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1 Uppgifter

1. (CAT) L̊at g ∈ L1(R). Antar att f är begränsad och styckvis kontin-
uerlig. L̊at

gϵ(x) =
g(x/ϵ)

ϵ
, ϵ > 0.

Bevisa att för varenda punkt x ∈ R gäller

lim
ϵ→0

f ∗ gϵ(x) = f(x+)

∫ 0

−∞
g(y)dy + f(x−)

∫ ∞

0
g(y)dy.

Här betyder ∗ faltning eller “convolution” p̊a engelska.
English: assume that g ∈ L1(R). Define gϵ as above. Assume that f
is piecewise continuous and bounded. Then prove that for each point
x ∈ R

lim
ϵ→0

f ∗ gϵ(x) = f(x+)

∫ 0

−∞
g(y)dy + f(x−)

∫ ∞

0
g(y)dy.

Note that f ∗ g is the convolution. This is one of the two cases in
the CAT theorem which assumed that either f is bounded or g has
compact support. So you just need to do the proof for the f is bounded
case!

(10p)

2. Vad säger Fourier-Inverse-Formel (FIT)?
English: what’s the Fourier inverse theorem (FIT) say? (10 p)
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3. Lös problemet: (Solve the following problem):

ut − uxx = ex, 0 ≤ x ≤ l, t > 0,

ux(0, t) = 0,

u(l, t) = 21,

u(x, 0) = f(x).

(Note that certain integrals do not need to be calculated - they must
be correctly stated with correct integrand and limits of integration -
but need not be calculated). (10 p)

4. Lös problemet: (Solve the following problem):

ut(r, θ, t) = ∆u(r, θ, t), 0 < r < 3, t > 0, −π < θ < π,

u(3, θ, t) = 0,

u(r, θ, 0) = r cos(θ).

(Note that certain integrals do not need to be calculated - they must
be correctly stated with correct integrand and limits of integration -
but need not be calculated).

(10 p)

5. Beräkna: (Compute):

∞∑
n=1

1

4n4 − n2

Hint: Hitta a och b s̊a att

1

4n4 − n2
=

a

n2
+

b

4n2 − 1

och sedan andvänd tabellen av Fourierserier. English: compute the
sum and the hint is that to do so find a and b as above and then find
something helpful from the tables of tF-series in here!

(10p)

6. Sök en begränsad lösning till problemet (find a bounded solution to
this problem)

ut = uxx, x ∈ R, t > 0,

u(x, 0) =
x

x2 + 2
.
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(If horrible Dark Souls integrals appear you don’t need to calculate
them just explain why they appear and make sure they’re correct.)

(10 p)

7. Lös problemet: (Solve the following problem):

u(x, t) +

∫ t

0
(t− s)uxx(x, s)ds = 2, x, t > 0

u(x, 0) = 0,

u(0, t) = sin(t).

(10 p)

8. Bestäm det maximala värdet av∫ 1

−1
x3f(x)dx

bland alla kontinuerliga begränsade reella funktioner p̊a [−1, 1] som
uppfyller ∫ 1

−1
|f(x)|2dx = 1,

∫ 1

−1
xf(x)dx = 0.

(Tips: expandera f med Legendre-polynom basen, titta p̊a P1 och P3,
och använd Hilbertrum fakta om ortogonala baser.).

(English): Determine the maximum value of∫ 1

−1
x3f(x)dx

among all continuous bounded real-valued functions in [−1, 1] that
satisfy ∫ 1

−1
|f(x)|2dx = 1,

∫ 1

−1
xf(x)dx = 0.

(Hint: expand f using the Legendre polynomial base, look at P1 and
P3, and use Hilbert space orthogonal base facts.)

(10p)

Lycka till! May the FourierForce be with you! ♡ Julie, Carl-Joar, Björn,

Erik, & Kolya
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2 Fun facts!

2.1 The Laplace operator

The Laplace operator in two and three dimensions is respectively

∆ = ∂xx + ∂yy, ∂xx + ∂yy + ∂zz.

In polar coordinate in two dimensions

∆ = ∂rr + r−1∂r + r−2∂θθ.

In cylindrical coordinates in three dimensions

∆ = ∂rr + r−1∂r + r−2∂θθ + ∂zz.

2.2 How to solve first order linear ODEs

If one has a first order linear differential equation, then it can always be
arranged in the following form, with u the unknown function and p and g
specified in the ODE:

u′(t) + p(t)u(t) = g(t).

We compute in this case a function traditionally called µ known as the
integrating factor,

µ(t) := exp

(∫ t

0
p(s)ds

)
.

For this reason we call this method the Mµthod. When computing the
integrating factor the constant of integration can be ignored, because we
will take care of it in the next step. We compute∫ t

0
µ(s)g(s)ds =

∫ t

0
µ(s)g(s)ds+ C.

Don’t forget the constant here! That’s why we use a capital C. The solution
is:

u(t) =

∫ t
0 (µ(s)g(s)ds) + C

µ(t)
.
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2.3 How to solve second order linear ODEs

Theorem 1 (Basis of solutions for linear, constant coefficient, homogeneous
second order ODEs). Consider the ODE, for the unknown function u that
depends on one variable, with constants b and c given in the equation:

au′′ + bu′ + cu = 0, a ̸= 0.

A basis of solutions is one of the following pairs of functions depending on
whether b2 ̸= 4ac or b2 = 4ac:

1. If b2 ̸= 4ac, then a basis of solutions is

{er1x, er2x}, with r1 =
−b+

√
b2 − 4ac

2a
, r2 =

−b−
√
b2 − 4ac

2a
.

2. If b2 = 4ac, then a basis of solutions is

{erx, xerx}, with r = − b

2a
.

Theorem 2 (Particular solution to linear second order ODEs). Assume
that y1 und y2 are a basis of solutions to the ODE

L(y) = y′′ + q(t)y′ + r(t)y = 0.

Then, if yp is a particular solution of the inhomogeneous ODE, so that

L(yp) = g,

then all solutions to L(y) = g can be expressed as

c1y1 + c2y2 + yp,

for y1 and y2 as above, for coefficients c1 and c2. One way to find a particular
solution to the ODE

L(y) = g(t)

is to calculate

Y (t) = −y1
∫

y2g(t)

W (y1, y2)
dt+ y2

∫
y1g(t)

W (y1, y2)
dt.

The Wronskian of y1 and y2, denoted by W (y1, y2) above, is defined to be

W (y1, y2)(t) = y1(t)y
′
2(t)− y2(t)y

′
1(t).
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2.4 Bessel facts

Definition 1 (The Bessel function J of order ν). The Bessel function J of
order ν is defined to be the series

Jν(x) :=
∞∑
n=0

(−1)n

n!Γ(n+ ν + 1)

(x
2

)ν+2n
.

The Bessel function satisfies the Bessel equation:

x2f ′′(x) + xf ′(x) + (x2 − ν2)f(x) = 0.

