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Betygsgränser: 3: 40 poäng, 4: 53 poäng, 5: 67 poäng.
Maximalt antal poäng: 80.
Hjälpmedel: BETA (highlights and sticky notes okay as long as no writing
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Examinator: Julie Rowlett.
Telefonvakt: Julie 0317723419. OBS! Om ni är osäker p̊a n̊agot fr̊aga! (If
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1 Uppgifter

1. (10 P) L̊at f vara en 2π periodisk funktion och antar att f ∈ C2(R).
Bevisa att de Fourierkoefficienterna Cn av f och de Fourierkoefficien-
terna cn av f ′ (f ′ är derivatan av f) uppfyller:

cn = inCn.

2. (10 P) (Samplingssatsen) L̊at f ∈ L2(R) och f̂ dess Fouriertransform.
Antar att det finns L > 0 s̊a att f̂(x) = 0 ∀|x| > L. Bevisa att

f(t) =
∑
n∈Z

f
(nπ
L

) sin(nπ − tL)

nπ − tL
.

3. Lös problemet: (Solve the following problem):
ut(x, t)− uxx(x, t) = sin(x) cos(t), 0 < t, 0 < x < π

u(0, t) = 0, t > 0,

u(π, t) = 0, t > 0,

u(x, 0) = x(x− π), x ∈ [0, π].

(Note that certain integrals do not need to be calculated - they must
be correctly stated with correct integrand and limits of integration -
but need not be calculated). (10 p)
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4. Hitta alla λ > 0 och funktioner f (icke 0-funktionen) s̊a att i de polara
koordinater (r, θ) gäller:

frr + r−1fr + r−2fθθ = λf, f(1, θ) = f(r, 0) = f(r, π) = 0.

(10 p)

5. Beräkna: (Compute):

lim
N→∞

N∑
n=−N

1

e2 + n2
.

(10p)

6. Lös problemet: (Solve the following problem):
ut = uxx + xe−tx, t, x > 0,

u(0, t) = 0,

u(x, 0) = x
cosh(x) .

(Note that it is okay if your answer is in the form of an integral, but
preferably it should not be given as an inverse-transform.)

(10 p)

7. Lös problemet: (Solve the following problem):
utt(x, t) = uxx(x, t), t, x > 0,

u(x, 0) = 0, ut(x, 0) = 0, x > 0,

u(0, t) = (1 + t)3/2.

(Note that it is okay if your answer is in the form of an integral, but
preferably it should not be given as an inverse-transform.)

(10 p)

8. L̊at Pn(x) vara den Legendre polynom grad n. Beräkna (eller förklara
varför gränsvärdet inte finns)

lim
N→∞

N∑
n=0

(2n+ 1)

∣∣∣∣∫ 1

−1
Pn(x)dx

∣∣∣∣2 .
(10p)

Lycka till! May the FourierForce be with you! ♡ Julie, Carl-Joar, Jan,

Erik, & Kolya
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2 Fun and possibly helpful facts!

2.1 The Laplace operator

The Laplace operator in two and three dimensions is respectively

∆ = ∂xx + ∂yy, ∂xx + ∂yy + ∂zz.

In polar coordinate in two dimensions

∆ = ∂rr + r−1∂r + r−2∂θθ.

In cylindrical coordinates in three dimensions

∆ = ∂rr + r−1∂r + r−2∂θθ + ∂zz.

2.2 How to solve first order linear ODEs

If one has a first order linear differential equation, then it can always be
arranged in the following form, with u the unknown function and p and g
specified in the ODE:

u′(t) + p(t)u(t) = g(t).

We compute in this case a function traditionally called µ known as the
integrating factor,

µ(t) := exp

(∫ t

0
p(s)ds

)
.

For this reason we call this method the Mµthod. When computing the
integrating factor the constant of integration can be ignored, because we
will take care of it in the next step. We compute∫ t

0
µ(s)g(s)ds =

∫ t

0
µ(s)g(s)ds+ C.

Don’t forget the constant here! That’s why we use a capital C. The solution
is:

u(t) =

∫ t
0 (µ(s)g(s)ds) + C

µ(t)
.
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2.3 How to solve second order linear ODEs

Theorem 1 (Basis of solutions for linear, constant coefficient, homogeneous
second order ODEs). Consider the ODE, for the unknown function u that
depends on one variable, with constants b and c given in the equation:

au′′ + bu′ + cu = 0, a ̸= 0.

A basis of solutions is one of the following pairs of functions depending on
whether b2 ̸= 4ac or b2 = 4ac:

1. If b2 ̸= 4ac, then a basis of solutions is

{er1x, er2x}, with r1 =
−b+

√
b2 − 4ac

2a
, r2 =

−b−
√
b2 − 4ac

2a
.

2. If b2 = 4ac, then a basis of solutions is

{erx, xerx}, with r = − b

2a
.

Theorem 2 (Particular solution to linear second order ODEs). Assume
that y1 und y2 are a basis of solutions to the ODE

L(y) = y′′ + q(t)y′ + r(t)y = 0.

Then a solution to the ODE

L(y) = g(t)

is given by

Y (t) = −y1
∫

y2g(t)

W (y1, y2)
dt+ y2

∫
y1g(t)

W (y1, y2)
dt.

The Wronskian of y1 and y2, denoted by W (y1, y2) above, is defined to be

W (y1, y2)(t) = y1(t)y
′
2(t)− y2(t)y

′
1(t).

2.4 Definition of a regular SLP (by request)

A regular Sturm Liouville problem is to find all solutions to

L(f(x)) + λw(x)f(x) = 0, Bi(f) = 0, i = 1, 2. (1)

The eigenvalues of the SLP are all numbers λ for which there exists a cor-
responding non-zero eigenfunction f so that together they satisfy (1). The
constituents in the problem in (1) must satisfy the following conditions in
order for the problem to be a regular SLP:
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1. The function w, known as a weight function, must be both positive
and continuous on the interval [a, b].

2. The differential operator L must be of the form

L(f(x)) = (r(x)f ′(x))′ + p(x)f(x).

Above r and p are specified real valued functions. The functions r, r′,
and p must be continuous, and r must be positive on [a, b].

3. The boundary conditions must be equations of the form:

Bi(f) = αif(a) + α′
if

′(a) + βif(b) + β′if
′(b) = 0, i = 1, 2. (2)

Above, the coefficients αi, α
′
i, βi, β

′
i must be fixed complex numbers.

Moreover, the boundary conditions must guarantee that for any un-
known functions ϕ and ψ if one only knows that they both satisfy (2),
that is enough to guarantee that

r(b)
(
ψ(b)ϕ′(b)− ψ′(b)ϕ(b)

)
− r(a)

(
ψ(a)ϕ′(a)− ψ′(a)ϕ(a)

)
= 0. (3)

We note that the unknown functions ϕ and ψ in (3) are only assumed to
satisfy (2); they need not necessarily solve the equation (1).

