following pairs of functions depending on
whether b2 ̸= 4ac or b2 = 4ac:

1. If b2 ̸= 4ac, then a basis of solutions is

{er1x, er2x}, with r1 =
−b+

√
b2 − 4ac

2a
, r2 =

−b−
√
b2 − 4ac

2a
.

2. If b2 = 4ac, then a basis of solutions is

{erx, xerx}, with r = − b

2a
.

Theorem 2 (Particular solution to linear second order ODEs). Assume
that y1 und y2 are a basis of solutions to the ODE

L(y) = y′′ + q(t)y′ + r(t)y = 0.

Then, if yp is a particular solution of the inhomogeneous ODE, so that

L(yp) = g,

then all solutions to L(y) = g can be expressed as

c1y1 + c2y2 + yp,

for y1 and y2 as above, for coefficients c1 and c2. One way to find a particular
solution to the ODE

L(y) = g(t)

is to calculate

Y (t) = −y1
∫

y2g(t)

W (y1, y2)
dt+ y2

∫
y1g(t)

W (y1, y2)
dt.

The Wronskian of y1 and y2, denoted by W (y1, y2) above, is defined to be

W (y1, y2)(t) = y1(t)y
′
2(t)− y2(t)y

′
1(t).
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1.4 Euler differential equations

An Euler differential equation is an equation of the form

x2u′′(x) + axu′(x) + bu(x) = 0,

for some constants a and b.

1. If the quadratic equation

r2 + (a− 1)r + b = 0

has two distinct solutions, r1 and r2 then {xr1 , xr2} is a basis of solu-
tions.

2. If the quadratic equation has one solution, call it r, then {xr, xr log(x)}
is a basis of solutions.

OBSERVE that the solutions to the quadratic equation are in C so they can
be complex numbers! The distinction is whether we have two different com-
plex numbers that solve the equation (case 1) or whether only one complex
number solves the equation (so it’s a double root).

1.5 Orthogonal bases in certain cases

1. The functions
{einx}, n ∈ Z

are an orthogonal base for L2 on the interval [−π, π].

2. The functions {sin(nx)}n≥1 together with {cos(nx)}n≥0 are an orthog-
onal base for L2 on the interval [−π, π].

3. The functions {sin(nx)}n≥1 are an orthogonal base for L2 on the in-
terval [0, π].

4. The functions {cos(nx)}n≥0 are an orthogonal base for L2 on the in-
terval [0, π].

5. The functions {einπx/L}n∈Z are an orthogonal base for L2(−L,L).

6. The functions {sin(nπx/L)}n≥1 are an orthogonal base for L2 on the
interval [0, L].

7. The functions {cos(nπx/L)}n≥0 re an orthogonal base for L2 on the
interval [0, L].

8. The functions {einπ(x−a)/L}n∈Z are an orthogonal base for L2 on the
interval [a− L, a+ L].
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1.6 The Plancharel theorem and Fourier Inversion

Theorem 3 (Plancharel). Assume that f and g are in L2(R). Then we
have the relationship between the scalar product of f and g and that of their
Fourier transforms

⟨f, g⟩ =
∫
R
f(x)g(x)dx =

1

2π
⟨f̂ , ĝ⟩ = 1

2π

∫
R
f̂(ξ)ĝ(ξ)dξ.

Theorem 4 (FIT (Fourier inversion)). Assume that f ∈ L2(R). Then there
is a unique element of L2(R) that is defined to be the Fourier transform of
f and expressed as

f̂(ξ) =

∫
R
e−ixξf(x)dx.

Moreover,

f(x) =
1

2π

∫
R
f̂(ξ)eixξdξ.

1.7 The Laplace transform

Proposition 1. Assume that f and all derivatives of f up to the kth are
Laplace transformable. Then

(̃f (k))(z) = zkf̃(z)−
k∑

j=1

f (k−j)(0)zj−1.

Here ˜something denotes the Laplace transform of ‘something.’

1.8 Dirichlet, Neumann, Periodic, and Robin boundary con-
ditions in SLp’s

1. The Dirichlet boundary condition requires a function to be equal to
zero at the boundary.

2. The Neumann boundary condition requires the normal derivative of a
function to be equal to zero at the boundary. So at a boundary point
x = a it looks like f ′(a) = 0.

3. The Robin boundary condition requires the normal derivative to be
equal to a scalar multiple of the function at the boundary. So if the
boundary is at a point like x = a then it would require f ′(a) = cf(a)
for some constant c.
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4. The periodic boundary condition requires a function to be the same
at the endpoints of an interval, and also the derivative of the function
to be the same at the endpoints of the interval. So if the interval for
the problem is [a, b] this would require f(a) = f(b), and usually we
also require f ′(a) = f ′(b).

1.9 Bessel facts

Definition 1 (The Bessel function J of order ν). The Bessel function J of
order ν is defined to be the series

Jν(x) :=
∞∑
n=0

(−1)n

n!Γ(n+ ν + 1)

(x
2

)ν+2n
.

The Bessel function satisfies the Bessel equation:

x2f ′′(x) + xf ′(x) + (x2 − ν2)f(x) = 0.

A second linearly independent solution to the Bessel equation is the We-
ber Bessel function Yν(x). This function tends to infinity as x → 0. The
modified Bessel equation is satisfied by Iν and Kν

x2f ′′(x) + xf ′(x)− (x2 + ν2)f(x).

For real values of ν the function Iν(x) ̸= 0 for all x > 0. One way to see this
is that

Iν(x) =

∞∑
n=0

1

n!Γ(n+ ν + 1)

(x
2

)ν+2n
.

So for x > 0 it’s a sum of positive terms. The function Kν(x) tends to ∞ as
x→ 0. The Γ (Gamma) function in the expression above is defined to be

Γ(s) =

∫ ∞

0
ts−1e−tdt, s ∈ C with Re(s) > 0. (1)

For ν ∈ C, the Bessel function is holomorphic in C \ (−∞, 0], while for
integer values of ν, it is an entire function of x ∈ C.

Theorem 5 (Bessel functions as an orthogonal base). Fix L > 0. Fix any
integer n ∈ Z. Let πm,n denote the mth positive zero of the Bessel function
J|n|. Then the functions

{J|n|(πm,nr/L)}m≥1
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are an orthogonal base for L2
r(0, L). Recall that this is the weighted L2 space

on the interval (0, L) with respect to the weight function r, so the scalar
product

⟨f, g⟩ =
∫ L

0
f(r)g(r)rdr.

More generally, for any ν ∈ R, and for any L > 0, the functions

{Jν(πmr/L)}m≥1

are an orthogonal base for L2
r(0, L), where above πm denotes the mth zero

of the Bessel function Jν . They have norms equal to∫ L

0
|Jν(πmr/L)|2rdr =

L2

2
(Jν+1(πm))2 .

