
Fourieranalys MVE030 och Fourier Metoder MVE290 2023.mars.17
Betygsgränser: 3: 40 poäng, 4: 53 poäng, 5: 67 poäng.
Maximalt antal poäng: 80.
Hjälpmedel: BETA (highlights and sticky notes okay as long as no writing
on them) & miniräknare som helst.
Examinator: Julie Rowlett.
Telefonvakt: Julie 0317723419. OBS! Om ni är osäker p̊a n̊agot fr̊aga! (If
you are unsure about anything whatsoever, please ask!)

1 Uppgifter

1. (The Bessel functions can be generated by a function that’s exponen-
tiated!). Bevisa att de Bessel funktioner uppfyller: (Prove that the
Bessel functions satisfy):

∞∑
n=−∞

Jn(x)z
n = e

x
2
(z− 1

z
), ∀x ∈ R, z ∈ C \ {0}.

(10p)

We begin by writing out the power series expansion for the exponential
functions

(2p) exz/2 =
∑
j≥0

(
xz
2

)j
j!

,

and

(2p) e−x/(2z) =
∑
k≥0

(−x
2z

)k
k!

.

Each of these is worth 2 points as you probably figured out by the
notation above. If you fudge up but get it partly right, you’d get one
out of two points.

These series converge beautifully, absolutely and uniformly for z in
compact subsets of C \ {0}. So, since we presume that z ̸= 0, we can
multiply these series:

(1p) exz/2e−x/(2z) =
∑
j≥0

(
xz
2

)j
j!

∑
k≥0

(−x
2z

)k
k!

=
∑
j,k≥0

(−1)k
(x
2

)j+k zj−k

j!k!
.

Correctly combining the two series is worth 1 point. We then introduce
a new variable,

(1p) n := j − k.
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This is worth one point. We then compute that

(1p) j = n+ k,

(1p) j + k = n+ 2k.

So, we have that

(1p) exz/2e−x/(2z) =
∞∑

n=−∞

∞∑
k=0

(−1)k
(x
2

)n+2k zn

Γ(n+ k + 1)k!
.

It is okay if you have (n+ k)! downstairs instead of Γ(n+ k + 1).

Now, we just need to observe that what we have sitting there is the
Bessel function since

(1p) Jn(x) =
∞∑
k=0

(−1)k
(
x
2

)n+2k

k!Γ(k + n+ 1)
.

Hence, we have indeed see that

e
x
2 (z−

1
z ) = exz/2e−x/(2z) =

∞∑
n=−∞

Jn(x)z
n.

Here are a few notes about the grading in general. Each problem will
be graded by either (1) following this point scheme or (2) if you’ve
basically got a correct solution but make some mistakes here and there
then we may instead calculate your score by subtracting the # of f-ups
from 10. The result according to both ways is equivalent, but if there
is any discrepancy then we take the higher value. ALSO: if you skip
steps but obtain the right results you will get full credit. We are not
pedantic about these steps, they are just to help decide how to give
partial credit for stuff that is messed up. Right is right, good is good,
steps or no steps. So, as long as it is a step that we in the teaching
team could also skip ourselves (thus maybe you are just as clever as
we are, why not?) then we give you full credit for the result (without
taking the steps). If it is something that say JR could never in a
million years possibly do in her head, then we might be skeptical that
you did it in your head with zero steps (unless you use some magic
beta formula in which case you should write that down so we know
this was the miracle that occurred). We do NOT do half points. Our
grading policy is strictly Diophantine.
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2. (Fourier series pass the test, they can approximate the best!) L̊at
{ϕn}n∈N vara en ortogonal mängd i ett Hilbert-rum, H. Om f ∈ H
och ∑

n∈N
cnϕn ∈ H,

bevisa olikheten:

||f −
∑
n∈N

⟨f, ϕn⟩ϕn|| ≤ ||f −
∑
n∈N

cnϕn||.

Bevisa att olikheten blir en likhet precis om:

cn = ⟨f, ϕn⟩ ∀n ∈ N.