The modified Bessel equation is satisfied by Iν and Kν

x2f ′′(x) + xf ′(x)− (x2 + ν2)f(x).

For real values of ν the function Iν(x) ̸= 0 for all x > 0. The function Kν(x)
tends to ∞ as x → 0. The Γ (Gamma) function in the expression above is
defined to be

Γ(s) =

∫ ∞

0
ts−1e−tdt, s ∈ C with Re(s) > 0. (1)

For ν ∈ C, the Bessel function is holomorphic in C \ (−∞, 0], while for
integer values of ν, it is an entire function of x ∈ C.

Theorem 3 (Bessel functions as an orthogonal base). Fix L > 0. Fix any
integer n ∈ Z. Let πm,n denote the mth positive zero of the Bessel function
J|n|. Then the functions

{J|n|(πm,nr/L)}m≥1

are an orthogonal base for L2
r(0, L). Recall that this is the weighted L2 space

on the interval (0, L) with respect to the weight function r, so the scalar
product

⟨f, g⟩ =
∫ L

0
f(r)g(r)rdr.

More generally, for any ν ∈ R, and for any L > 0, the functions

{Jν(πmr/L)}m≥1

are an orthogonal base for L2
r(0, L), where above πm denotes the mth zero

of the Bessel function Jν . They have norms equal to∫ L

0
|Jν(πmr/L)|2rdr =

L2

2
(Jν+1(πm))2 .

6



Corollary 1 (Orthogonal base for functions on a disk). The functions

{J|n|(πm,nr/L)e
inθ}m≥1,n∈Z

are an orthogonal basis for L2 on the disk of radius L.

Theorem 4 (Bessel functions as bases in some other cases). Assume that
L > 0. Let the weight function w(x) = x. Fix ν ∈ R. Then J ′

ν has infinitely
many positive zeros. Let

{π′k}k≥1

be the positive zeros of J ′
ν . Then we define

ψk(x) = Jν(πkx/L), ν > 0, k ≥ 1.

In case ν = 0, define further ψ0(x) = 1. (If ν ̸= 0, then this case is omitted.)
Then {ψk}k≥1 for ν ̸= 0 is an orthogonal basis for L2

w(0, L). For ν = 0,
{ψk}k≥0 is an orthogonal basis for L2

w(0, L). Moreover the norm

||ψk||w =

∫ L

0
|ψk(x)|2xdx =

L2(π2k − ν2)

2π2k
Jν(πk)

2, k ≥ 1, ||ψ0||2w =
L2ν+2

2ν + 2
.

Next, fix a constant c > 0. Then there are infinitely many positive
solutions of

µJ ′
ν(µ) + cJν(µ) = 0,

that can be enumerated as {µk}k≥1. Then

{φk(x) = Jν(µkx/L)}k≥1

is an orthogonal basis for L2
w(0, L).

2.5 Orthogonal polynomials

Definition 2. The Legendre polynomials, are defined to be

Pn(x) =
1

2nn!

dn

dxn
(
(x2 − 1)n

)
. (2)

The Legendre polynomials are an orthogonal base for L2(−1, 1), and

||Pn||2 =
2

2n+ 1
.

The first few Legendre polynomials are P0 = 1, P1 = x, P2 = 1
2(3x

2 − 1),
and P3 =

1
2(5x

3 − 3x).
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Definition 3. The Hermite polynomials are defined to be

Hn(x) = (−1)nex
2 dn

dxn
e−x2

.

The Hermite polynomials are an orthogonal base for L2
2(R) with respect to

the weight function e−x2
. Moreover, their norms squared are

||Hn||2 =
∫
R
|Hn(x)|2e−x2

dx = 2nn!

∫
R
e−x2

dx = 2nn!
√
π.

Definition 4. The Laguerre polynomials,

Lα
n(x) =

x−αex

n!

dn

dxn
(xα+ne−x).

The Laguerre polynomials {Lα
n}n≥0 are an orthogonal basis for L2

α on (0,∞)
with the weight function α(x) = xαe−x. Their norms squared,

||Lα
n||2 =

Γ(n+ α+ 1)

n!
.

2.6 Tables of trig Fourier series, Fourier transforms, and
Laplace transforms
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1. f(x) = x
∑

n∈Z\{0}
(−1)neinx

−in .

2. f(x) = |x| π
2 +

∑
n∈Z, odd e

inx
(
− 2

πn2

)
3. f(x) =

{
0, −π < x < 0,

x, 0 < x < π.
π
4 +

∑
n∈Z\{0}

[
(−1)n+1

2in + (−1)n−1
2πn2

]
einx

4. f(x) = sin2(x) 1
2 − 1

4

(
e2ix + e−2ix

)
5. f(x) =

{
−1, −π < x < 0,

1, 0 < x < π.
2
iπ

∑
n≥1

e(2n−1)ix−e−(2n−1)ix

2n−1

6. f(x) =

{
0, −π < x < 0,

1, 0 < x < π.
1
2 +

∑
n≥1

ei(2n−1)x−e−i(2n−1)x

iπ(2n−1)

7. f(x) = | sin(x)| 2
π − 2

π

∑
n≥1

e2inx+e−2inx

4n2−1

8. f(x) = | cos(x)| 2
π − 2

π

∑
n≥1

(−1)n[einx+e−inx]
4n2−1

9. f(x) =

{
0, −π < x < 0,

sin(x), 0 < x < π.
1
π − 1

π

∑
n≥1

e2inx+e−2inx

4n2−1
+ 1

4i

(
eix − e−ix

)
10. f(x) = x2 π2

3 + 2
∑

n≥1
(−1)n(einx+e−inx)

n2

11. f(x) = x(π − |x|) 4
iπ

∑
n≥1

ei(2n−1)x−e−i(2n−1)x

(2n−1)3

12. f(x) = ebx sinh(bπ)
π

∑
n∈Z

(−1)n

b−in e
inx

13. f(x) = sinhx sinh(π)
iπ

∑
n≥1

(−1)n+1n
n2+1

[
einx − e−inx

]
Table 1: Here is a small collection of trigonometric Fourier expansions for
functions in L2(−π, π) in terms of the orthogonal base {einx}n∈Z. The series
on the right are all 2π periodic functions, so the graph of these functions
looks like the graph of f(x) on (−π, π). On the rest of the real line, outside
of the interval (−π, π) the graph of the series is copy-pasted repeatedly over
the rest of the real line, so the series does not equal f(x) for x ̸∈ (−π, π).
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1. f(x) = x 2
∑∞

n=1
(−1)n+1

n sin(nx).

