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1 Uppgifter

1. Bevisa DOG-satsen: Antar att {ϕn}n≥0 är ortonormala i ett Hilbertrum
H. Bevisa att följande är äkvilenta:

(a) Om f ∈ H, sedan gäller f =
∑

n≥0⟨f, ϕn⟩ϕn.

(b) ∥f∥2 =
∑

n≥0|⟨f, ϕn⟩|2.
(c) Om v ∈ H och ⟨v, ϕn⟩ = 0 ∀ n ≥ 0, sedan v = 0.

(English:) Assume that {ϕn}n≥0 are orthonormal in a Hilbert space
H. Prove that the following are equivalent:

(a) If f ∈ H, then it holds that f =
∑

n≥0⟨f, ϕn⟩ϕn.

(b) ∥f∥2 =
∑

n≥0|⟨f, ϕn⟩|2.
(c) If v ∈ H and ⟨v, ϕn⟩ = 0 for all n ≥ 0, then v = 0.

(10p)

2. Bevisa att hermitpolynomen {Hn}∞n=0 är ortogonala p̊a Rmed avseende
p̊a viktfunktionen w(x) = e−x2

. Kom ih̊ag det här

Hn(x) = (−1)nex
2 dn

dxn
e−x2

.

(English): Prove that the Hermite polynomials {Hn}∞n=0 are orthogo-
nal on R with respect to the weight function w(x) = e−x2

. Recall here
that

Hn(x) = (−1)nex
2 dn

dxn
e−x2

.

(10 p)
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3. Beräkna (Compute):
∞∑
n=0

e

4n2 − 4n+ 1
.

(10p)

4. Lös problemet: (Solve the following problem):
ut(x, t)− uxx(x, t) = x sin2(t), t > 0, 0 < x < 1,

u(0, t) = 0, t > 0,

u(1, t) = 0, t > 0,

u(x, 0) = x2, 0 ≤ x ≤ 1.

(Note that certain integrals do not need to be calculated - they must
be correctly stated with correct integrand and limits of integration -
but need not be calculated.) (10 p)

5. Lös problemet (solve):

ut(r, θ, t) = ∆u(r, θ, t) + et, 0 < t, 0 < r < 5, −π < θ < π,

u(5, θ, t) = 0,

u(r, θ, 0) = re−r2 + 5r.

(10p)

6. Lös problemet

ut − uxx = 0, x, t > 0,

ux(0, t) = 0,

u(x, 0) = e−x2
.

(10p)

7. L̊at f vara en kontinuerlig jämn funktion p̊a [−1, 1]. Funktionen p(x)
är ett polynom av grad mindre än eller lika med 9 som minimerar

∥f(x)− p(x)∥ =

√∫ 1

−1
(f(x)− p(x))2dx.
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Visa att p(x) ocks̊a är en jämn funktion.
Ledtr̊ad: Funktionen r(x) = 1

2(p(x)+p(−x)) är ocks̊a ett polynom av
grad mindre än eller lika med 9 som uppfyller att r(x) = r(−x). Vad
kan du säga om ∥f(x) − r(x)∥? Triangelolikheten ∥h1(x) + h2(x)∥ ≤
∥h1(x)∥+ ∥h2(x)∥ kan visa sig vara användbar.

8. Lös den partiella differentialekvationen

ut + ux + u = 0, x > 0, t > 0,

u(0, t) = sin(t),

u(x, 0) = 0.

(10p)
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2 Fun facts!

2.1 The Laplace operator

The Laplace operator in two and three dimensions is respectively

∆ = ∂xx + ∂yy, ∂xx + ∂yy + ∂zz.

In polar coordinate in two dimensions

∆ = ∂rr + r−1∂r + r−2∂θθ.

In cylindrical coordinates in three dimensions

∆ = ∂rr + r−1∂r + r−2∂θθ + ∂zz.

2.2 How to solve first order linear ODEs

If one has a first order linear differential equation, then it can always be
arranged in the following form, with u the unknown function and p and g
specified in the ODE:

u′(t) + p(t)u(t) = g(t).

We compute in this case a function traditionally called µ known as the
integrating factor,

µ(t) := exp

(∫ t

0
p(s)ds

)
.

For this reason we call this method the Mµthod. When computing the
integrating factor the constant of integration can be ignored, because we
will take care of it in the next step. We compute∫ t

0
µ(s)g(s)ds =

∫ t

0
µ(s)g(s)ds+ C.

Don’t forget the constant here! That’s why we use a capital C. The solution
is:

u(t) =

∫ t
0 (µ(s)g(s)ds) + C

µ(t)
.
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2.3 How to solve second order linear ODEs

Theorem 1 (Basis of solutions for linear, constant coefficient, homogeneous
second order ODEs). Consider the ODE, for the unknown function u that
depends on one variable, with constants b and c given in the equation:

au′′ + bu′ + cu = 0, a ̸= 0.

A basis of solutions is one of the following pairs of functions depending on
whether b2 ̸= 4ac or b2 = 4ac:

1. If b2 ̸= 4ac, then a basis of solutions is

{er1x, er2x}, with r1 =
−b+

√
b2 − 4ac

2a
, r2 =

−b−
√
b2 − 4ac

2a
.

2. If b2 = 4ac, then a basis of solutions is

{erx, xerx}, with r = − b

2a
.