(10 p)

It is convenient to introduce a bit of terminology. Let

f̂n = ⟨f, ϕn⟩, g =
∑
n

f̂nϕn, φ :=
∑
n

cnϕn.

We would like to compare ||f − g|| and ||f − φ||. You don’t have to
introduce this notation if you don’t want to.

(1p) ||f − g + g − φ||2 = ⟨f − g + g − φ, f − g + g − φ⟩

(1p) = ||f − g||2 + ||g − φ||2 + ⟨f − g, g − φ⟩+ ⟨g − φ, f − g⟩

(1p) = ||f − g||2 + ||g − φ||2 + 2Re⟨f − g, g − φ⟩.

The first two terms are clear, so we will work out the last term and
then take its real part.

(1p) ⟨f − g, g − φ⟩ = ⟨f, g⟩ − ⟨f, φ⟩ − ⟨g, g⟩+ ⟨g, φ⟩

(2p) =
∑
n

f̂n⟨f, ϕn⟩−
∑
n

cn⟨f, ϕn⟩−
∑
n

f̂n⟨ϕn,
∑
m

f̂mϕm⟩+
∑
n

f̂n⟨ϕn,
∑
m

cmϕm⟩

(1p) =
∑

|f̂n|2 −
∑

cnf̂n −
∑

|f̂n|2 +
∑

f̂ncn = 0,

where above we have used the fact that ϕn are an orthonormal set.
Then, we have therefore shown that

(1p) ||f − φ||2 = ||f − g||2 + ||g − φ||2 ≥ ||f − g||2.
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Equality holds if and only if

(1p) ||g − φ||2 = 0 ⇐⇒ g = φ.

By their definitions this holds if and only if

(1p) f̂n = cn∀n.

3. Lös problemet: (Solve the following problem):
ut(x, t)− uxx(x, t) = sin(t) cos(x), 0 < t, −π < x < π

u(−π, t) = u(π, t), t > 0,

ux(−π, t) = ux(π, t), t > 0,

u(x, 0) = |x| − π, x ∈ [−π, π].

(10 p)

(a) (1p) SLPs are the keys to solving inhomogeneous pde’s. Even if
you do nothing else, this rhyme is worth one point. Equivalently,
you get a point if you set up the SLP to solve

X ′′ + λX = 0, X(−π) = X(π), X ′(−π) = X ′(π).

(or written equivalently).

(b) (2p) Solve this SLP. You should obtain (see the rings of Saturn
example in Chapter 1 of the textbook for the derivation of these
solutions)

Xn(x) = einx, n ∈ Z.

One point for the correct function and one point for the correct
range of n. Note that you could also have {sin(nx)}n≥1 together
with cos(nx)}n≥0. This is equivalent and correct.

(c) (1p) Set up the solution you seek to be a series

u(x, t) =
∑
n∈Z

Tn(t)Xn(x),

where we will need to solve for the Tn functions using the inho-
mogeneous pde together with the initial condition.
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(d) (2p) Expand the inhomogeneity in terms of the Xn base:

sin(t) cos(x) =
∑
n∈Z

sin(t)
⟨cos(x), Xn⟩

||Xn||2
Xn(x) =

∑
n∈Z

cn sin(t)Xn(x),

with

⟨cos(x), Xn⟩ =
∫ π

−π
cos(x)Xn(x)dx, ||Xn||2 =

∫ π

−π
|Xn(x)|2dx.

It is okay if you leave these integrals like this (and don’t calculate
them) as long as you have correctly defined the scalar product
and the norm squared. Each of these correctly defined is worth
one point. It is possible to simplify life by observing that

cos(x) =
eix + e−ix

2
,

and the functions einx are orthogonal. So, the coefficients

cn =

{
1
2 , n = ±1,

0, n ̸= ±1.

(e) (1p) Plug u into the heat equation (correctly) to obtain

ut − uxx =
∑
n∈Z

(T ′
n(t) + n2Tn(t))Xn(x).

(f) (1p) Set up the equation for Tn to solve

T ′
n(t) + n2Tn(t) = cn sin(t).