2.5 Bessel function facts

Definition 1 (The Bessel function J of order ν). The Bessel function J of
order ν is defined to be the series

Jν(x) :=
∞∑
n=0

(−1)n

n!Γ(n+ ν + 1)

(x
2

)ν+2n
.

The Γ (Gamma) function in the expression above is defined to be

Γ(s) =

∫ ∞

0
ts−1e−tdt, s ∈ C with Re(s) > 0. (4)

For ν ∈ C, the Bessel function is holomorphic in C \ (−∞, 0], while for
integer values of ν, it is an entire function of x ∈ C.

Theorem 3 (Bessel functions as an orthogonal base). Fix L > 0. Fix any
integer n ∈ Z. Let πm,n denote the mth positive zero of the Bessel function
J|n|. Then the functions

{J|n|(πm,nr/L)}m≥1
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are an orthogonal base for L2
r(0, L). Recall that this is the weighted L2 space

on the interval (0, L) with respect to the weight function r, so the scalar
product

⟨f, g⟩ =
∫ L

0
f(r)g(r)rdr.

More generally, for any ν ∈ R, and for any L > 0, the functions

{Jν(πmr/L)}m≥1

are an orthogonal base for L2
r(0, L), where above πm denotes the mth zero

of the Bessel function Jν . They have norms equal to∫ L

0
|Jν(πmr/L)|2rdr =

L2

2
(Jν+1(πm))2 .

Corollary 1 (Orthogonal base for functions on a disk). The functions

{J|n|(πm,nr/L)e
inθ}m≥1,n∈Z

are an orthogonal basis for L2 on the disk of radius L.

Theorem 4 (Bessel functions as bases in some other cases). Assume that
L > 0. Let the weight function w(x) = x. Fix ν ∈ R. Then J ′

ν has infinitely
many positive zeros. Let

{π′k}k≥1

be the positive zeros of J ′
ν . Then we define

ψk(x) = Jν(πkx/L), ν > 0, k ≥ 1.

In case ν = 0, define further ψ0(x) = 1. (If ν ̸= 0, then this case is omitted.)
Then {ψk}k≥1 for ν ̸= 0 is an orthogonal basis for L2

w(0, L). For ν = 0,
{ψk}k≥0 is an orthogonal basis for L2

w(0, L). Moreover the norm

||ψk||w =

∫ L

0
|ψk(x)|2xdx =

L2(π2k − ν2)

2π2k
Jν(πk)

2, k ≥ 1, ||ψ0||2w =
L2ν+2

2ν + 2
.

Next, fix a constant c > 0. Then there are infinitely many positive
solutions of

µJ ′
ν(µ) + cJν(µ) = 0,

that can be enumerated as {µk}k≥1. Then

{φk(x) = Jν(µkx/L)}k≥1

is an orthogonal basis for L2
w(0, L).
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2.6 Orthogonal polynomials

Definition 2. The Legendre polynomials, are defined to be

Pn(x) =
1

2nn!

dn

dxn
(
(x2 − 1)n

)
. (5)

The Legendre polynomials are an orthogonal base for L2(−1, 1), and

||Pn||2 =
2

2n+ 1
.

Definition 3. The Hermite polynomials are defined to be

Hn(x) = (−1)nex
2 dn

dxn
e−x2

.

The Hermite polynomials are an orthogonal base for L2
2(R) with respect to

the weight function e−x2
. Moreover, their norms squared are

||Hn||2 =
∫
R
|Hn(x)|2e−x2

dx = 2nn!

∫
R
e−x2

dx = 2nn!
√
π.

Definition 4. The Laguerre polynomials,

Lα
n(x) =

x−αex

n!

dn

dxn
(xα+ne−x).

The Laguerre polynomials {Lα
n}n≥0 are an orthogonal basis for L2

α on (0,∞)
with the weight function α(x) = xαe−x. Their norms squared,

||Lα
n||2 =

Γ(n+ α+ 1)

n!
.

2.7 Tables of trig Fourier series, Fourier transforms, and
Laplace transforms
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1. f(x) = x
∑

n∈Z\{0}
(−1)neinx

−in .

2. f(x) = |x| π
2 +

∑
n∈Z, odd e

inx
(
− 2

πn2

)
3. f(x) =

{
0, −π < x < 0,

x, 0 < x < π.
π
4 +

∑
n∈Z\{0}

[
(−1)n+1

2in + (−1)n−1
2πn2

]
einx

4. f(x) = sin2(x) 1
2 − 1

4

(
e2ix + e−2ix

)
5. f(x) =

{
−1, −π < x < 0,

1, 0 < x < π.
2
iπ

∑
n≥1

e(2n−1)ix−e−(2n−1)ix

2n−1

6. f(x) =

{
0, −π < x < 0,

1, 0 < x < π.
1
2 +

∑
n≥1

ei(2n−1)x−e−i(2n−1)x

iπ(2n−1)

7. f(x) = | sin(x)| 2
π − 2

π

∑
n≥1

e2inx+e−2inx

4n2−1

8. f(x) = | cos(x)| 2
π − 2

π

∑
n≥1

(−1)n[einx+e−inx]
4n2−1

9. f(x) =

{
0, −π < x < 0,

sin(x), 0 < x < π.
1
π − 1

π

∑
n≥1

e2inx+e−2inx

4n2−1
+ 1

4i

(
eix − e−ix

)
10. f(x) = x2 π2

3 + 2
∑

n≥1
(−1)n(einx+e−inx)

n2

11. f(x) = x(π − |x|) 4
iπ

∑
n≥1

ei(2n−1)x−e−i(2n−1)x

(2n−1)3

12. f(x) = ebx sinh(bπ)
π

∑
n∈Z

(−1)n

b−in e
inx

13. f(x) = sinhx sinh(π)
iπ

∑
n≥1

(−1)n+1n
n2+1

[
einx − e−inx

]
14. f(x) = eibx, b /∈ Z

∑
n∈Z

sin(bπ)(−1)n

π(b−n) einx

Table 1: Here is a small collection of trigonometric Fourier expansions for
functions in L2(−π, π) in terms of the orthogonal base {einx}n∈Z. The series
on the right are all 2π periodic functions, so the graph of these functions
looks like the graph of f(x) on (−π, π). On the rest of the real line, outside
of the interval (−π, π) the graph of the series is copy-pasted repeatedly over
the rest of the real line, so the series does not equal f(x) for x ̸∈ (−π, π).8



1. f(x) = x 2
∑∞

n=1
(−1)n+1

n sin(nx).