Theorem 2 (Particular solution to linear second order ODEs). Assume
that y1 und y2 are a basis of solutions to the ODE

L(y) = y′′ + q(t)y′ + r(t)y = 0.

Then, if yp is a particular solution of the inhomogeneous ODE, so that

L(yp) = g,

then all solutions to L(y) = g can be expressed as

c1y1 + c2y2 + yp,

for y1 and y2 as above, for coefficients c1 and c2. One way to find a particular
solution to the ODE

L(y) = g(t)

is to calculate

Y (t) = −y1
∫

y2g(t)

W (y1, y2)
dt+ y2

∫
y1g(t)

W (y1, y2)
dt.

The Wronskian of y1 and y2, denoted by W (y1, y2) above, is defined to be

W (y1, y2)(t) = y1(t)y
′
2(t)− y2(t)y

′
1(t).
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2.4 Euler differential equations

An Euler differential equation is an equation of the form

x2u′′(x) + axu′(x) + bu(x) = 0,

for some constants a and b.

1. If the quadratic equation

r2 + (a− 1)r + b = 0

has two distinct solutions, r1 and r2 then {xr1 , xr2} is a basis of solu-
tions.

2. If the quadratic equation has one solution, call it r, then {xr, xr log(x)}
is a basis of solutions.

OBSERVE that the solutions to the quadratic equation are in C so they can
be complex numbers! The distinction is whether we have two different com-
plex numbers that solve the equation (case 1) or whether only one complex
number solves the equation (so it’s a double root).

2.5 Orthogonal bases in certain cases

1. The functions
{einx}, n ∈ Z

are an orthogonal base for L2 on the interval [−π, π].

2. The functions {sin(nx)}n≥1 together with {cos(nx)}n≥0 are an orthog-
onal base for L2 on the interval [−π, π].

3. The functions {sin(nx)}n≥1 are an orthogonal base for L2 on the in-
terval [0, π].

4. The functions {cos(nx)}n≥0 are an orthogonal base for L2 on the in-
terval [0, π].

5. The functions {einπx/L}n∈Z are an orthogonal base for L2(−L,L).

6. The functions {sin(nπx/L)}n≥1 are an orthogonal base for L2 on the
interval [0, L].

7. The functions {cos(nπx/L)}n≥0 re an orthogonal base for L2 on the
interval [0, L].

8. The functions {einπ(x−a)/L}n∈Z are an orthogonal base for L2 on the
interval [a− L, a+ L].
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2.6 The Plancharel theorem and Fourier Inversion

Theorem 3 (Plancharel). Assume that f and g are in L2(R). Then we
have the relationship between the scalar product of f and g and that of their
Fourier transforms

⟨f, g⟩ =
∫
R
f(x)g(x)dx =

1

2π
⟨f̂ , ĝ⟩ = 1

2π

∫
R
f̂(ξ)ĝ(ξ)dξ.

Theorem 4 (FIT (Fourier inversion)). Assume that f ∈ L2(R). Then there
is a unique element of L2(R) that is defined to be the Fourier transform of
f and expressed as

f̂(ξ) =

∫
R
e−ixξf(x)dx.

Moreover,

f(x) =
1

2π

∫
R
f̂(ξ)eixξdξ.

2.7 The Laplace transform

Proposition 1. Assume that f and all derivatives of f up to the kth are
Laplace transformable. Then

(̃f (k))(z) = zkf̃(z)−
k∑

j=1

f (k−j)(0)zj−1.

Here ˜something denotes the Laplace transform of ‘something.’

2.8 Dirichlet, Neumann, Periodic, and Robin boundary con-
ditions in SLp’s

1. The Dirichlet boundary condition requires a function to be equal to
zero at the boundary.

2. The Neumann boundary condition requires the normal derivative of a
function to be equal to zero at the boundary. So at a boundary point
x = a it looks like f ′(a) = 0.

3. The Robin boundary condition requires the normal derivative to be
equal to a scalar multiple of the function at the boundary. So if the
boundary is at a point like x = a then it would require f ′(a) = cf(a)
for some constant c.
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4. The periodic boundary condition requires a function to be the same
at the endpoints of an interval, and also the derivative of the function
to be the same at the endpoints of the interval. So if the interval for
the problem is [a, b] this would require f(a) = f(b), and usually we
also require f ′(a) = f ′(b).

2.9 Bessel facts

Definition 1 (The Bessel function J of order ν). The Bessel function J of
order ν is defined to be the series

Jν(x) :=
∞∑
n=0

(−1)n

n!Γ(n+ ν + 1)

(x
2

)ν+2n
.

The Bessel function satisfies the Bessel equation:

x2f ′′(x) + xf ′(x) + (x2 − ν2)f(x) = 0.

A second linearly independent solution to the Bessel equation is the We-
ber Bessel function Yν(x). This function tends to infinity as x → 0. The
modified Bessel equation is satisfied by Iν and Kν

x2f ′′(x) + xf ′(x)− (x2 + ν2)f(x).

For real values of ν the function Iν(x) ̸= 0 for all x > 0. One way to see this
is that

Iν(x) =

∞∑
n=0

1

n!Γ(n+ ν + 1)

(x
2

)ν+2n
.