2. f(x) = |x| π
2 − 4

π

∑
n≥1

cos((2n−1)x)
(2n−1)2

3. f(x) =

{
0, −π < x < 0,

x, 0 < x < π.
π
4 − 2

π

∑
n≥1

cos((2n−1)x)
(2n−1)2

+
∑

n≥1
(−1)n+1

n sin(nx)

4. f(x) = sin2(x) 1
2 − 1

2 cos(2x)

5. f(x) =

{
−1, −π < x < 0,

1, 0 < x < π.
4
π

∑
n≥1

sin((2n−1)x)
2n−1

6. f(x) =

{
0, −π < x < 0,

1, 0 < x < π.
1
2 + 2

π

∑
n≥1

sin((2n−1)x)
2n−1

7. f(x) = | sin(x)| 2
π − 4

π

∑
n≥1

cos(2nx)
4n2−1

8. f(x) = | cos(x)| 2
π − 4

π

∑
n≥1

(−1)n cos(2nx)
4n2−1

9. f(x) =

{
0, −π < x < 0,

sin(x), 0 < x < π.
1
π − 2

π

∑
n≥1

cos(2nx)
4n2−1

+ 1
2 sin(x)

10. f(x) = x2 π2

3 + 4
∑

n≥1
(−1)n cos(nx)

n2

11. f(x) = x(π − |x|) 8
π

∑
n≥1

sin((2n−1)x)
(2n−1)3

12. f(x) = ebx sinh(bπ)
π

(
1
b +

∑
n≥1

(−1)n

b2+n2 [2b cos(nx)− 2n sin(nx)]
)

13. f(x) = sinhx 2 sinh(π)
π

∑
n≥1

(−1)n+1n
n2+1

sin(nx)

Table 2: Here is a small collection of trigonometric Fourier ex-
pansions for functions in L2(−π, π) in terms of the orthogonal base
{1, cos(nx), sin(nx)}n≥1. The series on the right are all 2π periodic func-
tions, so the graph of these functions looks like the graph of f(x) on (−π, π).
On the rest of the real line, outside of the interval (−π, π) the graph of the
series is copy-pasted repeatedly over the rest of the real line, so the series
does not equal f(x) for x ̸∈ (−π, π).
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f(x) f̂(ξ)

f(x− c) e−icξ f̂(ξ)

eixcf(x) f̂(ξ − c)

f(ax) a−1f̂(a−1ξ)

f ′(x) iξf̂(ξ)

xf(x) i(f̂)′(ξ)

(f ∗ g)(x) f̂(ξ)ĝ(ξ)

f(x)g(x) (2π)−1(f̂ ∗ ĝ)(ξ)
e−ax2/2

√
2π/ae−ξ2/(2a)

(x2 + a2)−1 (π/a)e−a|ξ|

e−a|x| 2a(ξ2 + a2)−1

χa(x) =

{
1 |x| < a

0 |x| > a
2ξ−1 sin(aξ)

x−1 sin(ax) πχa(ξ) =

{
π |ξ| < a

0 |ξ| > a

Table 3: Above the function is on the left, its Fourier transform on the right.
Here a > 0 and c ∈ R.
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1. Θ(t)f(t) f̃(z)

2. Θ(t− a)f(t− a) e−az f̃(z)

3. ectΘ(t)f(t) f̃(z − c)

4. Θ(t)f(at) a−1f̃(a−1z)

5. Θ(t)f ′(t) zf̃(z)− f(0)

6. Θ(t)f (k)(t) zkf̃(z)−
∑k−1

0 zk−1−jf (j)(0)

7. Θ(t)
∫ t
0 f(s)ds z−1f̃(z)

8. Θ(t)tf(t) −f̃ ′(z)

9. Θ(t)t−1f(t)
∫∞
z f̃(w)dw

10. Θf ∗Θg(t) f̃(z)g̃(z)

11. Θ(t)tνect Γ(ν + 1)(z − c)−ν−1

12. Θ(t)(t+ a)−1 eaz
∫∞
az

e−u

u du

13. Θ(t) sin(ct) c
z2+c2

14. Θ(t) cos(ct) z
z2+c2

Table 4: Above, the function is on the left, its Laplace transform on the
right. Here a > 0 is constant and c ∈ C.
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15. Θ(t) sinh(ct) c
z2−c2

16. Θ(t) cosh(ct) z
z2−c2

17. Θ(t) sin(
√
at)

√
πa(4z3)−1/2e−a/(4z)

18. Θ(t)t−1 sin(
√
at) π erf(

√
a/(4z)

19. Θ(t)e−a2t2 (
√
π/(2a))ez

2/(4a2) erfc(z/2a)

20. Θ(t) erf(at) z−1ez
2/(4a2) erfc(z/(2a))

21. Θ(t) erf(
√
t) (z

√
z + 1)−1

22. Θ(t)et erf(
√
t) ((z − 1)

√
z)−1

23. Θ(t) erfc(a/(2
√
t)) z−1e−a

√
z

24. Θ(t)t−1/2e−
√
at

√
π/zea/(4z) erfc(

√
a/(4z))

25. Θ(t)t−1/2e−a2/(4t)
√
π/ze−a

√
z

26. Θ(t)t−3/2e−a2/(4t) 2a−1√πe−a
√
z

27. Θ(t)tνJν(t) 2νπ−1/2Γ(ν + 1/2)(z2 + 1)−ν−1/2

28. Θ(t)J0(
√
t) z−1e−1/(4z)

Table 5: Above, the function is on the left, its Laplace transform on the
right. Here a > 0 is constant and c ∈ C.
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you are unsure about anything whatsoever, please ask!)

1 Uppgifter

1. L̊at g ∈ L1(R). Antar att f är kontinuerlig och begränsad. L̊at

gϵ(x) =
g(x/ϵ)

ϵ
, ϵ > 0.

Observera att d̊a f är kontinuerlig gäller f(x+) = f(x−) ∀x ∈ R.
Sedan bevisa att för varenda punkt x ∈ R gäller

lim
ϵ→0

f ∗ gϵ(x) = f(x)

∫ ∞

−∞
g(y)dy.

Här betyder ∗ faltning eller “convolution” p̊a engelska. Det här är en
förenklad versionen av den CAT.
English: assume that g ∈ L1(R). Assume that f is continuous and
bounded. Define gϵ as above. Note that the left and right limits
f(x+) = f(x−) ∀x ∈ R since f is continuous. Then prove that for
each point x ∈ R

lim
ϵ→0

f ∗ gϵ(x) = f(x)

∫ ∞

−∞
g(y)dy.

Note that f ∗ g is the convolution, and that this is one of the cases
subsumed by the more general CAT, thus a simplified version of that
theorem!

Solution

1p. Fix the point x. Show that it is enough to prove that

lim
ϵ→0

∫ 0

−∞
f(x− y)gϵ(y)dy −

∫ 0

−∞
f(x+)g(y)dy = 0
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and also

lim
ϵ→0

∫ ∞

0
f(x− y)gϵ(y)dy −

∫ ∞

0
f(x−)g(y)dy = 0.

The argument is same for both, so choose one. I choose the first
one.

2p. Do a substitution in the second integral, setting z = ϵy, so y =
z/ϵ, and dz/ϵ = dy. This shows that:∫ 0

−∞
(f(x− y)gϵ(y)− f(x+)g(y)) dy =

∫ 0

−∞
gϵ(y) (f(x− y)− f(x+)) dy.