2. f(x) = |x| π
2 − 4

π

∑
n≥1

cos((2n−1)x)
(2n−1)2

3. f(x) =

{
0, −π < x < 0,

x, 0 < x < π.
π
4 − 2

π

∑
n≥1

cos((2n−1)x)
(2n−1)2

+
∑

n≥1
(−1)n+1

n sin(nx)

4. f(x) = sin2(x) 1
2 − 1

2 cos(2x)

5. f(x) =

{
−1, −π < x < 0,

1, 0 < x < π.
4
π

∑
n≥1

sin((2n−1)x)
2n−1

6. f(x) =

{
0, −π < x < 0,

1, 0 < x < π.
1
2 + 2

π

∑
n≥1

sin((2n−1)x)
2n−1

7. f(x) = | sin(x)| 2
π − 4

π

∑
n≥1

cos(2nx)
4n2−1

8. f(x) = | cos(x)| 2
π − 4

π

∑
n≥1

(−1)n cos(2nx)
4n2−1

9. f(x) =

{
0, −π < x < 0,

sin(x), 0 < x < π.
1
π − 2

π

∑
n≥1

cos(2nx)
4n2−1

+ 1
2 sin(x)

10. f(x) = x2 π2

3 + 4
∑

n≥1
(−1)n cos(nx)

n2

11. f(x) = x(π − |x|) 8
π

∑
n≥1

sin((2n−1)x)
(2n−1)3

12. f(x) = ebx sinh(bπ)
π

(
1
b +

∑
n≥1

(−1)n

b2+n2 [2b cos(nx)− 2n sin(nx)]
)

13. f(x) = sinhx 2 sinh(π)
π

∑
n≥1

(−1)n+1n
n2+1

sin(nx)

14. f(x) = eibx, b /∈ Z sin(bπ)
bπ + sin(bπ)

π

∑
n≥1

(−1)n

b2−n2 [2b cos(nx) + 2in sin(nx)]

Table 2: Here is a small collection of trigonometric Fourier ex-
pansions for functions in L2(−π, π) in terms of the orthogonal base
{1, cos(nx), sin(nx)}n≥1. The series on the right are all 2π periodic func-
tions, so the graph of these functions looks like the graph of f(x) on (−π, π).
On the rest of the real line, outside of the interval (−π, π) the graph of the
series is copy-pasted repeatedly over the rest of the real line, so the series
does not equal f(x) for x ̸∈ (−π, π).
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f(x) f̂(ξ)

f(x− c) e−icξ f̂(ξ)

eixcf(x) f̂(ξ − c)

f(ax) a−1f̂(a−1ξ)

f ′(x) iξf̂(ξ)

xf(x) i(f̂)′(ξ)

(f ∗ g)(x) f̂(ξ)ĝ(ξ)

f(x)g(x) (2π)−1(f̂ ∗ ĝ)(ξ)
e−ax2/2

√
2π/ae−ξ2/(2a)

(x2 + a2)−1 (π/a)e−a|ξ|

e−a|x| 2a(ξ2 + a2)−1

χa(x) =

{
1 |x| < a

0 |x| > a
2ξ−1 sin(aξ)

x−1 sin(ax) πχa(ξ) =

{
π |ξ| < a

0 |ξ| > a

Table 3: Above the function is on the left, its Fourier transform on the right.
Here a > 0 and c ∈ R.
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1. Θ(t)f(t) f̃(z)

2. Θ(t− a)f(t− a) e−az f̃(z)

3. ectΘ(t)f(t) ˜f(z − c)

4. Θ(t)f(at) a−1 ˜f(a−1z)

5. Θ(t)f ′(t) zf̃(z)− f(0)

6. Θ(t)f (k)(t) zkf̃(z)−
∑k−1

0 zk−1−jf (j)(0)

7. Θ(t)
∫ t
0 f(s)ds z−1f̃(z)

8. Θ(t)tf(t) −f̃ ′(z)

9. Θ(t)t−1f(t)
∫∞
z f̃(w)dw

10. Θf ∗Θg(t) f̃(z)g̃(z)

11. Θ(t)tνect Γ(ν + 1)(z − c)−ν−1

12. Θ(t)(t+ a)−1 eaz
∫∞
az

e−u

u du

13. Θ(t) sin(ct) c
z2+c2

14. Θ(t) cos(ct) z
z2+c2

Table 4: Above, the function is on the left, its Laplace transform on the
right. Here a > 0 is constant and c ∈ C.
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15. Θ(t) sinh(ct) c
z2−c2

16. Θ(t) cosh(ct) z
z2−c2

17. Θ(t) sin(
√
at)

√
πa(4z3)−1/2e−a/(4z)

18. Θ(t)t−1 sin(
√
at) π erf(

√
a/(4z)

19. Θ(t)e−a2t2 (
√
π/(2a))ez

2/(4a2) erfc(z/2a)

20. Θ(t) erf(at) z−1ez
2/(4a2) erfc(z/(2a))

21. Θ(t) erf(
√
t) (z

√
z + 1)−1

22. Θ(t)et erf(
√
t) ((z − 1)

√
z)−1

23. Θ(t) erfc(a/(2
√
t)) z−1e−a

√
z

24. Θ(t)t−1/2e−
√
at

√
π/zea/(4z) erfc(

√
a/(4z))

25. Θ(t)t−1/2e−a2/(4t)
√
π/ze−a

√
z

26. Θ(t)t−3/2e−a2/(4t) 2a−1√πe−a
√
z

27. Θ(t)tνJν(t) 2νπ−1/2Γ(ν + 1/2)(z2 + 1)−ν−1/2

28. Θ(t)J0(
√
t) z−1e−1/(4z)

Table 5: Above, the function is on the left, its Laplace transform on the
right. Here a > 0 is constant and c ∈ C.
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you are unsure about anything whatsoever, please ask!)

1 Uppgifter

1. (10 P) L̊at f vara en 2π periodisk funktion och antar att f ∈ C2(R).
Bevisa att de trigonometriska Fourierkoefficienterna Cn av f i den
ortogonal bas {einx}n∈Z p̊a Hilbertrummet L2(−π, π) och de Fouri-
erkoefficienterna cn av f ′ (f ′ är derivatan av f) uppfyller:

cn = inCn.

Solution: We use the definitions of the Fourier series and coefficients
of f and f ′ respectively with respect to the given orthogonal base in
the given Hilbert space.

(2p) Cn =
1

2π

∫ π

−π
f(x)e−inxdx

and

(2p) cn =
1

2π

∫ π

−π
f ′(x)e−inxdx.

You could use either of these expressions and integrate by parts. So,
just the idea to integrate by parts is worth 2 points, because it is the
key idea. Next, actually integrating by parts correctly will be worth
another 2 points. If you take the expression for cn and integrate by
parts, you get

(2p) cn =
1

2π

(
f(x)e−inx

∣∣π
−π

−
∫ π

−π
f(x)(−in)e−inx

)
.