(g) (1p) Set up the correct initial condition∑
n∈Z

Tn(0)Xn(x) = |x| − π =
∑
n∈Z

CnXn(x),

with

Cn =
⟨|x| − π,Xn⟩

||Xn||2
.

(If you have correctly defined the scalar product and norm squared
you do not need to write it out again). It is possible that you
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used the table to calculate these coefficients in which case you
would have found:

C0 =
3π

2
, C2n+1 = − 2

π(2n+ 1)2
, n ∈ Z, C±2n = 0, n ≥ 1.

However you do NOT have to calculate these coefficients. It is
fine if you simply write out what they are and you correctly define
the scalar product and norm squared!

(h) (1p) Solve the ODE for Tn(t). The method of integrating factor
will give you

e−n2t

[∫ t

0
en

2scn sin(s)ds+ Cn

]
.

4. Lös problemet: (Solve the following problem):
ut = ∆u, 0 < z < H, −π < θ < π, 0 < r < L, 0 < t,

uz(r, 0, θ, t) = 0, uz(r,H, θ, t) = 0,

u(L, z, θ, t) = 0,

u(r, z, θ, 0) = 20,

där ∆ = ∂xx + ∂yy + ∂zz. (10 p)

(a) (1p) Separate variables in polar coordinates.

(b) (1p) Correctly apply the pde:

T ′RΘZ = TR′′ΘZ + r−1TR′ΘZ + r−2TΘ′′RZ + Z ′′RΘT.

(c) (1p) Separate variables to solve for either Z or Θ first. Either
one works. For Theta you will get the SLP

Θ′′ = constant times Θ, Θ(−π) = Θ(π), Θ′(−π) = Θ′(π).

Then as in the previous exercise the solutions are:

Θn(θ) = einθ.

Note that you could also have {sin(nx)}n≥1 together with cos(nx)}n≥0.
This is equivalent and correct.
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(d) (1p) Next solve for Z. You will get the SLP

Z ′′ = constant times Z, Z ′(0) = 0 = Z ′(H).

The solutions are (up to constant multiples)

Zn(z) = cos(nπz/H), n ≥ 0, n ∈ Z.

Alternatively, you could skip both of these by arguing that noth-
ing will change in the z direction and the IC is independent of
theta so the solution will be also. You are correct. So if you
do this you get these 2 points for the Z and Theta parts of the
solution immediately.

(e) (1p) Next solve for R. To do this we re-arrange to get

T ′

T
=

R′′

R
+r−1R

′

R
+r−2Θ

′′

Θ
+
Z ′′

Z
⇐⇒ T ′

T
−Z ′′

Z
=

R′′

R
+r−1R

′

R
+r−2Θ

′′

Θ
= µ

for some constant µ. We then re-arrange the right side to get

r2
R′′

R
+ r

R′

R
− r2µ = −Θ′′

Θ
.

For Θn this right side is n2 so we have

r2
R′′

R
+ r

R′

R
− r2µ = n2 ⇐⇒ r2R′′ + rR′ + (−r2µ− n2)R = 0.

(f) (1p) Recognize that R satisfies this equation if and only if F (x)
with x = r

√
|µ| satisfies either the modified Bessel equation if

µ > 0 or the Bessel equation if µ < 0 or an Euler equation if
µ = 0.

(g) (1p) Throw away the solutions to the modified Bessel and Euler
equations because they either are not physical or cannot satisfy
the boundary condition R(L) = 0.

(h) (1p) Find the R part of the solution to be

Rn,k(r) = J|n|(rπn,k/L), µn,k = −
π2
n,k

L2

where πn,k is the kth positive zero of J|n|. If you only do this in
the case n = 0 it is correct, because in the end the only terms
in the solution that will be non-zero are the terms with J0. So if
you reduced to that case here and above it is fine. If you didn’t
though, it is also still correct.
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(i) (1p) Use everything to now solve for the T function. Recall that
Zm satisfies

Z ′′
m

Zm
= −m2π2

H2

we have

T ′

T
−Z ′′

Z
= µ = −

π2
n,k

L2
=⇒ T ′(t) = λn,m,kT (t), λn,m,k = −

π2
n,k

L2
−m2π2

H2

so
Tn,m,k(t) = cn,m,ke

λn,m,kt.