1p. To estimate ∫ 0

−∞
gϵ(y) (f(x− y)− f(x+)) dy,

split the integral into the part out near −∞,
∫ y0
−∞ added to the

part close to zero
∫ 0
y0
. CAT’s face and CAT’s tail.

3p. Estimate the integral close to zero first so that you can figure out
what y0 needs to be. In CAT language, pet the face first. To do
this, use the fact that the integral is over negative values of y,
so x− y > x, together with the definition of f(x+) as the right-
hand-limit. In this way make |f(x− y)− f(x+)| super small by
choosing y0 < 0 small. Then you can pull out a factor of “super
small” and estimate

(super small)

∫ 0

y0

|gϵ(y)|dy ≤ (super small)

∫ 0

−∞
|gϵ(y)|dy ≤ (super small)||g||L1 .

This is fine because the L1 norm of g is finite.

3p. Next estimate the CAT’s tail∫ y0

−∞
gϵ(y) (f(x− y)− f(x+)) dy.

Since we assume f is bounded, note that |f(x − y) − f(x+)| ≤
2(the number that bounds f). So you pull this out. Change vari-
ables to make the integral go from −∞ to −δ/ϵ. Use the fact that
the tail of a convergent integral can be made small to make this
small.
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2. Vad är Fourier-Inverse-Formel (FIT)? (10 p)

If f is in L2(R) then

f(x) =
1

2π

∫
R
f̂(ξ)eixξdξ.

You probably either get this or not, but if I have to break down points
I’d say 5 points for f ∈ L2(R) and 5 points for the equation. Minus
one point for each mistake in the equation, if you made any.

3. Lös problemet: (Solve the following problem):

ut − uxx = ex, 0 ≤ x ≤ l, t > 0

ux(0, t) = 0

u(l, t) = 21

u(x, 0) = f(x).

(Note that certain integrals do not need to be calculated - they must
be correctly stated with correct integrand and limits of integration -
but need not be calculated). (10 p)

If you are curious about the physics behind this problem here it is,
but this is just for curiosity not part of the task! A rod of length l is
hit with high-energy particles on the left end (x = 0). The amount
of energy (i.e., heat) these particles transfer to the rod depends on
how far they have already traveled through the rod.Surprisingly, up
to a certain point, more energy is transferred, the further the particles
have moved through the rod. This phenomenon has applications, for
example, in radiation shielding and is described by the so-called Bragg
curve, which can take many different shapes depending on the type of
particle and its speed. In our case, we model the Bragg curve as an
exponential function. The left end of the rod is insulated from its
surroundings, while the right end is kept at room temperature 21◦C.

Solution

→ We are dealing with an inhomogeneous problem here. The inhomo-
geneities are independent of time, so we can use the method of steady
states.
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→ (2p) First, we find a steady-state solution, i.e., we set the time
derivative ut to 0. We obtain the problem:

−s′′(x) = ex, 0 ≤ x ≤ l

s′(0) = 0

s(l) = 21.

We can find s(x) by integrating twice:

s′′(x) = −ex

s′(x) = −ex + c

s(x) = −ex + cx+ d

Plugging in the boundary conditions, we get:

s′(0) = −1 + c = 0 ⇒ c = 1

s(l) = −el + l + d = 21 ⇒ d = 20 + el

Thus, our steady state is

s(x) = −ex + x+ 20 + el

→ (1p) Defining v(x, t) = u(x, t) − s(x), we obtain the homogeneous
problem

vt − vxx = 0, 0 ≤ x ≤ l, t > 0

vx(0, t) = 0

v(l, t) = 0

v(x, 0) = f(x).

→ (1p) We solve this using our favorite method ♡. We start by sepa-
rating our variables: v(x, t) = X(x)T (t), and obtain:

T ′X − TX ′′ = 0

and

T ′

T
=
X ′′

X
= λ

4



→ (2p) The boundary conditions will help us see what the value of λ
needs to be!

X ′′ = λX

By Theorem 1.0.1, this gives us

X(x) = Ae
√
λx +Be−

√
λx

With the boundary conditions, we obtain

X ′(0) = 0 ⇒ A
√
λe

√
λ0 −B

√
λe−

√
λ0 ⇒ A = B

X(l) = 0 ⇒ A(e
√
λl + e−

√
λl) = 0 ⇒ A = 0 (the boring case) ∨ e2

√
λl = −1

The non-boring case is equivalent to:

2
√
λl = (2n− 1)πi ⇐⇒

√
λ =

(2n− 1)πi

2l
, n ∈ Z

This leaves us with (up to constants):

Xn(x) =
1

2

(
e

(2n−1)πi
2l

x + e−
(2n−1)πi

2l
x
)
= cosh

(
(2n− 1)πi

2l
x

)
= cos

(
(2n− 1)π

2l
x

)
and the eigenvalues

λn =

(
(2n− 1)πi

2l

)2

= −(2n− 1)2π2

4l2

→ (1p) We can now solve for T :

T ′ = λT ⇒ T (t) = ceλt

Thus,

Tn(t) = cne
− (2n−1)2π2

4l2
t

→ We can now do a superposition:

v(x, t) =
∑
n≥1

cne
− (2n−1)2π2

4l2
t cos

(
(2n− 1)π

2l
x

)

5



where we took all terms for 2n−1 < 0 together with the corresponding
term −(2n− 1), since all functions are even in (2n− 1).

→ (2p) The initial condition will help us find, coefficients that depend
on time

v(x, t) =
∑
n≥1

cn cos

(
(2n− 1)π

2l
x

)
!
= f(x)

This can be solved by a Fourier expansion:

cn =

∫ l
0 f(x) cos

(
(2n−1)π

2l x
)
dx∫ l

0 cos
2
(
(2n−1)π

2l x
)
dx

=
l

2

∫ l

0
f(x) cos

(
(2n− 1)π

2l
x

)
dx

By a double-angle formula,

∫ l

0
cos2

(
(2n− 1)π

2l
x

)
dx =

∫ l

0

1

2
+

cos
(
2(2n−1)π

2l x
)

2
dx =

l

2

→ (1p) Now, we just take it all together, and note that u(x, t) =
v(x, t) + s(x):

u(x, t) =
∑
n≥1

l

2

∫ l

0
f(x) cos

(
(2n− 1)π

2l
x

)
dx · e−

(2n−1)2π2

4l2
t cos

(
(2n− 1)π

2l
x

)
− ex + x+ 20 + el

4. Lös problemet: (Solve the following problem):

ut(r, θ, t) = ∆u(r, θ, t), 0 < r < 3, t > 0, −π < θ < π,

u(3, θ, t) = 0,

u(r, θ, 0) = r cos(θ).

(Note that certain integrals do not need to be calculated - they must
be correctly stated with correct integrand and limits of integration -
but need not be calculated).
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Rättningsmall

(1p) Variabelseparera ut = ∆u i polära koordinater (r, θ) och tidsvari-
abeln t.