Now you get two points (2p) by observing that the first term vanishes
due to the 2π periodicity of both f and e−inx, so that we end up with

cn = inCn.
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If you instead take the expression for Cn and integrate by parts there,
it’s slightly tricky because you need to separate the cases n = 0 and
n ̸= 0. For n = 0, it is worth one point to show that

c0 = 0

by the 2π periodicity of f . For n ̸= 0, the idea to integrate by points
is worth 1 point, and getting the following expression right for n ̸= 0
is worth 2 points:

Cn =
1

2π

(
f(x)

e−inx

−in

∣∣∣∣π
−π

−
∫ π

−π
f ′(x)

e−inx

−in
dx

)
.

It is worth two points (2p) for observing that the first term vanishes
due to the 2π periodicity of both f and e−inx. So, we get

c0 = 0, Cn =
cn
in
, n ∈ Z \ {0}.

Thus we get cn = inCn holds for all n ∈ Z.

2. (10 P) (Samplingssatsen) L̊at f ∈ L2(R) och f̂ dess Fouriertransform.
Antar att det finns L > 0 s̊a att f̂(x) = 0 ∀|x| > L. Bevisa att

f(t) =
∑
n∈Z

f
(nπ
L

) sin(nπ − tL)

nπ − tL
.

Solution: This theorem is all about the interaction between Fourier
series and Fourier coefficients and how to work with both simultane-
ously. Since the Fourier transform f̂ has compact support, the follow-
ing equality holds as elements of L2([−L,L]),

(2p) f̂(x) =

∞∑
−∞

cne
inπx/L, cn =

1

2L

∫ L

−L
e−inπx/Lf̂(x)dx.

So 1 point for the idea to expand f̂ as a Fourier series on L2(−L,L)
with respect to the OB einπx/L and 1 point for doing it right.

Next, 1 point for the idea to use the FIT and 1 point for doing it
correctly to obtain

(2p) f(t) =
1

2π

∫
R
eixtf̂(x)dx.
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Another point for using the fact that f̂(x) = 0 for |x| > L to obtain
that

(1p) f(t) =
1

2π

∫ L

−L
eixtf̂(x)dx.

Now, one point for substituting the Fourier expansion of f̂ into this
integral,

(1p) f(t) =
1

2π

∫ L

−L
eixt

∞∑
−∞

cne
inπx/Ldx.

One point for applying the FIT onto the coefficients and one point for
using that f̂(x) = 0 for |x| > L to obtain

(1p) cn =
1

2L

∫ L

−L
e−inπx/Lf̂(x)dx =

1

2L

∫
R
eix(−nπ/L)f̂(x)dx =

2π

2L
f

(
−nπ
L

)
.

Thus we have at this point

f(t) =
1

2π

∫ L

−L
eixt

∞∑
−∞

π

L
f

(
−nπ
L

)
einπx/Ldx.

One point for correctly calculating the integral

(1p)

∫ L

−L
ex(it−inπ/L)dx =

eL(it−inπ/L)

i(t− nπ/L)
−e

−L(it−inπ/L)

i(t− nπ/L)
=

2i

i(t− nπ/L)
sin(Lt−nπ).

Two more points for correctly putting it all together to get the final
expression

(2p) f(t) =
∑
n∈Z

f
(nπ
L

) sin(nπ − tL)

nπ − tL
.
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3. Lös problemet: (Solve the following problem):
ut(x, t)− uxx(x, t) = sin(x) cos(t), 0 < t, 0 < x < π

u(0, t) = 0, t > 0,

u(π, t) = 0, t > 0,

u(x, 0) = x(x− π), x ∈ [0, π].

(Note that certain integrals do not need to be calculated - they must
be correctly stated with correct integrand and limits of integration -
but need not be calculated). (10 p)

Solution: This is not an easy problem, but at least it is really similar
to the third problem in the March exam. So for everyone who didn’t
pass that exam, I hope you studied its solutions!

(a) (1p) SLPs are the keys to solving inhomogeneous pde’s. Even if
you do nothing else, this rhyme is worth one point. If you don’t
do the rhyme, you still get a point if you set up the SLP to solve

X ′′ + λX = 0, X(0) = 0, X(π) = 0.

(b) (2p) Solve this SLP. You should obtain (see the vibrating string
example in Chapter 1 of the textbook for the derivation of these
solutions)

Xn(x) = sin(nx), n ∈ N≥1.

One point for the correct function and one point for the correct
range of n.

(c) (1p) Set up the solution you seek to be a series

u(x, t) =
∑
n∈Z

Tn(t)Xn(x),

where we will need to solve for the Tn functions using the inho-
mogeneous pde together with the initial condition.

(d) (2p) Expand the inhomogeneity in terms of the Xn base:

sin(x) cos(t) =
∑
n≥1

cos(t)
⟨sin(x), Xn⟩

||Xn||2
Xn(x) =

∑
n≥1

cn cos(t)Xn(x),

with

⟨sin(x), Xn⟩ =
∫ π

0
sin(x)Xn(x)dx, ||Xn||2 =

∫ π

0
|Xn(x)|2dx.
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It is okay if you leave these integrals like this (and don’t calculate
them) as long as you have correctly defined the scalar product and
the norm squared. Each of these correctly defined is worth one
point. It is possible to simplify life by observing that sin(x) = X1,
and {Xn}n≥1 are orthogonal. So, the coefficients

cn =

{
1, n = 1,

0, n ̸= 1.

(e) (1p) Plug u into the heat equation (correctly) to obtain

ut − uxx =
∑
n≥1

(T ′
n(t) + n2Tn(t))Xn(x).

(f) (1p) Set up the equation for Tn to solve

T ′
n(t) + n2Tn(t) = cn sin(t).

(g) (1p) Set up the correct initial condition∑
n≥1

Tn(0)Xn(x) = x(x− π) =
∑
n≥1

CnXn(x),

with

Cn =
⟨x(x− π), Xn⟩

||Xn||2
.

(If you have correctly defined the scalar product and norm squared
you do not need to write it out again).

(h) (1p) Solve the ODE for Tn(t). The method of integrating factor
will give you

e−n2t

[∫ t

0
en

2scn cos(s)ds+ Cn

]
.

4. Hitta alla λ > 0 och funktioner f (icke 0-funktionen, som är alltid lika
0) s̊a att i polara koordinater (r, θ) gäller:

frr + r−1fr + r−2fθθ = λf, f(1, θ) = f(r, 0) = f(r, π) = 0.