Corollary 1 (Orthogonal base for functions on a disk). The functions

{J|n|(πm,nr/L)e
inθ}m≥1,n∈Z

are an orthogonal basis for L2 on the disk of radius L.

Theorem 6 (Bessel functions as bases in some other cases). Assume that
L > 0. Let the weight function w(x) = x. Fix ν ∈ R. Then J ′

ν has infinitely
many positive zeros. Let

{π′k}k≥1

be the positive zeros of J ′
ν . Then we define

ψk(x) = Jν(πkx/L), ν > 0, k ≥ 1.

In case ν = 0, define further ψ0(x) = 1. (If ν ̸= 0, then this case is omitted.)
Then {ψk}k≥1 for ν ̸= 0 is an orthogonal basis for L2

w(0, L). For ν = 0,
{ψk}k≥0 is an orthogonal basis for L2

w(0, L). Moreover the norm

||ψk||w =

∫ L

0
|ψk(x)|2xdx =

L2(π2k − ν2)

2π2k
Jν(πk)

2, k ≥ 1, ||ψ0||2w =
L2ν+2

2ν + 2
.

Next, fix a constant c > 0. Then there are infinitely many positive
solutions of

µJ ′
ν(µ) + cJν(µ) = 0,

that can be enumerated as {µk}k≥1. Then

{φk(x) = Jν(µkx/L)}k≥1

is an orthogonal basis for L2
w(0, L).
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1.10 Orthogonal polynomials

Definition 2. The Legendre polynomials, are defined to be

Pn(x) =
1

2nn!

dn

dxn
(
(x2 − 1)n

)
. (2)

The Legendre polynomials are an orthogonal base for L2(−1, 1), and

||Pn||2 =
2

2n+ 1
.

The first few Legendre polynomials are P0 = 1, P1 = x, P2 = 1
2(3x

2 − 1),
and P3 =

1
2(5x

3 − 3x).

Definition 3. The Hermite polynomials are defined to be

Hn(x) = (−1)nex
2 dn

dxn
e−x2

.

The Hermite polynomials are an orthogonal base for L2
2(R) with respect to

the weight function e−x2
. Moreover, their norms squared are

||Hn||2 =
∫
R
|Hn(x)|2e−x2

dx = 2nn!

∫
R
e−x2

dx = 2nn!
√
π.

Definition 4. The Laguerre polynomials,

Lα
n(x) =

x−αex

n!

dn

dxn
(xα+ne−x).

The Laguerre polynomials {Lα
n}n≥0 are an orthogonal basis for L2

α on (0,∞)
with the weight function α(x) = xαe−x. Their norms squared,

||Lα
n||2 =

Γ(n+ α+ 1)

n!
.

1.11 Tables of trig Fourier series, Fourier transforms, and
Laplace transforms
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1. f(x) = x
∑

n∈Z\{0}
(−1)neinx

−in .

2. f(x) = |x| π
2 +

∑
n∈Z, odd e

inx
(
− 2

πn2

)
3. f(x) =

{
0, −π < x < 0,

x, 0 < x < π.
π
4 +

∑
n∈Z\{0}

[
(−1)n+1

2in + (−1)n−1
2πn2

]
einx

4. f(x) = sin2(x) 1
2 − 1

4

(
e2ix + e−2ix

)
5. f(x) =

{
−1, −π < x < 0,

1, 0 < x < π.
2
iπ

∑
n≥1

e(2n−1)ix−e−(2n−1)ix

2n−1

6. f(x) =

{
0, −π < x < 0,

1, 0 < x < π.
1
2 +

∑
n≥1

ei(2n−1)x−e−i(2n−1)x

iπ(2n−1)

7. f(x) = | sin(x)| 2
π − 2

π

∑
n≥1

e2inx+e−2inx

4n2−1

8. f(x) = | cos(x)| 2
π − 2

π

∑
n≥1

(−1)n[einx+e−inx]
4n2−1

9. f(x) =

{
0, −π < x < 0,

sin(x), 0 < x < π.
1
π − 1

π

∑
n≥1

e2inx+e−2inx

4n2−1
+ 1

4i

(
eix − e−ix

)
10. f(x) = x2 π2

3 + 2
∑

n≥1
(−1)n(einx+e−inx)

n2

11. f(x) = x(π − |x|) 4
iπ

∑
n≥1

ei(2n−1)x−e−i(2n−1)x

(2n−1)3

12. f(x) = ebx sinh(bπ)
π

∑
n∈Z

(−1)n

b−in e
inx

13. f(x) = sinhx sinh(π)
iπ

∑
n≥1

(−1)n+1n
n2+1

[
einx − e−inx

]
Table 1: Here is a small collection of trigonometric Fourier expansions for
functions in L2(−π, π) in terms of the orthogonal base {einx}n∈Z. The series
on the right are all 2π periodic functions, so the graph of these functions
looks like the graph of f(x) on (−π, π). On the rest of the real line, outside
of the interval (−π, π) the graph of the series is copy-pasted repeatedly over
the rest of the real line, so the series does not equal f(x) for x ̸∈ (−π, π).
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1. f(x) = x 2
∑∞

n=1
(−1)n+1

n sin(nx).

2. f(x) = |x| π
2 − 4

π

∑
n≥1

cos((2n−1)x)
(2n−1)2

3. f(x) =

{
0, −π < x < 0,

x, 0 < x < π.
π
4 − 2

π

∑
n≥1

cos((2n−1)x)
(2n−1)2

+
∑

n≥1
(−1)n+1

n sin(nx)

4. f(x) = sin2(x) 1
2 − 1

2 cos(2x)

5. f(x) =

{
−1, −π < x < 0,

1, 0 < x < π.
4
π

∑
n≥1

sin((2n−1)x)
2n−1

6. f(x) =

{
0, −π < x < 0,

1, 0 < x < π.
1
2 + 2

π

∑
n≥1

sin((2n−1)x)
2n−1

7. f(x) = | sin(x)| 2
π − 4

π

∑
n≥1

cos(2nx)
4n2−1

8. f(x) = | cos(x)| 2
π − 4

π

∑
n≥1

(−1)n cos(2nx)
4n2−1

9. f(x) =

{
0, −π < x < 0,

sin(x), 0 < x < π.
1
π − 2

π

∑
n≥1

cos(2nx)
4n2−1

+ 1
2 sin(x)