So for x > 0 it’s a sum of positive terms. The function Kν(x) tends to ∞ as
x→ 0. The Γ (Gamma) function in the expression above is defined to be

Γ(s) =

∫ ∞

0
ts−1e−tdt, s ∈ C with Re(s) > 0. (1)

For ν ∈ C, the Bessel function is holomorphic in C \ (−∞, 0], while for
integer values of ν, it is an entire function of x ∈ C.

Theorem 5 (Bessel functions as an orthogonal base). Fix L > 0. Fix any
integer n ∈ Z. Let πm,n denote the mth positive zero of the Bessel function
J|n|. Then the functions

{J|n|(πm,nr/L)}m≥1
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are an orthogonal base for L2
r(0, L). Recall that this is the weighted L2 space

on the interval (0, L) with respect to the weight function r, so the scalar
product

⟨f, g⟩ =
∫ L

0
f(r)g(r)rdr.

More generally, for any ν ∈ R, and for any L > 0, the functions

{Jν(πmr/L)}m≥1

are an orthogonal base for L2
r(0, L), where above πm denotes the mth zero

of the Bessel function Jν . They have norms equal to∫ L

0
|Jν(πmr/L)|2rdr =

L2

2
(Jν+1(πm))2 .

Corollary 1 (Orthogonal base for functions on a disk). The functions

{J|n|(πm,nr/L)e
inθ}m≥1,n∈Z

are an orthogonal basis for L2 on the disk of radius L.

Theorem 6 (Bessel functions as bases in some other cases). Assume that
L > 0. Let the weight function w(x) = x. Fix ν ∈ R. Then J ′

ν has infinitely
many positive zeros. Let

{π′k}k≥1

be the positive zeros of J ′
ν . Then we define

ψk(x) = Jν(πkx/L), ν > 0, k ≥ 1.

In case ν = 0, define further ψ0(x) = 1. (If ν ̸= 0, then this case is omitted.)
Then {ψk}k≥1 for ν ̸= 0 is an orthogonal basis for L2

w(0, L). For ν = 0,
{ψk}k≥0 is an orthogonal basis for L2

w(0, L). Moreover the norm

||ψk||w =

∫ L

0
|ψk(x)|2xdx =

L2(π2k − ν2)

2π2k
Jν(πk)

2, k ≥ 1, ||ψ0||2w =
L2ν+2

2ν + 2
.

Next, fix a constant c > 0. Then there are infinitely many positive
solutions of

µJ ′
ν(µ) + cJν(µ) = 0,

that can be enumerated as {µk}k≥1. Then

{φk(x) = Jν(µkx/L)}k≥1

is an orthogonal basis for L2
w(0, L).
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2.10 Orthogonal polynomials

Definition 2. The Legendre polynomials, are defined to be

Pn(x) =
1

2nn!

dn

dxn
(
(x2 − 1)n

)
. (2)

The Legendre polynomials are an orthogonal base for L2(−1, 1), and

||Pn||2 =
2

2n+ 1
.

The first few Legendre polynomials are P0 = 1, P1 = x, P2 = 1
2(3x

2 − 1),
and P3 =

1
2(5x

3 − 3x).

Definition 3. The Hermite polynomials are defined to be

Hn(x) = (−1)nex
2 dn

dxn
e−x2

.

The Hermite polynomials are an orthogonal base for L2
2(R) with respect to

the weight function e−x2
. Moreover, their norms squared are

||Hn||2 =
∫
R
|Hn(x)|2e−x2

dx = 2nn!

∫
R
e−x2

dx = 2nn!
√
π.

Definition 4. The Laguerre polynomials,

Lα
n(x) =

x−αex

n!

dn

dxn
(xα+ne−x).

The Laguerre polynomials {Lα
n}n≥0 are an orthogonal basis for L2

α on (0,∞)
with the weight function α(x) = xαe−x. Their norms squared,

||Lα
n||2 =

Γ(n+ α+ 1)

n!
.

2.11 Tables of trig Fourier series, Fourier transforms, and
Laplace transforms
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1. f(x) = x
∑

n∈Z\{0}
(−1)neinx

−in .

2. f(x) = |x| π
2 +

∑
n∈Z, odd e

inx
(
− 2

πn2

)
3. f(x) =

{
0, −π < x < 0,

x, 0 < x < π.
π
4 +

∑
n∈Z\{0}

[
(−1)n+1

2in + (−1)n−1
2πn2

]
einx

4. f(x) = sin2(x) 1
2 − 1

4

(
e2ix + e−2ix

)
5. f(x) =

{
−1, −π < x < 0,

1, 0 < x < π.
2
iπ

∑
n≥1

e(2n−1)ix−e−(2n−1)ix

2n−1

6. f(x) =

{
0, −π < x < 0,

1, 0 < x < π.
1
2 +

∑
n≥1

ei(2n−1)x−e−i(2n−1)x

iπ(2n−1)