(10 p)

Solution: This is classical separation of variables using polar coor-
dinates.
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(a) (2p) Start by separating variables and looking for a solution to
the pde of the form

R′′Θ+ r−1R′Θ+ r−2RΘ′′ = −λRΘ.

It’s one point for the idea to separate variables and one point for
doing it correctly in the equation.

(b) (1p) Continue to re-arrange the equation until you separate out
the variables fully:

r2
R′′

R
+r

R′

R
+r2λ = −Θ′′

Θ
=⇒ both sides are equal a constant.

(1)

(c) (1p) Set up the SLP for Θ:

Θ′′ + ΛΘ = 0, Θ(0) = Θ(π) = 0.

(d) (1p) Aren’t we lucky that I was so kind as to give you the exact
same SLP in the previous problem? You literally just solved
this(!) So, you know the solutions are

Θn(θ) = sin(nθ), n ∈ N≥1.

(e) (1p) Calculate that

−Θ′′
n

Θn
= n2.

(f) (1p) Substitute this back in to (1) to get the equation for R:

r2
R′′

R
+ r

R′

R
+ r2λ = n2 ⇐⇒ r2R′′ + rR′ + (r2λ− n2)R = 0.

(g) (1p) We only need to look for λ > 0, so the solution to this
equation is Rn(r) = Jn(r

√
λ).

(h) (1p) To satisfy the boundary condition, we need Jn(
√
λ) = 0

(from Rn(1) = 0). So the values of λ are the positive zeros of the
Bessel functions Jn for n ≥ 1.

(i) (1p) The functions are Jn(r
√
λ) sin(nθ) where λ is as just de-

scribed.
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5. Beräkna: (Compute):

lim
N→∞

N∑
n=−N

1

e2 + n2
.

Solution: This is almost the same as the problem we had in the
march exam! I have just changed the π to an e.

We are rather lucky because we have been generously given a table
that says that the trig Fourier series of the function ebx in L2(−π, π)
is

sinh(bπ)

π

∑
n∈Z

(−1)n

b− in
einx.

It is worth a whopping 5 points to identify a function whose trig Fourier
series can be used to compute this series. This is pretty much hit or
miss - either the function you choose can be used to calculate the series
or it cannot (meaning there is no way to make the function you choose
work).

Parseval method:. With the function that I chose, I use the Parseval
equality or equivalently the infinite dimensional Pythagorean theorem
to get:

(1p) ||ebx||2 =
∫ π

−π
e2bxdx =

e2bπ − e−2bπ

2b
=

sinh(2bπ)

b

(1p) =
∑
n∈Z

∥∥∥∥sinh(bπ)π

(−1)n

b− in
einx

∥∥∥∥2
(1p) =

∑
n∈Z

sinh(bπ)2

π2
1

b2 + n2
2π

=
2 sinh(bπ)2

π

∑
n∈Z

1

b2 + n2

One point for setting this equal to the norm on the other side:

(1p)
sinh(2bπ)

b
= 2

sinh(bπ)2

π

∑
n∈Z

1

b2 + n2
⇐⇒ π sinh(2bπ)

2b sinh(bπ)2
=

∑
n∈Z

1

b2 + n2
.

Setting b = e we get

(1p)
π sinh(2eπ)

2e sinh(eπ)2
=

∑
n∈Z

1

e2 + n2
.
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Pointwise convergence of trig Fourier series method:
(1p) For choosing the correct point and that is x = π or x = −π.
With either of these the series becomes

(1p)
sinh(bπ)

π

∑
n∈Z

(−1)n

b− in
e±inπ =

sinh(bπ)

π

∑
n∈Z

1

b− in

sinh(bπ)

π

1

b
+ 2b

∑
n≥1

1

b2 + n2

 .
Two points for using the theorem correctly to say that this is

(2p)
eπb + e−πb

2
= cosh(bπ).

Then one last point for doing the arithmetic to eek out the desired
value with b = π:

1

b

(
cosh(bπ)

π

sinh(bπ)
− 1

b

)
= 2

∑
n≥1

1

b2 + n2

=⇒
∑
n∈Z

1

b2 + n2
=

1

b2
+2

∑
n≥1

1

b2 + n2
=

1

b2
+
1

b

(
cosh(πb)

π

sinh(bπ)
− 1

b

)

=
π cosh(bπ)

b sinh(bπ)
.

Setting b = e we get

(1p) =
π cosh(eπ)

e sinh(eπ)
.

If you are concerned that this doesn’t look like the answer from the
previous method, note that the doubling formula for the hyperbolic
sine gives

sinh(2eπ) = 2 sinh(eπ) cosh(eπ),

so our first answer

π sinh(2eπ)

2e sinh(eπ)2
=

2π sinh(eπ) cosh(eπ)

2e sinh(eπ)2
=
π cosh(eπ)

e sinh(eπ)
.

So indeed our answers match. I would be super impressed if anybody
solved this BOTH ways just to be totally sure they are right... I have
NEVER seen anyone do that - but hope springs eternal.

(10p)
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6. Lös problemet: (Solve the following problem):
ut = uxx + xe−tx, t, x > 0,

u(0, t) = 0,

u(x, 0) = x
cosh(x) .

(Note that it is okay if your answer is in the form of an integral, but
preferably it should not be given as an inverse-transform.)

Solution: This is an inhomogeneous heat equation on a half space.

(a) (2p) One point for the idea to extend oddly to x < 0 based on
the boundary condition, and one point for doing it correctly so
that the functions are

xe−t|x|,
x

cosh(x)
.

(The second function is already odd so it’s already good! And
yes I did that on purpose.)

(b) (2p) Two points for the idea to use the Fourier transform in the
x variable. (1p for FT, 1p for correct variable).

(c) (1p) One point for actually doing the FT correctly to obtain

ût(ξ, t) = −ξ2û(ξ, t) + x̂e−t|x|.

(d) (2p) This is a first order ODE for the Fourier transform in the t
variable, and it can be solved by the method of integrating factor.
The solution is:

û(ξ, t) = e−tξ2
(∫ t

0
esξ

2
x̂e−s|x|ds+ û(ξ, 0)

)
.

(e) (1p) Use the initial data to obtain

û(ξ, t) = e−tξ2
(∫ t

0
esξ

2
x̂e−s|x|ds+

x̂

cosh(x)

)
.

(f) (2p) Use the fact that FT turns products into convolutions so the
solution is

u(x, t) =

∫
R

∫ t

0
(4π(t− s))−1/2e−(x−y)2/(4(t−s))ye−s|y|dsdy
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+

∫
R
(4πt)−1/2e−(x−y)2/(4t) y

cosh(y)
dy.

In this last step, if you just used the FIT instead, to say

u(x, t) =
1

2π

∫
R
eixξe−tξ2

(∫ t

0
esξ

2
x̂e−s|x|ds+

x̂

cosh(x)

)
dξ

I’ll still give you these last two points, just cause.