10. f(x) = x2 π2

3 + 4
∑

n≥1
(−1)n cos(nx)

n2

11. f(x) = x(π − |x|) 8
π

∑
n≥1

sin((2n−1)x)
(2n−1)3

12. f(x) = ebx sinh(bπ)
π

(
1
b +

∑
n≥1

(−1)n

b2+n2 [2b cos(nx)− 2n sin(nx)]
)

13. f(x) = sinhx 2 sinh(π)
π

∑
n≥1

(−1)n+1n
n2+1

sin(nx)

Table 2: Here is a small collection of trigonometric Fourier ex-
pansions for functions in L2(−π, π) in terms of the orthogonal base
{1, cos(nx), sin(nx)}n≥1. The series on the right are all 2π periodic func-
tions, so the graph of these functions looks like the graph of f(x) on (−π, π).
On the rest of the real line, outside of the interval (−π, π) the graph of the
series is copy-pasted repeatedly over the rest of the real line, so the series
does not equal f(x) for x ̸∈ (−π, π).
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f(x) f̂(ξ)

f(x− c) e−icξ f̂(ξ)

eixcf(x) f̂(ξ − c)

f(ax) a−1f̂(a−1ξ)

f ′(x) iξf̂(ξ)

xf(x) i(f̂)′(ξ)

(f ∗ g)(x) f̂(ξ)ĝ(ξ)

f(x)g(x) (2π)−1(f̂ ∗ ĝ)(ξ)
e−ax2/2

√
2π/ae−ξ2/(2a)

(x2 + a2)−1 (π/a)e−a|ξ|

e−a|x| 2a(ξ2 + a2)−1

χa(x) =

{
1 |x| < a

0 |x| > a
2ξ−1 sin(aξ)

x−1 sin(ax) πχa(ξ) =

{
π |ξ| < a

0 |ξ| > a

Table 3: Above the function is on the left, its Fourier transform on the right.
Here a > 0 and c ∈ R.
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1. Θ(t)f(t) f̃(z)

2. Θ(t− a)f(t− a) e−az f̃(z)

3. ectΘ(t)f(t) f̃(z − c)

4. Θ(t)f(at) a−1f̃(a−1z)

5. Θ(t)f ′(t) zf̃(z)− f(0)

6. Θ(t)f (k)(t) zkf̃(z)−
∑k−1

0 zk−1−jf (j)(0)

7. Θ(t)
∫ t
0 f(s)ds z−1f̃(z)

8. Θ(t)tf(t) −f̃ ′(z)

9. Θ(t)t−1f(t)
∫∞
z f̃(w)dw

10. Θf ∗Θg(t) f̃(z)g̃(z)

11. Θ(t)tνect Γ(ν + 1)(z − c)−ν−1

12. Θ(t)(t+ a)−1 eaz
∫∞
az

e−u

u du

13. Θ(t) sin(ct) c
z2+c2

14. Θ(t) cos(ct) z
z2+c2

Table 4: Above, the function is on the left, its Laplace transform on the
right. Here a > 0 is constant and c ∈ C. Θ(t) is the heaviside function, that
is zero when t < 0 and one when t > 0.
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15. Θ(t) sinh(ct) c
z2−c2

16. Θ(t) cosh(ct) z
z2−c2

17. Θ(t) sin(
√
at)

√
πa(4z3)−1/2e−a/(4z)

18. Θ(t)t−1 sin(
√
at) π erf(

√
a/(4z)

19. Θ(t)e−a2t2 (
√
π/(2a))ez

2/(4a2) erfc(z/2a)

20. Θ(t) erf(at) z−1ez
2/(4a2) erfc(z/(2a))

21. Θ(t) erf(
√
t) (z

√
z + 1)−1

22. Θ(t)et erf(
√
t) ((z − 1)

√
z)−1

23. Θ(t) erfc(a/(2
√
t)) z−1e−a

√
z

24. Θ(t)t−1/2e−
√
at

√
π/zea/(4z) erfc(

√
a/(4z))

25. Θ(t)t−1/2e−a2/(4t)
√
π/ze−a

√
z

26. Θ(t)t−3/2e−a2/(4t) 2a−1√πe−a
√
z

27. Θ(t)tνJν(t) 2νπ−1/2Γ(ν + 1/2)(z2 + 1)−ν−1/2

28. Θ(t)J0(
√
t) z−1e−1/(4z)

Table 5: Above, the function is on the left, its Laplace transform on the
right. Here a > 0 is constant and c ∈ C.
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you are unsure about anything whatsoever, please ask!)

Uppgifter

1. (Fourierserier gör det rätt — närmevärdet blir helt rätt!) L̊at
{ϕn}n∈N vara ortonormala i ett Hilbert-rum H. Om f ∈ H, och∑

n∈N
cnϕn ∈ H,

bevisa att
∥f −

∑
n∈N

⟨f, ϕn⟩ϕn∥ ≤ ∥f −
∑
n∈N

cnϕ.

(English:) (Fourier series pass the test, they can approximate
the best!) Let {ϕn}n∈N be an orthonormal set in a Hilbert space H.
If f ∈ H, and ∑

n∈N
cnϕn ∈ H,

then
∥f −

∑
n∈N

⟨f, ϕn⟩ϕn∥ ≤ ∥f −
∑
n∈N

cnϕ.

(10p)

Solution

It is convenient (but optional) to introduce some terminology. Let

f̂n = ⟨f, ϕn⟩, g =
∑
n∈N

f̂nϕn, ψ =
∑
n∈N

cnϕn
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→ (3p)

(1p)∥f − g + g − ψ∥2 = ⟨f − g + g − ψ, f − g + g − ψ⟩
(1p) =∥f − g∥2 + ∥g − ψ∥2 + ⟨f − g, g − ψ⟩+ ⟨g − ψ, f − g⟩
(1p) =∥f − g∥2 + ∥g − ψ∥2 + 2Re⟨f − g, g − ψ⟩

[Note: One can arrive at the last conclusion here directly since this
computation was done often in the course]

We consider first the last term:

(1p)⟨f − g, g − ψ⟩ = ⟨f, g⟩ − ⟨f, ψ⟩ − ⟨g, g⟩+ ⟨g, ψ⟩

(1p) =
∑
n∈N

¯̂
fn⟨f, ϕn⟩ −

∑
n∈N

c̄n⟨f, ϕn⟩ −
∑
n∈N

f̂n⟨ϕn,
∑
m∈N

f̂mϕm⟩+
∑
n∈N

f̂n⟨ϕn,
∑
m∈N

cmϕm⟩

(2p) =
∑
n∈N

|f̂n|2 −
∑
n∈N

c̄nf̂n −
∑
n∈N

|f̂n|2 +
∑
n∈N

f̂nc̄n = 0,

where we used the fact that {ϕn}n∈N is an orthonormal set.