T ′

T
=
R′′ + r−1R′

R
+

1

r2
Θ′′

Θ

L̊at λ = T ′/T och skriv

r2R′′ + rR′

R
+

Θ′′

Θ
= λr2

eller, ekvivalent,

r2R′′ + rR′

R
− λr2 = −Θ′′

Θ
.

(1p) Eftersom höger- och vänsterled beror p̊a θ respektive r är detta
ocks̊a en separerad ekvation och b̊ade sidor m̊aste vara konstant.

(1p) Vi argumenterar för att Θ ska vara 2π-periodisk. Det betyder att
Θ′′ = konstant g̊ang Θ och Θ(−π) = Θ(π) och Θ′(−π) = Θ′(π).
Vi löser den här ekvation (se boken kapitel 1 exempel med Rings
of Saturn).

(1p) Vi skriver ner v̊ar slutsats:

Θn(θ) = einθ, Θ′′
n = −n2Θn, n ∈ Z.

(3p) Vi g̊ar igenom fallen λ > 0, λ = 0 och λ < 0. Om λ > 0 vi
f̊ar den modifierade Besselekvationen. Lösningarna K g̊ar mot
oändligheten när r → 0, och I saknar nollställen för r > 0.
Allts̊a kan inte λ > 0 ge n̊agra fysikaliska lösningar som sam-
tidigt uppfyller randvillkoret vid r = 3. Säg att λ = 0 i stället.
D̊a gäller att r2R′′(r) + rR′(r) − n2R(r) = 0, Eulers ekvation.
Lösningarna är arn + br−n för konstanter a, b om n > 0, eller
R(r) = a + b log(r) ifall n = 0. Allts̊a kan inte heller λ = 0 ge
n̊agra fysikaliska lösningar som samtidigt uppfyller randvillkoret
vid r = 3. Antag λ < 0. L̊at λ = −ν2. Vi erh̊aller Besselekvatio-
nen r2R′′(r)+ rR′(r)+ (ν2r2−n2)R(r) = 0, som har lösningarna
Jn eller Yn. Lösningarna Yn g̊ar mot ∞ när r → 0, s̊a vi utes-
luter dem. Randvillkoret u(3, θ, t) = 0 ger R(3) = 0 och allts̊a
Jn(3ν) = 0. Det betyder att det finns lösningar för alla λ s̊adana
att

λ = −
(πn,k

3

)2
,
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där πn,k är nollställe nummer k till Jn. S̊a

Rn,k(r) = Jn(πn,kr/3).

(1p) Vi löser för T funktionen:

T ′ = λT, λ = −ν2, ν =
πn,k
3
,

alts̊a

Tn,k(t) = cn,ke
−λn,kt, λn,k =

(πn,k)
2

9
.

(1p) Superposition!

u(r, θ, t) =
∑

k>0,n∈Z
Tn,k(t)Θn(θ)Rn,k(r)

(2p) För att uppfylla begynnelsevillkoret ska vi lösa

u(r, θ, 0) =
∑

k>0,n∈Z
Tn,k(0)Θn(θ)Rn,k(r) = r cos θ.

S̊a vi har

Tn,k(0) = cn,k =

∫ π
−π

∫ 3
0 r cos θRn,k(r)Θn(θ)rdrdθ∫ π

−π

∫ 3
0 |Rn,k(r)Θn(θ)|2rdrdθ

.

5. Beräkna: (Compute):

∞∑
n=1

1

4n4 − n2

Hint: Hitta a och b s̊a att

1

4n4 − n2
=

a

n2
+

b

4n2 − 1

och sedan andvänd tabellen av Fourierserier.

Solution:. → (2p) We follow the hint and find that

1

4n4 − n2
= − 1

n2
+

4

4n2 − 1
.
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Our series becomes:

∞∑
n=1

1

4n4 − n2
= −

∞∑
n=1

1

n2
+ 4

∞∑
n=1

1

4n2 − 1

→ (4p) The first sum is the Basel problem, and we know it to be π2

6 .

→ (4p) For the other series, we look at at Table 5.2 and see that

|sin(x)| = 2

π
− 4

π

∞∑
n=1

cos(2nx)

4n2 − 1
∀x ∈ (−π;π)

Plugging in x = 0, we see that

0 = |sin(0)| = 2

π
− 4

π

∞∑
n=1

cos(0)

4n2 − 1
=

2

π
− 4

π

∞∑
n=1

1

4n2 − 1

⇒
∞∑
n=1

1

4n2 − 1
=

1

2

⇒ Our series therefore has the value:

∞∑
n=1

1

4n4 − n2
= 2− π2

6

(10p)

6. Sök en begränsad lösning till problemet (find a bounded solution to
this problem)

ut = uxx, x ∈ R, t > 0,

u(x, 0) =
x

x2 + 2
.

Om det dyker upp väldigt besvärliga integraler behöver ni inte beräkna
dem, utan bara motivera varför de dyker upp och skriva ner dem
korrekt. (If horrible Dark Souls integrals appear you don’t need to
calculate them just explain why they appear and make sure they’re
correct.).
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Rättningsmall

(3p) Det här är värmeledningsekvationen för x ∈ Rmed begynnelsevil-
lkor u(x, 0) = f(x) där f ∈ L2(R). Det osar Fouriertransform!
Vi transformerar ekvationen:

ût = −ξ2û,

där

û(ξ, t) =

∫ ∞

−∞
e−iξxu(x, t) dx.

(1p Fouriertransform, 1p x variabel, 1p f̊ar rätt Fouriertransform
av uxx.)

(2p) Löser vi denna nya ekvation f̊ar vi, med n̊agon godtycklig funktion
av ξ, som vi kallar a,

û(ξ, t) = a(ξ)e−ξ2t.

(1p) Begynnelsevillkoret kan Fouriertransformeras, eftersom

∥f∥2 =
∫ ∞

−∞

x2

(x2 + 2)2
dx =

π

2
√
2
, f(x) =

x

x2 + 2
.

Alts̊a
a(ξ) = f̂(ξ) =⇒ û(ξ, t) = f̂(ξ)e−ξ2t.

(4p) Om man bara skriver

u(x, t) =
1

2π

∫
R
f̂(ξ)e−ξ2teixξdξ

f̊ar man 2p. Om man hitta funktionen som har Fouriertransform
e−ξ2t och skriva som en faltning

u(x, t) =

∫
R
f(x−y)e−y2/(4t)(4πt)−1/2dy =

∫
R
f(y)e−(x−y)2/(4t)(4πt)−1/2dy

f̊ar man 4p.