(10 p)

7. Lös problemet: (Solve the following problem):
utt(x, t) = uxx(x, t), t, x > 0,

u(x, 0) = 0, ut(x, 0) = 0, x > 0,

u(0, t) = (1 + t)3/2.

(Note that it is okay if your answer is in the form of an integral, but
preferably it should not be given as an inverse-transform.)

Solution:

(a) (2p) Recognize that you should use the Laplace transform (1
point for that) and that the transform should be in the t variable
(1 point for that).

(b) (2p) Correctly Laplace transform the pde

ũtt(x, z) = ũxx(x, z) = z2ũ(x, z)− zut(x, 0)− u(x, 0) = z2ũ(x, z).

(c) (2p) Solve this ode for

ũ(x, z) = a(z)exz + b(z)e−xz.

(d) (2p) The boundary condition says that

ũ(0, z) = ˜(1 + t)3/2.

So, a(z) + b(z) is equal to that right side. Now, note that the
Laplace transform of anything Laplace transformable should van-
ish as the real part of z tends to infinity. Since our range of x is
x > 0, this motivates us to seek a solution involving only e−xz.
So, we have

ũ(x, z) = e−xz ˜(1 + t)3/2.
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(e) (2p) By the table, the Laplace transform of Θ(t − x)f(t − x) is
e−xz f̃(z). So, using this with f(t) = (1 + t)3/2, this means that

u(x, t) = Θ(t− x)(1 + (t− x))3/2.

(10 p)

8. L̊at Pn(x) vara den Legendre polynom grad n. Beräkna (eller förklara
varför gränsvärdet inte finns)

lim
N→∞

N∑
n=0

(2n+ 1)

∣∣∣∣∫ 1

−1
Pn(x)dx

∣∣∣∣2 .
Solution: If you just write that the limit is 4, I’ll give you all 10
points because I’m cool like dat.

(2p) Two points for saying that Pn are an orthogonal basis for L2 on
the interval [−1, 1].

(2p) Observe that ∫ 1

−1
Pn(x)dx = ⟨1, Pn⟩.

The function 1 is an element of the Hilbert space L2(−1, 1). So we
can expand it with respect to the orthogonal base {Pn(x)}n≥0,

(2p)
∑
n≥0

⟨1, Pn⟩
||Pn||2

Pn(x).

Two points for applying Parseval’s equality to say that

(2p)
∑
n≥0

|⟨1, Pn⟩|2

||Pn||4
||Pn||2 = ||1||2 =

∫ 1

−1
12dx = 2.

So, we get that ∑
n≥0

|⟨1, Pn⟩|2

||Pn||2
= 2.

At the end of the exam we have the nice formula for

||Pn||2 =
2

2n+ 1
.
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So we get that

(1p)
∑
n≥0

(2n+ 1)|⟨1, Pn⟩|2

2
= 2.

Consequently

(1p) lim
N→∞

N∑
n=0

(2n+ 1)

∣∣∣∣∫ 1

−1
Pn(x)dx

∣∣∣∣2 = 4.

Alternative method for the smartypants: I say this because I
initially solved this exercise by the above clumsy yet effective method.
Then I realized that there is a much smarter method, and knowing the
nice young people who take my class, I bet some of you are so clever
that you immediately saw it (unlike me). The scalar products

(8p) ⟨1, Pn⟩ =

{
2, n = 0,

0, n > 0.

This is because P0 = 1, and the Legendre polynomials are orthogonal
on L2(−1, 1). So, haha, the first term in the sum is

(1p) (2 ∗ 0 + 1) ∗ |2|2 = 4,

and (1p) all the other terms in the sum are ZERO. So of course the
sum converges to four. YAYAY!

(10p)

Lycka till! May the FourierForce be with you! ♡ Julie, Carl-Joar, Jan,

Erik, & Kolya
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2 Fun and possibly helpful facts!

2.1 The Laplace operator

The Laplace operator in two and three dimensions is respectively

∆ = ∂xx + ∂yy, ∂xx + ∂yy + ∂zz.

In polar coordinate in two dimensions

∆ = ∂rr + r−1∂r + r−2∂θθ.

In cylindrical coordinates in three dimensions

∆ = ∂rr + r−1∂r + r−2∂θθ + ∂zz.

2.2 How to solve first order linear ODEs

If one has a first order linear differential equation, then it can always be
arranged in the following form, with u the unknown function and p and g
specified in the ODE:

u′(t) + p(t)u(t) = g(t).

We compute in this case a function traditionally called µ known as the
integrating factor,

µ(t) := exp

(∫ t

0
p(s)ds

)
.

For this reason we call this method the Mµthod. When computing the
integrating factor the constant of integration can be ignored, because we
will take care of it in the next step. We compute∫ t

0
µ(s)g(s)ds =

∫ t

0
µ(s)g(s)ds+ C.

Don’t forget the constant here! That’s why we use a capital C. The solution
is:

u(t) =

∫ t
0 (µ(s)g(s)ds) + C

µ(t)
.
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2.3 How to solve second order linear ODEs

Theorem 1 (Basis of solutions for linear, constant coefficient, homogeneous
second order ODEs). Consider the ODE, for the unknown function u that
depends on one variable, with constants b and c given in the equation:

au′′ + bu′ + cu = 0, a ̸= 0.

A basis of solutions is one of the following pairs of functions depending on
whether b2 ̸= 4ac or b2 = 4ac:

1. If b2 ̸= 4ac, then a basis of solutions is

{er1x, er2x}, with r1 =
−b+

√
b2 − 4ac

2a
, r2 =

−b−
√
b2 − 4ac

2a
.

2. If b2 = 4ac, then a basis of solutions is

{erx, xerx}, with r = − b

2a
.

Theorem 2 (Particular solution to linear second order ODEs). Assume
that y1 und y2 are a basis of solutions to the ODE

L(y) = y′′ + q(t)y′ + r(t)y = 0.

Then a solution to the ODE

L(y) = g(t)

is given by

Y (t) = −y1
∫

y2g(t)

W (y1, y2)
dt+ y2

∫
y1g(t)

W (y1, y2)
dt.

The Wronskian of y1 and y2, denoted by W (y1, y2) above, is defined to be

W (y1, y2)(t) = y1(t)y
′
2(t)− y2(t)y

′
1(t).

2.4 Definition of a regular SLP (by request)

A regular Sturm Liouville problem is to find all solutions to

L(f(x)) + λw(x)f(x) = 0, Bi(f) = 0, i = 1, 2. (2)

The eigenvalues of the SLP are all numbers λ for which there exists a cor-
responding non-zero eigenfunction f so that together they satisfy (2). The
constituents in the problem in (2) must satisfy the following conditions in
order for the problem to be a regular SLP:
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1. The function w, known as a weight function, must be both positive
and continuous on the interval [a, b].