Thereby, we have shown that

(1p)∥f − ψ∥2 = ∥f − g∥2 + ∥g − ψ∥2 ≥ ∥f − g∥2.

Equality holds if and only if

(1p)∥g − ψ∥2 = 0 ⇐⇒ g = ψ

(1p) By their definitions and the fact that the ϕn are orthogonal, this
holds if and only if for all n∈N,

f̂n = cn

2. (Bevisa - The Bessel functions are generated by a function that’s ex-
ponentiated) Prove that for all x ∈ R and for all z ∈ C with z ̸= 0,
the Bessel functions, Jn, satisfy

∞∑
n=−∞

Jn(x)z
n = e

x
2
(z− 1

z
).
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Solution

(1p) Write out the Taylor series expansion for the exponential func-
tions:

e
xz
2 =

∞∑
j=0

(xz2 )j

j!
,

e−
x
2z =

∞∑
k=0

(− x
2z )

k

k!
.

(1p) These converge absolutely and uniformly on compact subsets of
C \ {0}. So, since z ̸= 0, we can multiply these series and rearrange
the terms as we like. Thus, we write

(2p) e
xz
2 e−

x
2z =

∞∑
j=0

(xz2 )j

j!

∞∑
k=0

(− x
2z )

k

k!
=

∞∑
j=0

∞∑
k=0

(−1)k
(
x

2

)j+k zj−k

j!k!
.

(2p) Next, keep k as it is and let n = j − k, so that j = n + k and
j + k = n + 2k. Then n will range from −∞ to ∞. In particular,
j! = (n+ k)!, but this is problematic when n+ k < 0 because the sum
only contains j! for non-negative j. However, we can remedy this by
introducing the Gamma function:

j! = Γ(j + 1), k! = Γ(k + 1).

We have 1
Γ(m) = 0 for m ∈ Z, m ≤ 0. Hence, we can write

(1p) e
xz
2 e−

x
2z =

∞∑
n=−∞

∞∑
k=0

(−1)k
(
x

2

)n+2k zn

Γ(n+ k + 1)!k!
.

(1p) Note that terms with n + k + 1 ≤ 0 correspond to (n + k)! with
n + k < 0, so they should not be there, but indeed 1

Γ(n+k+1) causes
those terms to vanish! Finally, recall that

(1p) Jn(x) =

∞∑
k=0

(−1)k(x2 )
n+2k

k!Γ(n+ k + 1)
.

Thus, it follows that

(1p) e
x
2
(z− 1

z
) = e

xz
2 e−

x
2z =

∞∑
n=−∞

Jn(x)z
n.

(10 p)
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3. Beräkna, berorende p̊a a: (Compute depending on a):

∞∑
n=2

a2

4n2 − 4n+ 1

(10p)

Solution

→ (4p) We first need to find a series in the table that could give us a
solution. First, we see that we do not find a series in the table that
has 4n2−4n−1 in the denominator. But we note that 4n2−4n−1 =
(2n−1)2, and find two possible Fourier series to help us! We pick here

f(x) =

{
0, −π < x < 0,

1, 0 < x < π
=

1

2
+

2

π

∑
n≥1

sin((2n− 1)x)

2n− 1

Note carefully that the sum starts at 1 here, not at 2. We will deal
with this later.

→ (2p) We apply Parseval’s equality to obtain

∥f∥2 =

∥∥∥∥∥∥12 +
2

π

∑
n≥1

sin((2n− 1)x)

2n− 1

∥∥∥∥∥∥
2

=
2π

4
+

4

π2

∑
n≥1

∥sin((2n− 1)x)∥2

(2n− 1)2

=
π

2
+

4

π2

∑
n≥1

π

(2n− 1)2
=
π

2
+

4

π

∑
n≥1

1

(2n− 1)2

→ (1p) On the other hand, we have

∥f∥2 =
∫ π

−π
f(x)f(x)dx =

∫ π

0
1dx = π

→ (1p) We can now solve for (almost) our series: We get

π

2
+

4

π

∑
n≥1

1

(2n− 1)2
= π

and, therefore, ∑
n≥1

1

(2n− 1)2
=
π

2

π

4
=
π2

8
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→ (2p) Finally,

∞∑
n=2

a2

4n2 − 4n+ 1
= a2

∑
n≥1

1

(2n− 1)2
− a2 =

a2π2

8
− a2.

4. Lös problemet: (Solve the following problem):
ut(x, t)− uxx(x, t) = (x cos(t))3, t > 0, 0 < x < 2,

u(0, t) = 0, t > 0,

u(2, t) = 0, t > 0,

u(x, 0) = 5x, 0 ≤ x ≤ 2.

(Note that certain integrals do not need to be calculated - they must
be correctly stated with correct integrand and limits of integration -
but need not be calculated.) (10 p)

Solution

This is an inhomogeneous heat equation on a bounded interval, where
the inhomogeneity depends on time.

(a) (1p) SLPs are keys to solving inhomogeneous pde’s. Even if you do
nothing else, this rhyme is worth a point. If you don’t do this rhyme,
you still get a point if you set up the SLP to solve

X ′′ + λX = 0, X(0) = 0, X(2) = 0

(or written equivalently).

(b) (2p) Solve this SLP. You should obtain (see the vibrating string
example in Chapter 1 of the textbook for the derivation of these solu-
tions)

Xn(x) = sin

(
nπx

2

)
, λn =

n2π2

4
, n ≥ 1.

(c) (1p) Set up the solution you seek to be a series

u(x, t) =
∑
n≥1

Tn(t)Xn(x),

where we will solve for the Tn functions using the inhomogeneous pde
together with the initial condition.
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(d) (2p) Expand the inhomogeneity in terms of the Xn base. This
is possible because {Xn}∞n=1 is an orthogonal base for L2(0, 2) by the
spectral theorem for SLPs:

(x cos(t))3 =
∑
n≥1

cos3(t)
⟨x3, Xn⟩
||Xn||2

Xn(x) =
∑
n≥1

cn cos
3(t)Xn(x)

with

cn =
⟨x3, Xn⟩
||Xn||2

, ⟨x3, Xn⟩ =
∫ 2

0
x3Xn(x)dx, ||Xn||2 =

∫ 2

0
|Xn(x)|2dx.

It is okay if you leave these integrals like this (without calculating
them) as long as you have correctly defined the scalar product and the
norm squared. However, if you do decide to compute them, you will
get

cn =
16(−1)n+1(π2n2 − 6)

π3n3
.

(e) (1p) Plug u into the heat equation (and use that X ′′
n = −λnXn) to

obtain

ut − uxx =
∑
n≥1

(T ′
n(t) +

n2π2

4
Tn(t))Xn(x) =

∑
n≥1

cn cos
3(t)Xn(x).