7. f(x) = | sin(x)| 2
π − 2

π

∑
n≥1

e2inx+e−2inx

4n2−1

8. f(x) = | cos(x)| 2
π − 2

π

∑
n≥1

(−1)n[einx+e−inx]
4n2−1

9. f(x) =

{
0, −π < x < 0,

sin(x), 0 < x < π.
1
π − 1

π

∑
n≥1

e2inx+e−2inx

4n2−1
+ 1

4i

(
eix − e−ix

)
10. f(x) = x2 π2

3 + 2
∑

n≥1
(−1)n(einx+e−inx)

n2

11. f(x) = x(π − |x|) 4
iπ

∑
n≥1

ei(2n−1)x−e−i(2n−1)x

(2n−1)3

12. f(x) = ebx sinh(bπ)
π

∑
n∈Z

(−1)n

b−in e
inx

13. f(x) = sinhx sinh(π)
iπ

∑
n≥1

(−1)n+1n
n2+1

[
einx − e−inx

]
Table 1: Here is a small collection of trigonometric Fourier expansions for
functions in L2(−π, π) in terms of the orthogonal base {einx}n∈Z. The series
on the right are all 2π periodic functions, so the graph of these functions
looks like the graph of f(x) on (−π, π). On the rest of the real line, outside
of the interval (−π, π) the graph of the series is copy-pasted repeatedly over
the rest of the real line, so the series does not equal f(x) for x ̸∈ (−π, π).
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1. f(x) = x 2
∑∞

n=1
(−1)n+1

n sin(nx).

2. f(x) = |x| π
2 − 4

π

∑
n≥1

cos((2n−1)x)
(2n−1)2

3. f(x) =

{
0, −π < x < 0,

x, 0 < x < π.
π
4 − 2

π

∑
n≥1

cos((2n−1)x)
(2n−1)2

+
∑

n≥1
(−1)n+1

n sin(nx)

4. f(x) = sin2(x) 1
2 − 1

2 cos(2x)

5. f(x) =

{
−1, −π < x < 0,

1, 0 < x < π.
4
π

∑
n≥1

sin((2n−1)x)
2n−1

6. f(x) =

{
0, −π < x < 0,

1, 0 < x < π.
1
2 + 2

π

∑
n≥1

sin((2n−1)x)
2n−1

7. f(x) = | sin(x)| 2
π − 4

π

∑
n≥1

cos(2nx)
4n2−1

8. f(x) = | cos(x)| 2
π − 4

π

∑
n≥1

(−1)n cos(2nx)
4n2−1

9. f(x) =

{
0, −π < x < 0,

sin(x), 0 < x < π.
1
π − 2

π

∑
n≥1

cos(2nx)
4n2−1

+ 1
2 sin(x)

10. f(x) = x2 π2

3 + 4
∑

n≥1
(−1)n cos(nx)

n2

11. f(x) = x(π − |x|) 8
π

∑
n≥1

sin((2n−1)x)
(2n−1)3

12. f(x) = ebx sinh(bπ)
π

(
1
b +

∑
n≥1

(−1)n

b2+n2 [2b cos(nx)− 2n sin(nx)]
)

13. f(x) = sinhx 2 sinh(π)
π

∑
n≥1

(−1)n+1n
n2+1

sin(nx)

Table 2: Here is a small collection of trigonometric Fourier ex-
pansions for functions in L2(−π, π) in terms of the orthogonal base
{1, cos(nx), sin(nx)}n≥1. The series on the right are all 2π periodic func-
tions, so the graph of these functions looks like the graph of f(x) on (−π, π).
On the rest of the real line, outside of the interval (−π, π) the graph of the
series is copy-pasted repeatedly over the rest of the real line, so the series
does not equal f(x) for x ̸∈ (−π, π).
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f(x) f̂(ξ)

f(x− c) e−icξ f̂(ξ)

eixcf(x) f̂(ξ − c)

f(ax) a−1f̂(a−1ξ)

f ′(x) iξf̂(ξ)

xf(x) i(f̂)′(ξ)

(f ∗ g)(x) f̂(ξ)ĝ(ξ)

f(x)g(x) (2π)−1(f̂ ∗ ĝ)(ξ)
e−ax2/2

√
2π/ae−ξ2/(2a)

(x2 + a2)−1 (π/a)e−a|ξ|

e−a|x| 2a(ξ2 + a2)−1

χa(x) =

{
1 |x| < a

0 |x| > a
2ξ−1 sin(aξ)

x−1 sin(ax) πχa(ξ) =

{
π |ξ| < a

0 |ξ| > a

Table 3: Above the function is on the left, its Fourier transform on the right.
Here a > 0 and c ∈ R.
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1. Θ(t)f(t) f̃(z)

2. Θ(t− a)f(t− a) e−az f̃(z)

3. ectΘ(t)f(t) f̃(z − c)

4. Θ(t)f(at) a−1f̃(a−1z)

5. Θ(t)f ′(t) zf̃(z)− f(0)

6. Θ(t)f (k)(t) zkf̃(z)−
∑k−1

0 zk−1−jf (j)(0)

7. Θ(t)
∫ t
0 f(s)ds z−1f̃(z)

8. Θ(t)tf(t) −f̃ ′(z)

9. Θ(t)t−1f(t)
∫∞
z f̃(w)dw

10. Θf ∗Θg(t) f̃(z)g̃(z)

11. Θ(t)tνect Γ(ν + 1)(z − c)−ν−1

12. Θ(t)(t+ a)−1 eaz
∫∞
az

e−u

u du

13. Θ(t) sin(ct) c
z2+c2

14. Θ(t) cos(ct) z
z2+c2

Table 4: Above, the function is on the left, its Laplace transform on the
right. Here a > 0 is constant and c ∈ C. Θ(t) is the heaviside function, that
is zero when t < 0 and one when t > 0.
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15. Θ(t) sinh(ct) c
z2−c2