2. The differential operator L must be of the form

L(f(x)) = (r(x)f ′(x))′ + p(x)f(x).

Above r and p are specified real valued functions. The functions r, r′,
and p must be continuous, and r must be positive on [a, b].

3. The boundary conditions must be equations of the form:

Bi(f) = αif(a) + α′
if

′(a) + βif(b) + β′if
′(b) = 0, i = 1, 2. (3)

Above, the coefficients αi, α
′
i, βi, β

′
i must be fixed complex numbers.

Moreover, the boundary conditions must guarantee that for any un-
known functions ϕ and ψ if one only knows that they both satisfy (3),
that is enough to guarantee that

r(b)
(
ψ(b)ϕ′(b)− ψ′(b)ϕ(b)

)
− r(a)

(
ψ(a)ϕ′(a)− ψ′(a)ϕ(a)

)
= 0. (4)

We note that the unknown functions ϕ and ψ in (4) are only assumed to
satisfy (3); they need not necessarily solve the equation (2).

2.5 Bessel function facts

Definition 1 (The Bessel function J of order ν). The Bessel function J of
order ν is defined to be the series

Jν(x) :=
∞∑
n=0

(−1)n

n!Γ(n+ ν + 1)

(x
2

)ν+2n
.

The Γ (Gamma) function in the expression above is defined to be

Γ(s) =

∫ ∞

0
ts−1e−tdt, s ∈ C with Re(s) > 0. (5)

For ν ∈ C, the Bessel function is holomorphic in C \ (−∞, 0], while for
integer values of ν, it is an entire function of x ∈ C.

Theorem 3 (Bessel functions as an orthogonal base). Fix L > 0. Fix any
integer n ∈ Z. Let πm,n denote the mth positive zero of the Bessel function
J|n|. Then the functions

{J|n|(πm,nr/L)}m≥1
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are an orthogonal base for L2
r(0, L). Recall that this is the weighted L2 space

on the interval (0, L) with respect to the weight function r, so the scalar
product

⟨f, g⟩ =
∫ L

0
f(r)g(r)rdr.

More generally, for any ν ∈ R, and for any L > 0, the functions

{Jν(πmr/L)}m≥1

are an orthogonal base for L2
r(0, L), where above πm denotes the mth zero

of the Bessel function Jν . They have norms equal to∫ L

0
|Jν(πmr/L)|2rdr =

L2

2
(Jν+1(πm))2 .

Corollary 1 (Orthogonal base for functions on a disk). The functions

{J|n|(πm,nr/L)e
inθ}m≥1,n∈Z

are an orthogonal basis for L2 on the disk of radius L.

Theorem 4 (Bessel functions as bases in some other cases). Assume that
L > 0. Let the weight function w(x) = x. Fix ν ∈ R. Then J ′

ν has infinitely
many positive zeros. Let

{π′k}k≥1

be the positive zeros of J ′
ν . Then we define

ψk(x) = Jν(πkx/L), ν > 0, k ≥ 1.

In case ν = 0, define further ψ0(x) = 1. (If ν ̸= 0, then this case is omitted.)
Then {ψk}k≥1 for ν ̸= 0 is an orthogonal basis for L2

w(0, L). For ν = 0,
{ψk}k≥0 is an orthogonal basis for L2

w(0, L). Moreover the norm

||ψk||w =

∫ L

0
|ψk(x)|2xdx =

L2(π2k − ν2)

2π2k
Jν(πk)

2, k ≥ 1, ||ψ0||2w =
L2ν+2

2ν + 2
.

Next, fix a constant c > 0. Then there are infinitely many positive
solutions of

µJ ′
ν(µ) + cJν(µ) = 0,

that can be enumerated as {µk}k≥1. Then

{φk(x) = Jν(µkx/L)}k≥1

is an orthogonal basis for L2
w(0, L).
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2.6 Orthogonal polynomials

Definition 2. The Legendre polynomials, are defined to be

Pn(x) =
1

2nn!

dn

dxn
(
(x2 − 1)n

)
. (6)

The Legendre polynomials are an orthogonal base for L2(−1, 1), and

||Pn||2 =
2

2n+ 1
.

Definition 3. The Hermite polynomials are defined to be

Hn(x) = (−1)nex
2 dn

dxn
e−x2

.

The Hermite polynomials are an orthogonal base for L2
2(R) with respect to

the weight function e−x2
. Moreover, their norms squared are

||Hn||2 =
∫
R
|Hn(x)|2e−x2

dx = 2nn!

∫
R
e−x2

dx = 2nn!
√
π.

Definition 4. The Laguerre polynomials,

Lα
n(x) =

x−αex

n!

dn

dxn
(xα+ne−x).

The Laguerre polynomials {Lα
n}n≥0 are an orthogonal basis for L2

α on (0,∞)
with the weight function α(x) = xαe−x. Their norms squared,

||Lα
n||2 =

Γ(n+ α+ 1)

n!
.

2.7 Tables of trig Fourier series, Fourier transforms, and
Laplace transforms
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1. f(x) = x
∑

n∈Z\{0}
(−1)neinx

−in .

2. f(x) = |x| π
2 +

∑
n∈Z, odd e

inx
(
− 2

πn2

)
3. f(x) =

{
0, −π < x < 0,

x, 0 < x < π.
π
4 +

∑
n∈Z\{0}

[
(−1)n+1

2in + (−1)n−1
2πn2

]
einx

4. f(x) = sin2(x) 1
2 − 1

4

(
e2ix + e−2ix

)
5. f(x) =

{
−1, −π < x < 0,

1, 0 < x < π.
2
iπ

∑
n≥1

e(2n−1)ix−e−(2n−1)ix

2n−1

6. f(x) =

{
0, −π < x < 0,

1, 0 < x < π.
1
2 +

∑
n≥1

ei(2n−1)x−e−i(2n−1)x

iπ(2n−1)

7. f(x) = | sin(x)| 2
π − 2

π

∑
n≥1

e2inx+e−2inx

4n2−1

8. f(x) = | cos(x)| 2
π − 2

π

∑
n≥1

(−1)n[einx+e−inx]
4n2−1

9. f(x) =

{
0, −π < x < 0,

sin(x), 0 < x < π.
1
π − 1

π

∑
n≥1

e2inx+e−2inx

4n2−1
+ 1

4i

(
eix − e−ix

)
10. f(x) = x2 π2

3 + 2
∑

n≥1
(−1)n(einx+e−inx)

n2

11. f(x) = x(π − |x|) 4
iπ

∑
n≥1

ei(2n−1)x−e−i(2n−1)x

(2n−1)3

12. f(x) = ebx sinh(bπ)
π

∑
n∈Z

(−1)n

b−in e
inx

13. f(x) = sinhx sinh(π)
iπ

∑
n≥1

(−1)n+1n
n2+1

[
einx − e−inx

]
14. f(x) = eibx, b /∈ Z

∑
n∈Z

sin(bπ)(−1)n

π(b−n) einx

Table 1: Here is a small collection of trigonometric Fourier expansions for
functions in L2(−π, π) in terms of the orthogonal base {einx}n∈Z. The series
on the right are all 2π periodic functions, so the graph of these functions
looks like the graph of f(x) on (−π, π). On the rest of the real line, outside
of the interval (−π, π) the graph of the series is copy-pasted repeatedly over
the rest of the real line, so the series does not equal f(x) for x ̸∈ (−π, π).18



1. f(x) = x 2
∑∞

n=1
(−1)n+1

n sin(nx).