(f) (1p) Identify coefficients to obtain the equation for Tn:

T ′
n(t) +

n2π2

4
Tn(t) = cn cos

3(t).

(g) (1p) Set up the correct initial condition:

u(x, 0) =
∑
n≥1

Xn(x)Tn(0) = 5x =
∑
n≥1

CnXn(x)

with

Tn(0) = Cn =
⟨5x,Xn⟩
||Xn||2

.

Again, it is okay if you don’t compute this scalar product and norm
squared. In fact, if you have correctly defined the scalar product and
norm squared before, you do not even need to write these out as in-
tegrals again. However, if you do decide to compute them, you will
get

Cn =
20(−1)n+1

πn
.
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(h) (1p) Solve the ODE for Tn(t). The method of integrating factor
will give you

Tn(t) = e−
n2π2

4
t

(∫ t

0
e

n2π2

4
scn cos

3(s)ds+ Cn

)
.

5. Lös problemet (solve):

ut(r, θ, t) = ∆u(r, θ, t) + sin(r), 0 < t, 0 < r < 1, −π < θ < π,

u(1, θ, t) = 0,

u(r, θ, 0) = r3.

Solution and point distribution

(1p) The solution is independent of θ, which simplifies things.

(2p) SLp’s are the keys to solving inhomogeneous pde’s. Let’s pretend
that the pde is homogeneous and solve the part for r since it has the
nice Dirichlet condition at r = 1. The Laplacian in radial coordinates
is

∆ = ∂rr + r−1∂r + r−2∂θθ.

We need to find the associated Bessel equation for R, and solve it. We
need to find solutions of the form

R(r)T (t).

If the pde were homogeneous, we would get the equation

RT ′ = R′′T + r−1R′T

and then
R′′

R
+ r−1R

′

R
=
T

T ′ = λ.

We will solve for R and then remember to stop because our equation
for the T function will need to incorporate that inhomogeneity. For R
the equation is

R′′ + r−1R′ − λR = 0,

or
r2R′′ + rR′ − λr2R = 0.
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If λ = 0, then this becomes an Euler equation with solutions 1 and
log(r). The function log(r) is excluded because it blows up at r = 0.
The other function 1 does not satisfy the Dirichlet boundary condition
at r = 1. If λ > 0, then this is a modified Bessel equation of order
0 with solutions K0 and I0. The K0 Bessel function also blows up at
r = 0, while the I0 Bessel function does not have any positive real
zeros, so it won’t satisfy the Dirichlet boundary condition at r = 5.
The only viable case is therefore that λ < 0, and the solutions are J0
and Y0. The Y0 Bessel function blows up at r = 0 so we say goodbye
to it. We are then left with the Bessel function J0 with argument√
−λr. Considering the boundary condition u(1, θ, t) = 0 and we get√
−λ = πk, with πk one of the zeros of the Bessel function of degree

0, and
−π2k = λ.

Note that (Rk)k is a base for L2
r([0, 1]).

(1p) Realizing how we can write the solution in terms of Rk and Tk,
as

u(r, t) =
∑
k

Tk(t)Rk(r).

(2p) Use the Bessel equation to transform it. The differential equation
says that we need∑
k

T ′
k(t)Rk(r) = sin(r)+

∑
k

Tk(t)(R
′′
k(r)+r

−1R′
k(r)) = sin(r)−

∑
k

π2kTk(t)Rk(r).

Here we used that Rk satisfies the differential equation we had above

r2R′′
k + rR′

k = λr2Rk ⇐⇒ R′′
k + r−1R′

k = λRk.

This implies that

sin(r) =
∑
k

Rk(T
′
k + π2kTk/25).

(2p) Writing sin(r) in terms of the basis Rk and coefficients.

sin(r) =
∑
k

⟨sin(r), Rk⟩
⟨Rk, Rk⟩

Rk.

Now

⟨Rk, Rk⟩ =
∫ 5

0
|J0(πkr)|2rdr,
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and

⟨sin(r), Rk⟩ =
∫ 5

0
J0(πkr)rdr.

For simplicity let’s call

ck =
⟨sin(r), Rk⟩
⟨Rk, Rk⟩

(2p) Finding all the Tk. We need∑
k

ckRk =
∑
k

Rk(T
′
k + π2kTk) =⇒ ck = T ′

k + π2kTk.

So we find using the method of integrating factor that

Tk(t) = e−π2
kt

[∫ t

0
cke

π2
ksds+ Tk(0)

]
.

For the initial condition we need

f(r) = r3 =
∑
k

Rk(r)Tk(0),

so

Tk(0) =
⟨f,Rk⟩
⟨Rk, Rk⟩

,

with the scalar product and norm defined analogously to the above.

6. Lös problemet

ut − uxx = 0, x, t > 0,

u(0, t) = 0,

u(x, 0) =
1

1 + x2
.

Solution and point distribution

(1p) Realize the functions u and f need to be extended oddly because
there is a Dirichlet condition u(0, t) = 0.

(1p) We do a Fourier transform and get

ût(ξ, t) = −ξ2û(ξ, t).

9



(2p) We solve this and get

û(ξ, t) = c(ξ)e−ξ2t.

(4p) We realize

c(ξ) = û(ξ, 0) =

∫ ∞

0

1

1 + x2
e−ixξdx−

∫ 0

−∞

1

1 + x2
e−ixξdx

=

∫ ∞

0

1

1 + x2
e−ixξdx−

∫ ∞

0

1

1 + x2
eixξdx = −2i

∫ ∞

0

sin(xξ)

1 + x2
dx

(2p) So we need to have

u(x, t) =
1

2π

∫
R
û(ξ, t)eiξxdx =

−i
π

∫
R

∫ ∞

0

sin(xξ)eixξ−ξ2t

1 + x2
dxdξ.

It’s fine to leave this integral as it is.

7. L̊at f vara en kontinuerlig udda funktion p̊a [−1, 1]. Funktionen p(x)
är ett polynom av grad mindre än eller lika med 8 som minimerar

∥f(x)− p(x)∥ =

√∫ 1

−1
(f(x)− p(x))2dx.

Visa att p(x) ocks̊a är en udda funktion.

Solution and points

(5p) Writing out the best approximation of f in terms of the Legendre
polynomials correctly. One point is lost for each error in doing this
(but you won’t get negative points!).

(1p) If you say that the nth degree Legendre polynomial is odd if n is
odd and even if n is even this is worth 1 point.

(2p) Explain or refer to Beta to justify the preceding fact.