7. Lös problemet: (Solve the following problem):

u(x, t) +

∫ t

0
(t− s)uxx(x, s)ds = 2, x, t > 0

u(x, 0) = 0,

u(0, t) = sin(t).
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Solution:

We try to solve this by applying the Laplace transform in the t-variable.
The integral is a convolution integral. The Laplace transform of a con-
volution is the product of the transformed functions, so the Laplace
transform of the integral is the Laplace transform of uxx(x, t) times the
Laplace transform of t, which is 1/z2. The Laplace transform of the
integral is the Laplace transform of uxx(x, t) divided by the transform
variable z. We obtain, with U(x, z) denoting the Laplace transform of
u with respect to t:

U(x, z) + Uxx(x, t)/z
2 = 2/z

which we can write as

z2U(x, z) + Uxx(x, t) = 2z

This is an inhomogeous linear ordinary differential equation in x. Solve
it with your favourite method to obtain that

U(x, z) = A(z)eizx +B(z)e−izx +
2

z
.

At this point we are stuck. The Laplace transform of anything trans-
formable vanishes as the imaginary part of z tends to both ∞ and −∞.
So both of these exponentials are problematic in their own way. The
coefficient functions can’t help them because x > 0 can tend to infin-
ity. So the only part that is okay is the particular solution 2

z . Hence -
sorry about this - but at least the point distribution is generous.

In case you are curious, this is how I first thought to grade the problem,
given that it’s messed up.

(a) (5p) Choosing to use Laplace transform methods. It doesn’t mat-
ter in which variable or if you do it right or whatever. Just naming
Laplace transform methods and/or writing some fancy hats gets
you these points.

(b) 1p) for saying to do the transform in the t variable.

(c) (2p) for correctly transforming the pde under the LT (if it is
partially correct you get 1 out of 2 points).

(d) (2p) if you found a particular solution to the ode (the 2/z part).
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However, then I thought more about it, and consulted with some stu-
dents, and decided that some people might have realized it was not
working, and then tried other methods and/or eventually given up. So
I decided that since it’s unsolvable anyone who tried anything whatso-
ever gets 10 points. At least, the problem SCREAMS that you should
try Laplace transform (that’s what was intended), so it is reasonable
that one would at least try that. So, it’s just 10 points for trying, since
the mistake was on our side.

8. Determine the maximum value of∫ 1

−1
x3f(x)dx

among all continuous bounded real-valued functions in [−1, 1] that
satisfy ∫ 1

−1
|f(x)|2dx = 1,

∫ 1

−1
xf(x)dx = 0.

(Hint: expand f using the Legendre polynomial base and use Hilbert
space facts about orthogonal bases of Hilbert spaces.).

Solution.

We can expand f in terms of Legendre polynomials, i.e.

f(x) =
∞∑
n=0

anPn(x)

Then, we note that since P1(x) = x and P3(x) = (5x3 − 3x)/2, we
have that x3 = 2P3(x)/5+3P1(x)/5. Therefore, what we are asked to
maximize is equal to∫ 1

−1
x3f(x)dx =

∞∑
n=0

an

∫ 1

−1

(
2P3(x)

5
+

3P1(x)

5

)
Pn(x)dx

=
2a3∥P3(x)∥2

5
+

3a1∥P1(x)∥2

5
=

4a3
35

+
6a1
15

where we used the orthogonality of the Legendre polynomials and that
their norm is given by

∫ 1
−1 Pn(x)

2dx = 2/(2n+ 1).

Now, we use the constraints. First, note that∫ 1

−1
xf(x)dx =

∫ 1

−1
P1(x)f(x)dx =

∞∑
n=0

an

∫ 1

−1
P1(x)Pn(x)dx =

2

3
a1 = 0,

12



meaning that we must set a1 = 0.

Secondly,∫ 1

−1
|f(x)|2dx =

∞∑
n=0

a2n

∫ 1

−1
Pn(x)

2dx =

∞∑
n=0

a2n
2

2n+ 1
= 1

We see that the only thing affecting the maximum value of the integral
is a3 (and a1, but the first constraint takes care of it!), so all the other
coefficients must be chosen in a way that makes a3 as big as possible
while keeping

∞∑
n=0

a2n
2

2n+ 1
= 1.

The way to achieve this is to put everything on a3 and put the rest of
the remaining coefficients to 0. Indeed, if we opt to choose, say, a4 to
be something other than 0 we end up with the condition 2

7a
2
3+

2
8a

2
4 = 1,

meaning that we must make a3 smaller to make sure that the condition
hold. If a3 is made smaller, the integral we are asked to maximize
becomes... you know it, smaller, which we do not want! Therefore, we
set all other coefficients than a3 to 0, and get

∞∑
n=0

a2n
2

2n+ 1
= a23

2

7
= 1

meaning that a3 =
√
7/2, so that the maximum value of the integral

is achieved by the function f(x) =
√
7/2P3(x) and is given by∫ 1

−1
x3

√
7/2P3(x)dx =

4

35

√
7

2
.

(a) (1p) Writing down the expansion of f(x) in the Legendre poly-
nomial basis. All or nothing.

(b) (2p) Writing x3 in terms of Legendre polynomials. 1 point if you
realize that this is the way forward, but get the wrong expansion.

(c) (2p) Use the orthogonality of the Legendre polynomials as well as
their norm to rewrite the problem as the problem of maximizing
the coefficients only. Small mistakes, e.g., wrong norm of the Leg-
endre polynomials but the correct reasoning with orthogonality
gets you 1 point.
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(d) (1p) Use the first constraint to get rid of a1.

(e) (2p) Use the second constraint to set all other coefficients (every-
thing except a3) to 0. All or nothing.

(f) (1p) Use the second constraint to determine a3.

(g) (1p) Deduce (you must write it down explicitly!) the maximal
value of the integral and write down f(x).

Lycka till! May the FourierForce be with you! ♡ Julie, Carl-Joar, Björn,

Erik, & Kolya
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2 Fun facts!

2.1 The Laplace operator

The Laplace operator in two and three dimensions is respectively

∆ = ∂xx + ∂yy, ∂xx + ∂yy + ∂zz.

In polar coordinate in two dimensions

∆ = ∂rr + r−1∂r + r−2∂θθ.

In cylindrical coordinates in three dimensions

∆ = ∂rr + r−1∂r + r−2∂θθ + ∂zz.

2.2 How to solve first order linear ODEs

If one has a first order linear differential equation, then it can always be
arranged in the following form, with u the unknown function and p and g
specified in the ODE:

u′(t) + p(t)u(t) = g(t).

We compute in this case a function traditionally called µ known as the
integrating factor,

µ(t) := exp

(∫ t

0
p(s)ds

)
.

For this reason we call this method the Mµthod. When computing the
integrating factor the constant of integration can be ignored, because we
will take care of it in the next step. We compute∫ t

0
µ(s)g(s)ds =

∫ t

0
µ(s)g(s)ds+ C.

Don’t forget the constant here! That’s why we use a capital C. The solution
is:

u(t) =

∫ t
0 (µ(s)g(s)ds) + C

µ(t)
.
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2.3 How to solve second order linear ODEs

Theorem 1 (Basis of solutions for linear, constant coefficient, homogeneous
second order ODEs). Consider the ODE, for the unknown function u that
depends on one variable, with constants b and c given in the equation:

au′′ + bu′ + cu = 0, a ̸= 0.