2. f(x) = |x| π
2 − 4

π

∑
n≥1

cos((2n−1)x)
(2n−1)2

3. f(x) =

{
0, −π < x < 0,

x, 0 < x < π.
π
4 − 2

π

∑
n≥1

cos((2n−1)x)
(2n−1)2

+
∑

n≥1
(−1)n+1

n sin(nx)

4. f(x) = sin2(x) 1
2 − 1

2 cos(2x)

5. f(x) =

{
−1, −π < x < 0,

1, 0 < x < π.
4
π

∑
n≥1

sin((2n−1)x)
2n−1

6. f(x) =

{
0, −π < x < 0,

1, 0 < x < π.
1
2 + 2

π

∑
n≥1

sin((2n−1)x)
2n−1

7. f(x) = | sin(x)| 2
π − 4

π

∑
n≥1

cos(2nx)
4n2−1

8. f(x) = | cos(x)| 2
π − 4

π

∑
n≥1

(−1)n cos(2nx)
4n2−1

9. f(x) =

{
0, −π < x < 0,

sin(x), 0 < x < π.
1
π − 2

π

∑
n≥1

cos(2nx)
4n2−1

+ 1
2 sin(x)

10. f(x) = x2 π2

3 + 4
∑

n≥1
(−1)n cos(nx)

n2

11. f(x) = x(π − |x|) 8
π

∑
n≥1

sin((2n−1)x)
(2n−1)3

12. f(x) = ebx sinh(bπ)
π

(
1
b +

∑
n≥1

(−1)n

b2+n2 [2b cos(nx)− 2n sin(nx)]
)

13. f(x) = sinhx 2 sinh(π)
π

∑
n≥1

(−1)n+1n
n2+1

sin(nx)

14. f(x) = eibx, b /∈ Z sin(bπ)
bπ + sin(bπ)

π

∑
n≥1

(−1)n

b2−n2 [2b cos(nx) + 2in sin(nx)]

Table 2: Here is a small collection of trigonometric Fourier ex-
pansions for functions in L2(−π, π) in terms of the orthogonal base
{1, cos(nx), sin(nx)}n≥1. The series on the right are all 2π periodic func-
tions, so the graph of these functions looks like the graph of f(x) on (−π, π).
On the rest of the real line, outside of the interval (−π, π) the graph of the
series is copy-pasted repeatedly over the rest of the real line, so the series
does not equal f(x) for x ̸∈ (−π, π).
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f(x) f̂(ξ)

f(x− c) e−icξ f̂(ξ)

eixcf(x) f̂(ξ − c)

f(ax) a−1f̂(a−1ξ)

f ′(x) iξf̂(ξ)

xf(x) i(f̂)′(ξ)

(f ∗ g)(x) f̂(ξ)ĝ(ξ)

f(x)g(x) (2π)−1(f̂ ∗ ĝ)(ξ)
e−ax2/2

√
2π/ae−ξ2/(2a)

(x2 + a2)−1 (π/a)e−a|ξ|

e−a|x| 2a(ξ2 + a2)−1

χa(x) =

{
1 |x| < a

0 |x| > a
2ξ−1 sin(aξ)

x−1 sin(ax) πχa(ξ) =

{
π |ξ| < a

0 |ξ| > a

Table 3: Above the function is on the left, its Fourier transform on the right.
Here a > 0 and c ∈ R.
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1. Θ(t)f(t) f̃(z)

2. Θ(t− a)f(t− a) e−az f̃(z)

3. ectΘ(t)f(t) ˜f(z − c)

4. Θ(t)f(at) a−1 ˜f(a−1z)

5. Θ(t)f ′(t) zf̃(z)− f(0)

6. Θ(t)f (k)(t) zkf̃(z)−
∑k−1

0 zk−1−jf (j)(0)

7. Θ(t)
∫ t
0 f(s)ds z−1f̃(z)

8. Θ(t)tf(t) −f̃ ′(z)

9. Θ(t)t−1f(t)
∫∞
z f̃(w)dw

10. Θf ∗Θg(t) f̃(z)g̃(z)

11. Θ(t)tνect Γ(ν + 1)(z − c)−ν−1

12. Θ(t)(t+ a)−1 eaz
∫∞
az

e−u

u du

13. Θ(t) sin(ct) c
z2+c2

14. Θ(t) cos(ct) z
z2+c2

Table 4: Above, the function is on the left, its Laplace transform on the
right. Here a > 0 is constant and c ∈ C.
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15. Θ(t) sinh(ct) c
z2−c2

16. Θ(t) cosh(ct) z
z2−c2

17. Θ(t) sin(
√
at)

√
πa(4z3)−1/2e−a/(4z)

18. Θ(t)t−1 sin(
√
at) π erf(

√
a/(4z)

19. Θ(t)e−a2t2 (
√
π/(2a))ez

2/(4a2) erfc(z/2a)

20. Θ(t) erf(at) z−1ez
2/(4a2) erfc(z/(2a))

21. Θ(t) erf(
√
t) (z

√
z + 1)−1

22. Θ(t)et erf(
√
t) ((z − 1)

√
z)−1

23. Θ(t) erfc(a/(2
√
t)) z−1e−a

√
z

24. Θ(t)t−1/2e−
√
at

√
π/zea/(4z) erfc(

√
a/(4z))

25. Θ(t)t−1/2e−a2/(4t)
√
π/ze−a

√
z

26. Θ(t)t−3/2e−a2/(4t) 2a−1√πe−a
√
z

27. Θ(t)tνJν(t) 2νπ−1/2Γ(ν + 1/2)(z2 + 1)−ν−1/2

28. Θ(t)J0(
√
t) z−1e−1/(4z)

Table 5: Above, the function is on the left, its Laplace transform on the
right. Here a > 0 is constant and c ∈ C.
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