(1p) Explain why the terms

⟨f, Pn⟩
||Pn||2

vanish when n is even, and thus only the terms when n is odd remain.
(1p) Explain that all that remains is a sum of odd functions which is
therefore odd.
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8. Lös den partiella differentialekvationen

ut + ux + u = 0, x > 0, t > 0,

u(0, t) = cos(t),

u(x, 0) = 0.

Solution and points

(2p) Writing that you do the Laplace transform in the t variable. (1p
for LT and 1p for correct variable).

(2p) Actually doing the LT of the pde correctly. You should get

zũ(x, z) + ũx(x, z) + ũ(x, z) = 0.

(2p) Solving this ode in x to get

ũ(x, z) = c(z)e−(z+1)x = c(z)e−xze−x.

(2p) Using the boundary condition to say that

c(z) = c̃os(z).

(2p) Correctly unravelling the Laplace transform to get

u(x, t) = e−xΘ(t− x) cos(t− x).
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1 Fun facts!

1.1 The Laplace operator

The Laplace operator in two and three dimensions is respectively

∆ = ∂xx + ∂yy, ∂xx + ∂yy + ∂zz.

In polar coordinate in two dimensions

∆ = ∂rr + r−1∂r + r−2∂θθ.

In cylindrical coordinates in three dimensions

∆ = ∂rr + r−1∂r + r−2∂θθ + ∂zz.

1.2 How to solve first order linear ODEs

If one has a first order linear differential equation, then it can always be
arranged in the following form, with u the unknown function and p and g
specified in the ODE:

u′(t) + p(t)u(t) = g(t).

We compute in this case a function traditionally called µ known as the
integrating factor,

µ(t) := exp

(∫ t

0
p(s)ds

)
.

For this reason we call this method the Mµthod. When computing the
integrating factor the constant of integration can be ignored, because we
will take care of it in the next step. We compute∫ t

0
µ(s)g(s)ds =

∫ t

0
µ(s)g(s)ds+ C.

Don’t forget the constant here! That’s why we use a capital C. The solution
is:

u(t) =

∫ t
0 (µ(s)g(s)ds) + C

µ(t)
.
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1.3 How to solve second order linear ODEs

Theorem 1 (Basis of solutions for linear, constant coefficient, homogeneous
second order ODEs). Consider the ODE, for the unknown function u that
depends on one variable, with constants b and c given in the equation:

au′′ + bu′ + cu = 0, a ̸= 0.

A basis of solutions is one of the following pairs of functions depending on
whether b2 ̸= 4ac or b2 = 4ac:

1. If b2 ̸= 4ac, then a basis of solutions is

{er1x, er2x}, with r1 =
−b+

√
b2 − 4ac

2a
, r2 =

−b−
√
b2 − 4ac

2a
.

2. If b2 = 4ac, then a basis of solutions is

{erx, xerx}, with r = − b

2a
.

Theorem 2 (Particular solution to linear second order ODEs). Assume
that y1 und y2 are a basis of solutions to the ODE

L(y) = y′′ + q(t)y′ + r(t)y = 0.

Then, if yp is a particular solution of the inhomogeneous ODE, so that

L(yp) = g,

then all solutions to L(y) = g can be expressed as

c1y1 + c2y2 + yp,

for y1 and y2 as above, for coefficients c1 and c2. One way to find a particular
solution to the ODE

L(y) = g(t)

is to calculate

Y (t) = −y1
∫

y2g(t)

W (y1, y2)
dt+ y2

∫
y1g(t)

W (y1, y2)
dt.

The Wronskian of y1 and y2, denoted by W (y1, y2) above, is defined to be

W (y1, y2)(t) = y1(t)y
′
2(t)− y2(t)y

′
1(t).
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1.4 Euler differential equations

An Euler differential equation is an equation of the form

x2u′′(x) + axu′(x) + bu(x) = 0,

for some constants a and b.

1. If the quadratic equation

r2 + (a− 1)r + b = 0

has two distinct solutions, r1 and r2 then {xr1 , xr2} is a basis of solu-
tions.

2. If the quadratic equation has one solution, call it r, then {xr, xr log(x)}
is a basis of solutions.

OBSERVE that the solutions to the quadratic equation are in C so they can
be complex numbers! The distinction is whether we have two different com-
plex numbers that solve the equation (case 1) or whether only one complex
number solves the equation (so it’s a double root).

1.5 Orthogonal bases in certain cases

1. The functions
{einx}, n ∈ Z

are an orthogonal base for L2 on the interval [−π, π].

2. The functions {sin(nx)}n≥1 together with {cos(nx)}n≥0 are an orthog-
onal base for L2 on the interval [−π, π].

3. The functions {sin(nx)}n≥1 are an orthogonal base for L2 on the in-
terval [0, π].

4. The functions {cos(nx)}n≥0 are an orthogonal base for L2 on the in-
terval [0, π].

5. The functions {einπx/L}n∈Z are an orthogonal base for L2(−L,L).

6. The functions {sin(nπx/L)}n≥1 are an orthogonal base for L2 on the
interval [0, L].

7. The functions {cos(nπx/L)}n≥0 re an orthogonal base for L2 on the
interval [0, L].

8. The functions {einπ(x−a)/L}n∈Z are an orthogonal base for L2 on the
interval [a− L, a+ L].
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1.6 The Plancharel theorem and Fourier Inversion

Theorem 3 (Plancharel). Assume that f and g are in L2(R). Then we
have the relationship between the scalar product of f and g and that of their
Fourier transforms

⟨f, g⟩ =
∫
R
f(x)g(x)dx =

1

2π
⟨f̂ , ĝ⟩ = 1

2π

∫
R
f̂(ξ)ĝ(ξ)dξ.

Theorem 4 (FIT (Fourier inversion)). Assume that f ∈ L2(R). Then there
is a unique element of L2(R) that is defined to be the Fourier transform of
f and expressed as

f̂(ξ) =

∫
R
e−ixξf(x)dx.

Moreover,

f(x) =
1

2π

∫
R
f̂(ξ)eixξdξ.

1.7 The Laplace transform

Proposition 1. Assume that f and all derivatives of f up to the kth are
Laplace transformable. Then

(̃f (k))(z) = zkf̃(z)−
k∑

j=1

f (k−j)(0)zj−1.

Here ˜something denotes the Laplace transform of ‘something.’

1.8 Dirichlet, Neumann, Periodic, and Robin boundary con-
ditions in SLp’s

1. The Dirichlet boundary condition requires a function to be equal to
zero at the boundary.

2. The Neumann boundary condition requires the normal derivative of a
function to be equal to zero at the boundary. So at a boundary point
x = a it looks like f ′(a) = 0.