A basis of solutions is one of the following pairs of functions depending on
whether b2 ̸= 4ac or b2 = 4ac:

1. If b2 ̸= 4ac, then a basis of solutions is

{er1x, er2x}, with r1 =
−b+

√
b2 − 4ac

2a
, r2 =

−b−
√
b2 − 4ac

2a
.

2. If b2 = 4ac, then a basis of solutions is

{erx, xerx}, with r = − b

2a
.

Theorem 2 (Particular solution to linear second order ODEs). Assume
that y1 und y2 are a basis of solutions to the ODE

L(y) = y′′ + q(t)y′ + r(t)y = 0.

Then, if yp is a particular solution of the inhomogeneous ODE, so that

L(yp) = g,

then all solutions to L(y) = g can be expressed as

c1y1 + c2y2 + yp,

for y1 and y2 as above, for coefficients c1 and c2. One way to find a particular
solution to the ODE

L(y) = g(t)

is to calculate

Y (t) = −y1
∫

y2g(t)

W (y1, y2)
dt+ y2

∫
y1g(t)

W (y1, y2)
dt.

The Wronskian of y1 and y2, denoted by W (y1, y2) above, is defined to be

W (y1, y2)(t) = y1(t)y
′
2(t)− y2(t)y

′
1(t).
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2.4 Bessel facts

Definition 1 (The Bessel function J of order ν). The Bessel function J of
order ν is defined to be the series

Jν(x) :=
∞∑
n=0

(−1)n

n!Γ(n+ ν + 1)

(x
2

)ν+2n
.

The Bessel function satisfies the Bessel equation:

x2f ′′(x) + xf ′(x) + (x2 − ν2)f(x) = 0.

The modified Bessel equation is satisfied by Iν and Kν

x2f ′′(x) + xf ′(x)− (x2 + ν2)f(x).

For real values of ν the function Iν(x) ̸= 0 for all x > 0. The function Kν(x)
tends to ∞ as x → 0. The Γ (Gamma) function in the expression above is
defined to be

Γ(s) =

∫ ∞

0
ts−1e−tdt, s ∈ C with Re(s) > 0. (1)

For ν ∈ C, the Bessel function is holomorphic in C \ (−∞, 0], while for
integer values of ν, it is an entire function of x ∈ C.

Theorem 3 (Bessel functions as an orthogonal base). Fix L > 0. Fix any
integer n ∈ Z. Let πm,n denote the mth positive zero of the Bessel function
J|n|. Then the functions

{J|n|(πm,nr/L)}m≥1

are an orthogonal base for L2
r(0, L). Recall that this is the weighted L2 space

on the interval (0, L) with respect to the weight function r, so the scalar
product

⟨f, g⟩ =
∫ L

0
f(r)g(r)rdr.

More generally, for any ν ∈ R, and for any L > 0, the functions

{Jν(πmr/L)}m≥1

are an orthogonal base for L2
r(0, L), where above πm denotes the mth zero

of the Bessel function Jν . They have norms equal to∫ L

0
|Jν(πmr/L)|2rdr =

L2

2
(Jν+1(πm))2 .
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Corollary 1 (Orthogonal base for functions on a disk). The functions

{J|n|(πm,nr/L)e
inθ}m≥1,n∈Z

are an orthogonal basis for L2 on the disk of radius L.

Theorem 4 (Bessel functions as bases in some other cases). Assume that
L > 0. Let the weight function w(x) = x. Fix ν ∈ R. Then J ′

ν has infinitely
many positive zeros. Let

{π′k}k≥1

be the positive zeros of J ′
ν . Then we define

ψk(x) = Jν(πkx/L), ν > 0, k ≥ 1.

In case ν = 0, define further ψ0(x) = 1. (If ν ̸= 0, then this case is omitted.)
Then {ψk}k≥1 for ν ̸= 0 is an orthogonal basis for L2

w(0, L). For ν = 0,
{ψk}k≥0 is an orthogonal basis for L2

w(0, L). Moreover the norm

||ψk||w =

∫ L

0
|ψk(x)|2xdx =

L2(π2k − ν2)

2π2k
Jν(πk)

2, k ≥ 1, ||ψ0||2w =
L2ν+2

2ν + 2
.

Next, fix a constant c > 0. Then there are infinitely many positive
solutions of

µJ ′
ν(µ) + cJν(µ) = 0,

that can be enumerated as {µk}k≥1. Then

{φk(x) = Jν(µkx/L)}k≥1

is an orthogonal basis for L2
w(0, L).

2.5 Orthogonal polynomials

Definition 2. The Legendre polynomials, are defined to be

Pn(x) =
1

2nn!

dn

dxn
(
(x2 − 1)n

)
. (2)

The Legendre polynomials are an orthogonal base for L2(−1, 1), and

||Pn||2 =
2

2n+ 1
.

The first few Legendre polynomials are P0 = 1, P1 = x, P2 = 1
2(3x

2 − 1),
and P3 =

1
2(5x

3 − 3x).

18



Definition 3. The Hermite polynomials are defined to be

Hn(x) = (−1)nex
2 dn

dxn
e−x2

.

The Hermite polynomials are an orthogonal base for L2
2(R) with respect to

the weight function e−x2
. Moreover, their norms squared are

||Hn||2 =
∫
R
|Hn(x)|2e−x2

dx = 2nn!

∫
R
e−x2

dx = 2nn!
√
π.

Definition 4. The Laguerre polynomials,

Lα
n(x) =

x−αex

n!

dn

dxn
(xα+ne−x).

The Laguerre polynomials {Lα
n}n≥0 are an orthogonal basis for L2

α on (0,∞)
with the weight function α(x) = xαe−x. Their norms squared,

||Lα
n||2 =

Γ(n+ α+ 1)

n!
.

2.6 Tables of trig Fourier series, Fourier transforms, and
Laplace transforms
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1. f(x) = x
∑

n∈Z\{0}
(−1)neinx

−in .