(j) (1p) Present your solution and define what the coefficients are:

u(r, z, θ, t) =
∑

n∈Z,m≥0,k≥1

Tn,m,k(t)Θn(θ)Zm(z)Rn,k(r),

with

cn,m,k =

∫ L
0

∫ H
0

∫ π
−π 20Θn(θ)Zm(z)Rn,k(r)dθdzrdr∫ L

0

∫ H
0

∫ π
−π |Θn(θ)Zm(z)Rn,k(r)|2dθdzrdr

.

Here you can alternatively see that the only non-zero terms are

c0,0,k

because {Θn(θ)}n∈Z = {einθ}n∈Z are an orthogonal base. So,
since Θ0 = 1, it is orthogonal to all the other Θn for all n ̸= 0,
and we are integrating the constant function 20 times Θn. So this
shows that non-zero terms all have n = 0. Similarly, {Zm(x) =
cos(mπz/H)}m≥0 are also an orthogonal base, and Z0 = 1. So
it is orthogonal to all the other Zm for all m ≥ 0, and we are
integrating the constant function 20 times Zm. So, this shows
that non-zero terms all have m = 0. So, this is another way to
see that we could just take the function to be constant in both z
and θ from the start. However, even if you did not do this and
dragged around your thetas and your zs, you could still get the
right answer (you would just have a lot of zero terms sitting in
your solution). If you did realize this, then you would have just
had

u(r, z, θ, t) =
∑
k≥1

cke
−π2

0,kt/L
2

J0(rπ0,k/L), ck =

∫ L
0 20J0(rπ0,k/L)rdr∫ L
0 |J0(rπ0,k/L)|2rdr

.
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Although it is not required, it is possible to calculate these coef-
ficients rather nicely using the Bessel function fun facts provided
in the exam. For the numerator, we use the recurrence relation

(xJ1(x))
′ = xJ0(x).

So, we make a substitution

x = rπ0,k/L =⇒ dx = drπ0,k/L

=⇒
∫ L

0
20J0(rπ0,k/L)rdr = 20

∫ π0,k

0
xJ0(x)

L2

π2
0,k

dx

(xJ1)′=xJ0
=

20L2

π2
0,k

xJ1(x)|
π0,k

0 =
20L2

π0,k
J1(π0,k).

For the denominator, this is computed for us in the formula col-
lection at the end of the exam:∫ L

0
|J0(rπ0,k/L)|2rdr =

L2

2
J1(π0,k).

So, we obtain that

ck =
40

π0,k
.

You didn’t need to do that calculation, but just in case anybody
did and wanted to check they got it right, here it is.

5. Beräkna: (Compute):

lim
N→∞

N∑
n=−N

1

π2 + n2
.

(10p)

We are rather lucky because we have been generously given a table
that says that the trig Fourier series of the function ebx in L2(−π, π)
is

sinh(bπ)

π

∑
n∈Z

(−1)n

b− in
einx.

It is worth a whopping 5 points to identify a function whose trig Fourier
series can be used to compute this series. This is pretty much hit or
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miss - either the function you choose can be used to calculate the series
or it cannot (meaning there is no way to make the function you choose
work).

Parseval method:. With the function that I chose, I use the Parseval
equality or equivalently the infinite dimensional Pythagorean theorem
to get:

(1p) ||ebx||2 =
∫ π

−π
e2bxdx =

e2bπ − e−2bπ

2b
=

sinh(2bπ)

b

(1p) =
∑
n∈Z

∥∥∥∥sinh(bπ)π

(−1)n

b− in
einx

∥∥∥∥2
(1p) =

∑
n∈Z

sinh(bπ)2

π2

1

b2 + n2
2π

=
2 sinh(bπ)2

π

∑
n∈Z

1

b2 + n2

One point for setting this equal to the norm on the other side:

(1p)
sinh(2bπ)

b
= 2

sinh(bπ)2

π

∑
n∈Z

1

b2 + n2
⇐⇒ π sinh(2bπ)

2b sinh(bπ)2
=

∑
n∈Z

1

b2 + n2
.