16. Θ(t) cosh(ct) z
z2−c2

17. Θ(t) sin(
√
at)

√
πa(4z3)−1/2e−a/(4z)

18. Θ(t)t−1 sin(
√
at) π erf(

√
a/(4z)

19. Θ(t)e−a2t2 (
√
π/(2a))ez

2/(4a2) erfc(z/2a)

20. Θ(t) erf(at) z−1ez
2/(4a2) erfc(z/(2a))

21. Θ(t) erf(
√
t) (z

√
z + 1)−1

22. Θ(t)et erf(
√
t) ((z − 1)

√
z)−1

23. Θ(t) erfc(a/(2
√
t)) z−1e−a

√
z

24. Θ(t)t−1/2e−
√
at

√
π/zea/(4z) erfc(

√
a/(4z))

25. Θ(t)t−1/2e−a2/(4t)
√
π/ze−a

√
z

26. Θ(t)t−3/2e−a2/(4t) 2a−1√πe−a
√
z

27. Θ(t)tνJν(t) 2νπ−1/2Γ(ν + 1/2)(z2 + 1)−ν−1/2

28. Θ(t)J0(
√
t) z−1e−1/(4z)

Table 5: Above, the function is on the left, its Laplace transform on the
right. Here a > 0 is constant and c ∈ C.
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1. Theory problem

Prove the DOG: Assume that {ϕn}n≥0 are orthonormal in a Hilbert space H. Prove that
the following are equivalent:

(1) If f ∈ H, then it holds that f =
∑

n≥0⟨f, ϕn⟩ϕn

(2) ∥f∥2 =
∑

n≥0|⟨f, ϕn⟩|2.
(3) If v ∈ H and ⟨v, ϕn⟩ = 0 for all n ≥ 0, then v = 0.

1.1. Solution. 1. (3p) Assume the first statement. (1p) Then, since the {ϕn}n≥0 are
orthogonal, so are the {⟨f, ϕn⟩ϕn}n≥0, because we are just rescaling them.
(2p) So, by the infinite-dimensional Pythagorean theorem:

∥f∥2 =

∥∥∥∥∥∑
n≥0

⟨f, ϕn⟩ϕn

∥∥∥∥∥
2

=
∑
n≥0

∥⟨f, ϕn⟩ϕn∥2 =
∑
n≥0

|⟨f, ϕn⟩|2 ∥ϕn∥2 =
∑
n≥0

|⟨f, ϕn⟩|2 .

The last equality comes from the fact that {ϕn}n≥0 are orthonormal, which implies that
∥ϕn∥ = 1.
2. (3p) Now, we assume the second statement and show the third.
(1p) We consider some v ∈ H that satisfies ⟨v, ϕn⟩ = 0 for all n ≥ 0.
(1p) Therefore, we obtain

∥v∥2 =
∑
n≥0

|⟨v, ϕn⟩|2 =
∑
n≥0

0 = 0

(1p) Since the norm in a Hilbert space can only be zero for the zero element, we know that
this implies v = 0.
3. (4p) Finally, we assume the third statement and show the first, closing the circle.
Consider any f ∈ H.
(1p) By Bessel’s projection inequality, we know that

g =
∑
n≥0

⟨f, ϕn⟩ϕn

is also in H.
(1p) All that is left is to show that g = f . In order to use (3), we rephrase this to f−g = 0
and show that ⟨f − g, ϕn⟩ = 0 for all n ≥ 0, which then gives us that f − g = 0.
(2p) But by linearity of the scalar product,

⟨f − g, ϕm⟩ = ⟨f, ϕm⟩ − ⟨g, ϕm⟩ = 0,

because

⟨g, ϕm⟩ = ⟨
∑
n≥0

⟨f, ϕn⟩ϕn, ϕm⟩ =
∑
n≥0

⟨f, ϕn⟩⟨ϕn, ϕm⟩ = ⟨f, ϕm⟩

Here, we use the linearity and continuity of the scalar product and that {ϕn}n≥0 are
orthogonal, i.e., ⟨ϕn, ϕm⟩ = 0 if m ̸= n.
Therefore, f = g and (1) is proven.

1
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Note that you can reorder this proof in different ways, so do not worry if you have a
different order.

2. Theory problem

(Bevisa - The Hermite polynomials are so tight, the angles between them are always right!)
Prove that the Hermite polynomials {Hn}∞n=0 are orthogonal on R with respect to the

weight function w(x) = e−x2
. Recall here that

Hn(x) = (−1)nex
2 dn

dxn
e−x2

.

(10 p)

Solution. We want to show that the weighted inner product of Hn and Hm is zero if
n ̸= m. Hence, we may assume without loss of generality that n > m (if n < m, simply
rename n as m and m as n). Since the Hermite polynomials Hn begin with n = 0, this
means that m ≥ 0 and n ≥ 1. The above argument gives one point (1p). Next, we insert
the definition of Hn into the weighted inner product:

(2p) ⟨Hn, Hm⟩e−x2 =

∫
R
Hn(x)Hm(x)e

−x2

dx =

∫
R
(−1)nex

2

(
dn

dxn
e−x2

)
Hm(x)e

−x2

dx

= (−1)n
∫
R

(
dn

dxn
e−x2

)
Hm(x)dx.