3. The Robin boundary condition requires the normal derivative to be
equal to a scalar multiple of the function at the boundary. So if the
boundary is at a point like x = a then it would require f ′(a) = cf(a)
for some constant c.
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4. The periodic boundary condition requires a function to be the same
at the endpoints of an interval, and also the derivative of the function
to be the same at the endpoints of the interval. So if the interval for
the problem is [a, b] this would require f(a) = f(b), and usually we
also require f ′(a) = f ′(b).

1.9 Bessel facts

Definition 1 (The Bessel function J of order ν). The Bessel function J of
order ν is defined to be the series

Jν(x) :=
∞∑
n=0

(−1)n

n!Γ(n+ ν + 1)

(x
2

)ν+2n
.

The Bessel function satisfies the Bessel equation:

x2f ′′(x) + xf ′(x) + (x2 − ν2)f(x) = 0.

A second linearly independent solution to the Bessel equation is the We-
ber Bessel function Yν(x). This function tends to infinity as x → 0. The
modified Bessel equation is satisfied by Iν and Kν

x2f ′′(x) + xf ′(x)− (x2 + ν2)f(x).

For real values of ν the function Iν(x) ̸= 0 for all x > 0. One way to see this
is that

Iν(x) =

∞∑
n=0

1

n!Γ(n+ ν + 1)

(x
2

)ν+2n
.

So for x > 0 it’s a sum of positive terms. The function Kν(x) tends to ∞ as
x→ 0. The Γ (Gamma) function in the expression above is defined to be

Γ(s) =

∫ ∞

0
ts−1e−tdt, s ∈ C with Re(s) > 0. (1)

For ν ∈ C, the Bessel function is holomorphic in C \ (−∞, 0], while for
integer values of ν, it is an entire function of x ∈ C.

Theorem 5 (Bessel functions as an orthogonal base). Fix L > 0. Fix any
integer n ∈ Z. Let πm,n denote the mth positive zero of the Bessel function
J|n|. Then the functions

{J|n|(πm,nr/L)}m≥1
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are an orthogonal base for L2
r(0, L). Recall that this is the weighted L2 space

on the interval (0, L) with respect to the weight function r, so the scalar
product

⟨f, g⟩ =
∫ L

0
f(r)g(r)rdr.

More generally, for any ν ∈ R, and for any L > 0, the functions

{Jν(πmr/L)}m≥1

are an orthogonal base for L2
r(0, L), where above πm denotes the mth zero

of the Bessel function Jν . They have norms equal to∫ L

0
|Jν(πmr/L)|2rdr =

L2

2
(Jν+1(πm))2 .

Corollary 1 (Orthogonal base for functions on a disk). The functions

{J|n|(πm,nr/L)e
inθ}m≥1,n∈Z

are an orthogonal basis for L2 on the disk of radius L.

Theorem 6 (Bessel functions as bases in some other cases). Assume that
L > 0. Let the weight function w(x) = x. Fix ν ∈ R. Then J ′

ν has infinitely
many positive zeros. Let

{π′k}k≥1

be the positive zeros of J ′
ν . Then we define

ψk(x) = Jν(πkx/L), ν > 0, k ≥ 1.

In case ν = 0, define further ψ0(x) = 1. (If ν ̸= 0, then this case is omitted.)
Then {ψk}k≥1 for ν ̸= 0 is an orthogonal basis for L2

w(0, L). For ν = 0,
{ψk}k≥0 is an orthogonal basis for L2

w(0, L). Moreover the norm

||ψk||w =

∫ L

0
|ψk(x)|2xdx =

L2(π2k − ν2)

2π2k
Jν(πk)

2, k ≥ 1, ||ψ0||2w =
L2ν+2

2ν + 2
.

Next, fix a constant c > 0. Then there are infinitely many positive
solutions of

µJ ′
ν(µ) + cJν(µ) = 0,

that can be enumerated as {µk}k≥1. Then

{φk(x) = Jν(µkx/L)}k≥1

is an orthogonal basis for L2
w(0, L).
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1.10 Orthogonal polynomials

Definition 2. The Legendre polynomials, are defined to be

Pn(x) =
1

2nn!

dn

dxn
(
(x2 − 1)n

)
. (2)

The Legendre polynomials are an orthogonal base for L2(−1, 1), and

||Pn||2 =
2

2n+ 1
.

The first few Legendre polynomials are P0 = 1, P1 = x, P2 = 1
2(3x

2 − 1),
and P3 =

1
2(5x

3 − 3x).

Definition 3. The Hermite polynomials are defined to be

Hn(x) = (−1)nex
2 dn

dxn
e−x2

.

The Hermite polynomials are an orthogonal base for L2
2(R) with respect to

the weight function e−x2
. Moreover, their norms squared are

||Hn||2 =
∫
R
|Hn(x)|2e−x2

dx = 2nn!

∫
R
e−x2

dx = 2nn!
√
π.

Definition 4. The Laguerre polynomials,

Lα
n(x) =

x−αex

n!

dn

dxn
(xα+ne−x).

The Laguerre polynomials {Lα
n}n≥0 are an orthogonal basis for L2

α on (0,∞)
with the weight function α(x) = xαe−x. Their norms squared,

||Lα
n||2 =

Γ(n+ α+ 1)

n!
.

1.11 Tables of trig Fourier series, Fourier transforms, and
Laplace transforms
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1. f(x) = x
∑

n∈Z\{0}
(−1)neinx

−in .

2. f(x) = |x| π
2 +

∑
n∈Z, odd e

inx
(
− 2

πn2

)
3. f(x) =

{
0, −π < x < 0,

x, 0 < x < π.
π
4 +

∑
n∈Z\{0}

[
(−1)n+1

2in + (−1)n−1
2πn2

]
einx

4. f(x) = sin2(x) 1
2 − 1

4

(
e2ix + e−2ix

)
5. f(x) =

{
−1, −π < x < 0,

1, 0 < x < π.
2
iπ

∑
n≥1

e(2n−1)ix−e−(2n−1)ix

2n−1

6. f(x) =

{
0, −π < x < 0,

1, 0 < x < π.
1
2 +

∑
n≥1

ei(2n−1)x−e−i(2n−1)x

iπ(2n−1)