Setting b = π we get

(1p)
sinh(2π2)

2 sinh(π2)2
=

∑
n∈Z

1

π2 + n2
.

Pointwise convergence of trig Fourier series method:
(1p) For choosing the correct point and that is x = π or x = −π.
With either of these the series becomes

(1p)
sinh(bπ)

π

∑
n∈Z

(−1)n

b− in
e±inπ =

sinh(bπ)

π

∑
n∈Z

1

b− in

sinh(bπ)

π

1

b
+ 2b

∑
n≥1

1

b2 + n2

 .

Two points for using the theorem correctly to say that this is

(2p)
eπb + e−πb

2
= cosh(bπ).
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Then one last point for doing the arithmetic to eek out the desired
value with b = π:

1

b

(
cosh(bπ)

π

sinh(bπ)
− 1

b

)
= 2

∑
n≥1

1

b2 + n2

=⇒
∑
n∈Z

1

b2 + n2
=

1

b2
+2

∑
n≥1

1

b2 + n2
=

1

b2
+
1

b

(
cosh(πb)

π

sinh(bπ)
− 1

b

)

=
π cosh(bπ)

b sinh(bπ)
.

Setting b = π we get

=
cosh(π2)

sinh(π2)
.

If you are concerned that this doesn’t look like the answer from the
previous method, note that the doubling formula for the hyperbolic
sine gives

sinh(2π2) = 2 sinh(π2) cosh(π2),

so our first answer

sinh(2π2)

2 sinh(π2)2
=

2 sinh(π2) cosh(π2)

2 sinh(π2)2
=

cosh(π2)

sinh(π2)
.

So indeed our answers match. I would be super impressed if anybody
solved this BOTH ways just to be totally sure they are right... I have
NEVER seen anyone do that - but hope springs eternal.

6. Lös problemet: (Solve the following problem):
uxx(x, y) + uyy(x, y) = 0, x > 0, y > 0,

u(0, y) = f(y) ∈ L2(0,∞),

u(x, 0) = g(x) ∈ L2(0,∞).

(a) (2p) Split this into two separate problems each occurring in a half
space. The problems are

pxx(x, y)+pyy(x, y) = 0, x, y > 0, p(0, y) = f(y), p(x, 0) = 0.

qxx(x, y)+qyy(x, y) = 0, x, y > 0, q(0, y) = 0, q(x, 0) = g(x).

Then the solution will be u = p+ q.
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(b) (2p) Pick one of these to solve first. Doesn’t matter which one you
pick. I will solve first for p. The two points are for recognizing
that we should (1p) extend oddly in the y variable due to the
boundary condition at y = 0 and (1p) use the Fourier transform
in the y variable. Each of these observations is worth one point.
(Analogously if you chose to solve for the q function first).

(c) (2p) Solve this using the Fourier transform:

p̂xx(x, ξ) + p̂yy(x, ξ) = 0 = p̂xx(x, ξ)− ξ2p̂(x, ξ) = 0

(1p) =⇒ p̂(x, ξ) = a(ξ)eξx + b(ξ)e−ξx.

One point for obtaining this. Since the Fourier transform pre-
serves parity, our function p̂(x, ξ) is an odd function in ξ. Con-
sider ξ > 0. Since x > 0 the term eξx is not the Fourier transform
of anything contained in L2. So we try to solve using the other
term. The BC says that

p̂(0, ξ) = f̂o(ξ),

the odd extension of f . So, we will try to solve using

p̂(x, ξ) = f̂o(ξ)e
−ξx, x > 0, ξ > 0.

Note that the Fourier transform preserves oddness, so the left
side is odd, and therefore the right side should be odd as well.
The term f̂o is because fo is odd and Fourier transform preserves
parity. So, to make the whole right side also odd, we therefore
extend the function e−ξx to the negative real axis to be even. A
whopping one point for figuring this out:

(1p) p̂(x, ξ) = f̂o(ξ)e
−|ξ|x, x > 0, ξ ∈ R.