Since we know that n ≥ 1, we apply integration by parts to obtain

(2p) ⟨Hn, Hm⟩e−x2 =

[
(−1)n

(
dn−1

dxn−1
e−x2

)
Hm(x)

]∞
−∞

+ (−1)n+1

∫
R

(
dn−1

dxn−1
e−x2

)
H ′

m(x)dx.

Next, we use that any number of derivatives of e−x2
is of the form

(1p)
dn

dxn
e−x2

= pn(x)e
−x2

,

where pn(x) is a polynomial. This can be proven by induction, but it is not required here.
Instead, we will simply use this fact to note that the boundary terms in the integration by
parts vanish:

(1p)

[
(−1)n

(
dn−1

dxn−1
e−x2

)
Hm(x)

]∞
−∞

=

[
(−1)npn−1(x)e

−x2

Hm(x)

]∞
−∞

= lim
x→∞

(−1)npn−1(x)e
−x2

Hm(x)− lim
x→−∞

(−1)npn−1(x)e
−x2

Hm(x) = 0,

due to the fact that (−1)npn−1(x)Hm(x) is a polynomial, and e−x2 → 0 as x → ±∞ faster
than any polynomial. Thus, we obtain

(1p) ⟨Hn, Hm⟩e−x2 = (−1)n+1

∫
R

(
dn−1

dxn−1
e−x2

)
H ′

m(x)dx.
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We can repeat the same argument until we run out of derivatives. We’ve got n derivatives,
so we repeat this argument n times, arriving at

(1p) ⟨Hn, Hm⟩e−x2 = (−1)n+n

∫
R
e−x2

(
dn

dxn
Hm(x)

)
dx.

Finally, recall that Hm is a polynomial of degree m. If you differentiate a polynomial of
degree m more than m times, you get zero. Since n > m, it follows that

(1p)
dn

dxn
Hm(x) = 0.

Hence,

(1p) ⟨Hn, Hm⟩e−x2 = (−1)n+n

∫
R
e−x2

(
dn

dxn
Hm(x)

)
dx =

∫
R
e−x2

0dx = 0.

3. Computing series using Fourier expansions

Compute
∞∑
n=0

e

4n2 − 4n+ 1

3.1. Solution. → (4p) We first need to find a series in the table that could give us a
solution. First, we see that we do not find a series in the table that has 4n2− 4n− 1 in the
denominator. But we note that 4n2 − 4n − 1 = (2n − 1)2, and find two possible Fourier
series to help us! We pick here

f(x) =

{
0, −π < x < 0,

1, 0 < x < π
=

1

2
+

2

π

∑
n≥1

sin((2n− 1)x)

2n− 1

Note carefully that the sum starts at 1 here, not at 0. We will deal with this later.
→ (2p) We apply Parseval’s equality to obtain

∥f∥2 =

∥∥∥∥∥12 +
2

π

∑
n≥1

sin((2n− 1)x)

2n− 1

∥∥∥∥∥
2

=
2π

4
+

4

π2

∑
n≥1

∥sin((2n− 1)x)∥2

(2n− 1)2

=
π

2
+

4

π2

∑
n≥1

π

(2n− 1)2
=

π

2
+

4

π

∑
n≥1

1

(2n− 1)2

→ (1p) On the other hand, we have

∥f∥2 =
∫ π

−π

f(x)f(x)dx =

∫ π

0

1dx = π

→ (1p) We can now solve for (almost) our series: We get

π

2
+

4

π

∑
n≥1

1

(2n− 1)2
= π
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and, therefore, ∑
n≥1

1

(2n− 1)2
=

π

2

π

4
=

π2

8

→ (2p) Finally,
∞∑
n=0

e

4n2 − 4n+ 1
= e+ e

∑
n≥1

1

(2n− 1)2
= e+

eπ2

8
.

4. PDE on bounded interval

Lös problemet: (Solve the following problem):
ut(x, t)− uxx(x, t) = x sin2(t), t > 0, 0 < x < 1,

u(0, t) = 0, t > 0,

u(1, t) = 0, t > 0,

u(x, 0) = x2, 0 ≤ x ≤ 1.

(Note that certain integrals do not need to be calculated - they must be correctly stated
with correct integrand and limits of integration - but need not be calculated.) (10 p)

4.1. Solution. This is an inhomogeneous heat equation on a bounded interval, where the
inhomogeneity depends on time.
(a) (1p) SLPs are keys to solving inhomogeneous pde’s. Even if you do nothing else, this
rhyme is worth a point. If you don’t do this rhyme, you still get a point if you set up the
SLP to solve

X ′′ + λX = 0, X(0) = 0, X(1) = 0

(or written equivalently).
(b) (2p) Solve this SLP. You should obtain (see the vibrating string example in Chapter 1
of the textbook for the derivation of these solutions)

Xn(x) = sin(nπx), λn = n2π2, n ≥ 1.

One point for the correct function and eigenvalues and one point for the correct range on
n.
(c) (1p) Set up the solution you seek to be a series

u(x, t) =
∑
n≥1

Tn(t)Xn(x),

where we will solve for the Tn functions using the inhomogeneous pde together with the
initial condition.
(d) (2p) Expand the inhomogeneity in terms of the Xn base. This is possible because
{Xn}∞n=1 is an orthogonal base for L2(0, 1) by the spectral theorem for SLPs:

x sin2(t) =
∑
n≥1

sin2(t)
⟨x,Xn⟩
||Xn||2

Xn(x) =
∑
n≥1

cn sin
2(t)Xn(x)
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with

cn =
⟨x,Xn⟩
||Xn||2

, ⟨x,Xn⟩ =
∫ 1

0

xXn(x)dx, ||Xn||2 =
∫ 1

0

|Xn(x)|2dx.