7. f(x) = | sin(x)| 2
π − 2

π

∑
n≥1

e2inx+e−2inx

4n2−1

8. f(x) = | cos(x)| 2
π − 2

π

∑
n≥1

(−1)n[einx+e−inx]
4n2−1

9. f(x) =

{
0, −π < x < 0,

sin(x), 0 < x < π.
1
π − 1

π

∑
n≥1

e2inx+e−2inx

4n2−1
+ 1

4i

(
eix − e−ix

)
10. f(x) = x2 π2

3 + 2
∑

n≥1
(−1)n(einx+e−inx)

n2

11. f(x) = x(π − |x|) 4
iπ

∑
n≥1

ei(2n−1)x−e−i(2n−1)x

(2n−1)3

12. f(x) = ebx sinh(bπ)
π

∑
n∈Z

(−1)n

b−in e
inx

13. f(x) = sinhx sinh(π)
iπ

∑
n≥1

(−1)n+1n
n2+1

[
einx − e−inx

]
Table 1: Here is a small collection of trigonometric Fourier expansions for
functions in L2(−π, π) in terms of the orthogonal base {einx}n∈Z. The series
on the right are all 2π periodic functions, so the graph of these functions
looks like the graph of f(x) on (−π, π). On the rest of the real line, outside
of the interval (−π, π) the graph of the series is copy-pasted repeatedly over
the rest of the real line, so the series does not equal f(x) for x ̸∈ (−π, π).
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1. f(x) = x 2
∑∞

n=1
(−1)n+1

n sin(nx).

2. f(x) = |x| π
2 − 4

π

∑
n≥1

cos((2n−1)x)
(2n−1)2

3. f(x) =

{
0, −π < x < 0,

x, 0 < x < π.
π
4 − 2

π

∑
n≥1

cos((2n−1)x)
(2n−1)2

+
∑

n≥1
(−1)n+1

n sin(nx)

4. f(x) = sin2(x) 1
2 − 1

2 cos(2x)

5. f(x) =

{
−1, −π < x < 0,

1, 0 < x < π.
4
π

∑
n≥1

sin((2n−1)x)
2n−1

6. f(x) =

{
0, −π < x < 0,

1, 0 < x < π.
1
2 + 2

π

∑
n≥1

sin((2n−1)x)
2n−1

7. f(x) = | sin(x)| 2
π − 4

π

∑
n≥1

cos(2nx)
4n2−1

8. f(x) = | cos(x)| 2
π − 4

π

∑
n≥1

(−1)n cos(2nx)
4n2−1

9. f(x) =

{
0, −π < x < 0,

sin(x), 0 < x < π.
1
π − 2

π

∑
n≥1

cos(2nx)
4n2−1

+ 1
2 sin(x)

10. f(x) = x2 π2

3 + 4
∑

n≥1
(−1)n cos(nx)

n2

11. f(x) = x(π − |x|) 8
π

∑
n≥1

sin((2n−1)x)
(2n−1)3

12. f(x) = ebx sinh(bπ)
π

(
1
b +

∑
n≥1

(−1)n

b2+n2 [2b cos(nx)− 2n sin(nx)]
)

13. f(x) = sinhx 2 sinh(π)
π

∑
n≥1

(−1)n+1n
n2+1

sin(nx)

Table 2: Here is a small collection of trigonometric Fourier ex-
pansions for functions in L2(−π, π) in terms of the orthogonal base
{1, cos(nx), sin(nx)}n≥1. The series on the right are all 2π periodic func-
tions, so the graph of these functions looks like the graph of f(x) on (−π, π).
On the rest of the real line, outside of the interval (−π, π) the graph of the
series is copy-pasted repeatedly over the rest of the real line, so the series
does not equal f(x) for x ̸∈ (−π, π).
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f(x) f̂(ξ)

f(x− c) e−icξ f̂(ξ)

eixcf(x) f̂(ξ − c)

f(ax) a−1f̂(a−1ξ)

f ′(x) iξf̂(ξ)

xf(x) i(f̂)′(ξ)

(f ∗ g)(x) f̂(ξ)ĝ(ξ)

f(x)g(x) (2π)−1(f̂ ∗ ĝ)(ξ)
e−ax2/2

√
2π/ae−ξ2/(2a)

(x2 + a2)−1 (π/a)e−a|ξ|

e−a|x| 2a(ξ2 + a2)−1

χa(x) =

{
1 |x| < a

0 |x| > a
2ξ−1 sin(aξ)

x−1 sin(ax) πχa(ξ) =

{
π |ξ| < a

0 |ξ| > a

Table 3: Above the function is on the left, its Fourier transform on the right.
Here a > 0 and c ∈ R.
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1. Θ(t)f(t) f̃(z)

2. Θ(t− a)f(t− a) e−az f̃(z)

3. ectΘ(t)f(t) f̃(z − c)

4. Θ(t)f(at) a−1f̃(a−1z)

5. Θ(t)f ′(t) zf̃(z)− f(0)

6. Θ(t)f (k)(t) zkf̃(z)−
∑k−1

0 zk−1−jf (j)(0)

7. Θ(t)
∫ t
0 f(s)ds z−1f̃(z)

8. Θ(t)tf(t) −f̃ ′(z)

9. Θ(t)t−1f(t)
∫∞
z f̃(w)dw

10. Θf ∗Θg(t) f̃(z)g̃(z)

11. Θ(t)tνect Γ(ν + 1)(z − c)−ν−1

12. Θ(t)(t+ a)−1 eaz
∫∞
az

e−u

u du

13. Θ(t) sin(ct) c
z2+c2

14. Θ(t) cos(ct) z
z2+c2

Table 4: Above, the function is on the left, its Laplace transform on the
right. Here a > 0 is constant and c ∈ C. Θ(t) is the heaviside function, that
is zero when t < 0 and one when t > 0.
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15. Θ(t) sinh(ct) c
z2−c2

16. Θ(t) cosh(ct) z
z2−c2

17. Θ(t) sin(
√
at)

√
πa(4z3)−1/2e−a/(4z)

18. Θ(t)t−1 sin(
√
at) π erf(

√
a/(4z)

19. Θ(t)e−a2t2 (
√
π/(2a))ez

2/(4a2) erfc(z/2a)

20. Θ(t) erf(at) z−1ez
2/(4a2) erfc(z/(2a))

21. Θ(t) erf(
√
t) (z

√
z + 1)−1

22. Θ(t)et erf(
√
t) ((z − 1)

√
z)−1

23. Θ(t) erfc(a/(2
√
t)) z−1e−a

√
z

24. Θ(t)t−1/2e−
√
at

√
π/zea/(4z) erfc(

√
a/(4z))

25. Θ(t)t−1/2e−a2/(4t)
√
π/ze−a

√
z

26. Θ(t)t−3/2e−a2/(4t) 2a−1√πe−a
√
z

27. Θ(t)tνJν(t) 2νπ−1/2Γ(ν + 1/2)(z2 + 1)−ν−1/2

28. Θ(t)J0(
√
t) z−1e−1/(4z)

Table 5: Above, the function is on the left, its Laplace transform on the
right. Here a > 0 is constant and c ∈ C.
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