2. f(x) = |x| π
2 +

∑
n∈Z, odd e

inx
(
− 2

πn2

)
3. f(x) =

{
0, −π < x < 0,

x, 0 < x < π.
π
4 +

∑
n∈Z\{0}

[
(−1)n+1

2in + (−1)n−1
2πn2

]
einx

4. f(x) = sin2(x) 1
2 − 1

4

(
e2ix + e−2ix

)
5. f(x) =

{
−1, −π < x < 0,

1, 0 < x < π.
2
iπ

∑
n≥1

e(2n−1)ix−e−(2n−1)ix

2n−1

6. f(x) =

{
0, −π < x < 0,

1, 0 < x < π.
1
2 +

∑
n≥1

ei(2n−1)x−e−i(2n−1)x

iπ(2n−1)

7. f(x) = | sin(x)| 2
π − 2

π

∑
n≥1

e2inx+e−2inx

4n2−1

8. f(x) = | cos(x)| 2
π − 2

π

∑
n≥1

(−1)n[einx+e−inx]
4n2−1

9. f(x) =

{
0, −π < x < 0,

sin(x), 0 < x < π.
1
π − 1

π

∑
n≥1

e2inx+e−2inx

4n2−1
+ 1

4i

(
eix − e−ix

)
10. f(x) = x2 π2

3 + 2
∑

n≥1
(−1)n(einx+e−inx)

n2

11. f(x) = x(π − |x|) 4
iπ

∑
n≥1

ei(2n−1)x−e−i(2n−1)x

(2n−1)3

12. f(x) = ebx sinh(bπ)
π

∑
n∈Z

(−1)n

b−in e
inx

13. f(x) = sinhx sinh(π)
iπ

∑
n≥1

(−1)n+1n
n2+1

[
einx − e−inx

]
Table 1: Here is a small collection of trigonometric Fourier expansions for
functions in L2(−π, π) in terms of the orthogonal base {einx}n∈Z. The series
on the right are all 2π periodic functions, so the graph of these functions
looks like the graph of f(x) on (−π, π). On the rest of the real line, outside
of the interval (−π, π) the graph of the series is copy-pasted repeatedly over
the rest of the real line, so the series does not equal f(x) for x ̸∈ (−π, π).
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1. f(x) = x 2
∑∞

n=1
(−1)n+1

n sin(nx).

2. f(x) = |x| π
2 − 4

π

∑
n≥1

cos((2n−1)x)
(2n−1)2

3. f(x) =

{
0, −π < x < 0,

x, 0 < x < π.
π
4 − 2

π

∑
n≥1

cos((2n−1)x)
(2n−1)2

+
∑

n≥1
(−1)n+1

n sin(nx)

4. f(x) = sin2(x) 1
2 − 1

2 cos(2x)

5. f(x) =

{
−1, −π < x < 0,

1, 0 < x < π.
4
π

∑
n≥1

sin((2n−1)x)
2n−1

6. f(x) =

{
0, −π < x < 0,

1, 0 < x < π.
1
2 + 2

π

∑
n≥1

sin((2n−1)x)
2n−1

7. f(x) = | sin(x)| 2
π − 4

π

∑
n≥1

cos(2nx)
4n2−1

8. f(x) = | cos(x)| 2
π − 4

π

∑
n≥1

(−1)n cos(2nx)
4n2−1

9. f(x) =

{
0, −π < x < 0,

sin(x), 0 < x < π.
1
π − 2

π

∑
n≥1

cos(2nx)
4n2−1

+ 1
2 sin(x)

10. f(x) = x2 π2

3 + 4
∑

n≥1
(−1)n cos(nx)

n2

11. f(x) = x(π − |x|) 8
π

∑
n≥1

sin((2n−1)x)
(2n−1)3

12. f(x) = ebx sinh(bπ)
π

(
1
b +

∑
n≥1

(−1)n

b2+n2 [2b cos(nx)− 2n sin(nx)]
)

13. f(x) = sinhx 2 sinh(π)
π

∑
n≥1

(−1)n+1n
n2+1

sin(nx)

Table 2: Here is a small collection of trigonometric Fourier ex-
pansions for functions in L2(−π, π) in terms of the orthogonal base
{1, cos(nx), sin(nx)}n≥1. The series on the right are all 2π periodic func-
tions, so the graph of these functions looks like the graph of f(x) on (−π, π).
On the rest of the real line, outside of the interval (−π, π) the graph of the
series is copy-pasted repeatedly over the rest of the real line, so the series
does not equal f(x) for x ̸∈ (−π, π).
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f(x) f̂(ξ)

f(x− c) e−icξ f̂(ξ)

eixcf(x) f̂(ξ − c)

f(ax) a−1f̂(a−1ξ)

f ′(x) iξf̂(ξ)

xf(x) i(f̂)′(ξ)

(f ∗ g)(x) f̂(ξ)ĝ(ξ)

f(x)g(x) (2π)−1(f̂ ∗ ĝ)(ξ)
e−ax2/2

√
2π/ae−ξ2/(2a)

(x2 + a2)−1 (π/a)e−a|ξ|

e−a|x| 2a(ξ2 + a2)−1

χa(x) =

{
1 |x| < a

0 |x| > a
2ξ−1 sin(aξ)

x−1 sin(ax) πχa(ξ) =

{
π |ξ| < a

0 |ξ| > a

Table 3: Above the function is on the left, its Fourier transform on the right.
Here a > 0 and c ∈ R.
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1. Θ(t)f(t) f̃(z)

2. Θ(t− a)f(t− a) e−az f̃(z)

3. ectΘ(t)f(t) f̃(z − c)

4. Θ(t)f(at) a−1f̃(a−1z)

5. Θ(t)f ′(t) zf̃(z)− f(0)

6. Θ(t)f (k)(t) zkf̃(z)−
∑k−1

0 zk−1−jf (j)(0)

7. Θ(t)
∫ t
0 f(s)ds z−1f̃(z)

8. Θ(t)tf(t) −f̃ ′(z)

9. Θ(t)t−1f(t)
∫∞
z f̃(w)dw

10. Θf ∗Θg(t) f̃(z)g̃(z)

11. Θ(t)tνect Γ(ν + 1)(z − c)−ν−1

12. Θ(t)(t+ a)−1 eaz
∫∞
az

e−u

u du

13. Θ(t) sin(ct) c
z2+c2

14. Θ(t) cos(ct) z
z2+c2

Table 4: Above, the function is on the left, its Laplace transform on the
right. Here a > 0 is constant and c ∈ C.
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15. Θ(t) sinh(ct) c
z2−c2

16. Θ(t) cosh(ct) z
z2−c2

17. Θ(t) sin(
√
at)

√
πa(4z3)−1/2e−a/(4z)

18. Θ(t)t−1 sin(
√
at) π erf(

√
a/(4z)

19. Θ(t)e−a2t2 (
√
π/(2a))ez

2/(4a2) erfc(z/2a)

20. Θ(t) erf(at) z−1ez
2/(4a2) erfc(z/(2a))

21. Θ(t) erf(
√
t) (z

√
z + 1)−1

22. Θ(t)et erf(
√
t) ((z − 1)

√
z)−1

23. Θ(t) erfc(a/(2
√
t)) z−1e−a

√
z

24. Θ(t)t−1/2e−
√
at

√
π/zea/(4z) erfc(

√
a/(4z))

25. Θ(t)t−1/2e−a2/(4t)
√
π/ze−a

√
z

26. Θ(t)t−3/2e−a2/(4t) 2a−1√πe−a
√
z

27. Θ(t)tνJν(t) 2νπ−1/2Γ(ν + 1/2)(z2 + 1)−ν−1/2

28. Θ(t)J0(
√
t) z−1e−1/(4z)

Table 5: Above, the function is on the left, its Laplace transform on the
right. Here a > 0 is constant and c ∈ C.
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