It is okay if you leave these integrals like this (without calculating them) as long as you
have correctly defined the scalar product and the norm squared. Each of these correctly
defined is worth one point. However, if you do decide to compute them, you will get

cn =
2(−1)n+1

πn
.

(e) (1p) Plug u into the heat equation (and use that X ′′
n = −λnXn) to obtain

ut − uxx =
∑
n≥1

(T ′
n(t) + n2π2Tn(t))Xn(x) =

∑
n≥1

cn sin
2(t)Xn(x).

(f) (1p) Identify coefficients to obtain the equation for Tn:

T ′
n(t) + n2π2Tn(t) = cn sin

2(t).

(g) (1p) Set up the correct initial condition:

u(x, 0) =
∑
n≥1

Xn(x)Tn(0) = x2 =
∑
n≥1

CnXn(x)

with

Tn(0) = Cn =
⟨x2, Xn⟩
||Xn||2

.

Again, it is okay if you don’t compute this scalar product and norm squared. In fact, if
you have correctly defined the scalar product and norm squared before, you do not even
need to write these out as integrals again. However, if you do decide to compute them,
you will get

Cn =
2

nπ

(
(−1)n+1 +

2(−1)n − 2

n2π2

)
.

(h) (1p) Solve the ODE for Tn(t). The method of integrating factor will give you

Tn(t) = e−n2π2t

(∫ t

0

en
2π2scn sin

2(s)ds+ Cn

)
.

5. Bessel 10 points

Lös problemet

ut(r, θ, t) = ∆u(r, θ, t) + et, 0 < t, 0 < r < 5, −π < θ < π,

u(5, θ, t) = 0,

u(r, θ, 0) = re−r2 + 5r.
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5.1. Solution and point distribution. OBS! There was a typo on the exam (fixed it
here but missed it on the exam) with the boundary condition given at u(1, θ, t) = 0. SO -
we accept if you solved it with the BC at r = 1 OR if you solved with BC at r = 5. Below
is the solution with BC at r = 5. (Basically a bunch of 5s in denominators of things and
then some 5s squared (25) will disappear if you used the r = 1 boundary condition). Both
are okay!
(1p) The solution is independent of θ, which simplifies things.
(2p) SLp’s are the keys to solving inhomogeneous pde’s. Let’s pretend that the pde is
homogeneous and solve the part for r since it has the nice Dirichlet condition at r = 5.
The Laplacian in radial coordinates is

∆ = ∂rr + r−1∂r + r−2∂θθ.

We need to find the associated Bessel equation for R, and solve it. We need to find solutions
of the form

R(r)T (t).

If the pde were homogeneous, we would get the equation

RT ′ = R′′T + r−1R′T

and then
R′′

R
+ r−1R

′

R
=

T

T ′ = λ.

We will solve for R and then remember to stop because our equation for the T function
will need to incorporate that inhomogeneity. For R the equation is

R′′ + r−1R′ − λR = 0,

or
r2R′′ + rR′ − λr2R = 0.

If λ = 0, then this becomes an Euler equation with solutions 1 and log(r). The function
log(r) is excluded because it blows up at r = 0. The other function 1 does not satisfy the
Dirichlet boundary condition at r = 5. If λ > 0, then this is a modified Bessel equation
of order 0 with solutions K0 and I0. The K0 Bessel function also blows up at r = 0,
while the I0 Bessel function does not have any positive real zeros, so it won’t satisfy the
Dirichlet boundary condition at r = 5. The only viable case is therefore that λ < 0, and
the solutions are J0 and Y0. The Y0 Bessel function blows up at r = 0 so we say goodbye
to it. We are then left with the Bessel function J0 with argument

√
−λr. Considering the

boundary condition u(5, θ, t) = 0 and we get
√
−λ = πk

5
, with πk one of the zeros of the

Bessel function of degree 0, and

−π2
k

25
= λ.

Note that (Rk)k is a base for L2
r([0, 5]).

(1p) Realizing how we can write the solution in terms of Rk and Tk, as

u(r, t) =
∑
k

Tk(t)Rk(r).
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(2p) Use the Bessel equation to transform it. The differential equation says that we need∑
k

T ′
k(t)Rk(r) = et +

∑
k

Tk(t)(R
′′
k(r) + r−1R′

k(r)) = et +
∑
k

−π2
k

25
Tk(t)Rk(r).

Here we used that Rk satisfies the differential equation we had above

r2R′′
k + rR′

k = λr2Rk ⇐⇒ R′′
k + r−1R′

k = λRk.

This implies that

et =
∑
k

Rk(T
′
k + π2

kTk/25).

(2p) Writing et in terms of the basis Rk and coefficients.

et = et1 = et
∑
k

⟨1, Rk⟩
⟨Rk, Rk⟩

Rk.

Now

⟨Rk, Rk⟩ =
∫ 5

0

|J0(πkr/5)|2rdr,

and

⟨1, Rk⟩ =
∫ 5

0

J0(πkr/5)rdr.

For simplicity let’s call

ck =
⟨1, Rk⟩
⟨Rk, Rk⟩

(2p) Finding all the Tk. We need∑
k

cke
tRk =

∑
k

Rk(T
′
k + π2

kTk/25) =⇒ cke
t = T ′

k + π2
kTk/25.

So we find using the method of integrating factor that

Tk(t) = e−π2
kt/25

[∫ t

0

eπ
2
ks/25+sds+ Tk(0)

]
.

For the initial condition we need

f(r) = re−r2 + 5r =
∑
k

Rk(r)Tk(0),

so

Tk(0) =
⟨f,Rk⟩
⟨Rk, Rk⟩

,

with the scalar product and norm defined analogously to the above.
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6. Fourier inversion 10 points

Lös problemet

ut − uxx = 0, x, t > 0,

ux(0, t) = 0,

u(x, 0) = e−x2

.

Solution and point distribution. (1p) Realize the functions u and f need to be ex-
tended evenly because there is a von Neumann condition ux(0, t) = 0.
(1p) We do a Fourier transform and get

ût(ξ, t) = −ξ2û(ξ, t).

(2p) We solve this and get

û(ξ, t) = c(ξ)e−ξ2t.

(4p) We realize

c(ξ) = û(ξ, 0) =

∫
R
e−x2

e−ixξdx =
√
πe−

ξ2

4 .

(2p) So we need to have

u(x, t) =
1

2π

∫
R
û(ξ, t)eiξxdx =

1

2
√
π

∫
R
e−(t+ 1

4
)ξ2eixξdξ =

1

2
√
π

√
2π

2t+ 1
2

e−
x2

4t+1 =
1√

4t+ 1
e−

x2

4t+1 .

An alternative method involves observing that u(x, 0) is already an even function of x, and
the Fourier transform preserves even functions (we can see by the direct calculation above
that the Fourier transform of this function is an even function of the Fourier transform
variable ξ). So, using the tables we find the anti-Fourier-transform of e−ξ2t and then obtain
u as the convolution

u(x, t) =

∫
R
e−(x−y)2e−y2/(4t) 1√

4πt
dy.

Or we could write it as

u(x, t) =

∫
R
e−y2e−(x−y)2/(4t) 1√

4πt
dy,

because the convolution is commutative. It’s fine to leave this integral as it is.

7. Best approximation problem

There are several ways of solving this problem. Here we present one way, which is the
solution that is hinted at. The idea is based on expanding the norm of r(x).

(1) Realize that the norm ∥f(x)− r(x)∥ can be expanded (3 points)
(2) Arrive at the correct expression by applying the triangle inequality 1

2
∥f(x)−p(x)∥+

1
2
∥f(x)− p(−x)∥ (3 points)

(3) Rewrite ∥f(x)− p(−x)∥ as ∥f(x)− p(x)∥ (1 point)
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(4) Conclude using the best approximation theorem that due to the uniqueness of p(x),
p(x) = r(x).

Here is another way.

(1) Let Pn be the Legendre polynomial of degree n. Then we know that the best
approximation is

p(x) =
9∑

n=0

⟨f, Pn⟩
||Pn||2

Pn(x).

(2) We know (or we prove it) that Pn is an even function if n is even, and it’s an odd
function if n is odd.
To prove this, observe that (up to some silly constant factor) Pn is obtained by

differentiating (x2−1)n precisely n times. In the binomial expansion of (x2−1)n all
the terms are like x2 raised to some power (starting from 0 and going up to n, with
various coefficients). Well these are all x raised to an even power with whatever bla
coefficient. Thus if we differentiate any such term an even number of times, each
term gets its power of x lowered by that even number of times we differentiated it
and therewith remains an even power (or if it gets differentiated enough times it
turns into zero). This shows that Pn is an even function if n is even because it is a
sum of even powers of x times their whatever coefficients.
On the other hand, if we differentiate (x2 − 1)n an odd number of times, each

term gets its (even) power of x lowered by an odd amount and therewith either
vanishes (if we differentiate it enough times) or it becomes an odd power. So in the
end our Pn for n odd is a sum of x raised to odd powers times whatever coefficient.

(3) Since

⟨f, Pn⟩ =
∫ 1

−1

f(x)Pn(x)dx,

and f is even, whenever n is odd, the integrand is odd, and the integral is zero.
Thus the only terms in p(x) are the terms with the coefficient multiplied by Pn for
n even, and as we have just explained, each Pn with n even is an even function.
Consequently this whole polynomial is even.

8. Laplace problem

OBS - there was a typo! The problem had x ∈ R but it should have been x > 0.

(1) Realize that you should use Laplace transform in the t variable (say it!) (1 point)
(2) Find the transformed equation

sU(x, s)− u(x, 0) + Ux(x, s) + U(x, s) = 0.

This gives (2 points)
(3) Insert the initial condition to obtain the ODE Ux = −(s+ 1)U . (1 point)
(4) Find the solution U(x, s) = C(s)e(−1−s)x. (1 point)
(5) Correctly identify C(s) = 1/(s2 + 1) using the boundary condition (2 points) that

is U(0, t) = 1/(s2 + 1) (1 point).
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(6) Find the inverse transform of e−x

s2+1
e−sx to be the solution

u(x, t) = e−x sin(t− x)Θ(t− x)

where Θ(t− x) is the Heaviside step function. (3 points)
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