(d) (2p) Now, we look on the table of Fourier transforms and find
that the function whose Fourier transform is e−|ξ|x. We see that
the function

1

y2 + a2
FT−→ π

a
e−a|ξ|

where the transform is done in the y variable and a > 0 is a
constant. So, take a = x and re-arrange to get that

(1p)
x

π
(y2 + x2)−1 FT−→ e−|ξ|x.
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The second point is for then using the table of Fourier transforms
once more to get that:

p(x, y)

(1p) =

∫
R
fo(y−z)

x

π
(z2+x2)−1dz =

∫
R
fo(z)

x

π
((y−z)2+x2)−1dz

=

∫ 0

−∞
−f(−z)

x

π
((y−z)2+x2)−1dz+

∫ ∞

0
f(z)

x

π
((y−z)2+x2)−1dz

=

∫ 0

∞
f(s)

x

π
((y + s)2 + x2)−1ds+

∫ ∞

0
f(z)

x

π
((y − z)2 + x2)−1dz

=

∫ ∞

0
f(s)

x

π

[
((y − s)2 + x2)−1 − ((y + s)2 + x2))−1

]
ds.

If you just write that it is a convolution but don’t get the con-
volution correctly defined you lose this point. You do NOT have
to do all the unravelling that I have done here to make it pretty.
The top line is correct and sufficient.

(e) (2p) The solution q is found in very much the same way. So two
more points for getting the correct

q(x, y) =

∫ ∞

0
g(s)

y

π

[
((x− s)2 + y2)−1 − ((x+ s)2 + y2))−1

]
ds.

If you did not make it pretty and simply left it as

q(x, y) ==

∫
R
go(x−z)

y

π
(z2+y2)−1dz =

∫
R
go(z)

y

π
((x−z)2+y2)−1dz

you get the full 2 points. That is because it’s nice to be pretty, but
the bottom line is mathematical correctness and the less pretty
solution is also correct and concise.

(10 p)

7. Lös problemet: (Solve the following problem):
ut(x, t) = uxx(x, t), t, x > 0,

u(0, t) = et, t > 0,

u(x, 0) = 0, x > 0

(a) (2p) Recognize that you should use the Laplace transform (1
point for that) and that the transform should be in the t variable
(1 point for that).
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(b) (2p) Correctly Laplace transform the pde

ũt(x, z) = ũxx(x, z) = zũ(x, z)− u(x, 0) = zũ(x, z).

(c) (2p) Solve this ode for

ũ(x, z) = a(z)ex
√
z + b(z)e−x

√
z.

(d) (2p) One point for throwing away the ex
√
z. The second point is

for finding

ũ(0, z) = ẽt(z) = b(z) =⇒ ũ(x, z) = ẽt(z)e−x
√
z.

(e) (2p) Use the table of Laplace transforms to obtain that the func-
tion

Θ(t)
x

2
√
πt3/2

e−x2/(4t) −→ e−x
√
z.

Hence

u(x, t) =

∫
R
et−sΘ(t− s)Θ(s)

x

2
√
πs3/2

e−x2/(4s)ds.

If you just write that u(x, t) is the convolution of et and this
other x

2
√
πt3/2

e−x2/(4t) function but you mess up the definition of

convolution and/or forget the heavisides, you get one out of two
points for this part.

(10 p)

8. Hitta et polynomet p(x) av högst grad 17 som minimeras (Find the
polynomial p(x) of at most degree 17 which minimizes the following
integral): ∫ 4

−4
|ecos(x) − p(x)|2dx.

(10p)

Let Pn(x) denote the Legendre polynomial of degree n. Then we know
that these polynomials are an orthogonal base for L2(−1, 1). So, we
do a little calculation by setting x/4 = t:∫ 4

−4
Pn(x/4)Pm(x/4)dx =

∫ 1

−1
Pn(t)Pm(t)(4dt)

14



=

{
0, n ̸= m,

4||Pn||2 = 8
2n+1 ,&n = m.

So, the polynomials {Pn(x/4)}n≥0 are an orthogonal base for L2(−4, 4).
For notational convenience let

℘n(x) := Pn(x/4), f(x) := ecos(x).

Consequently the polynomial we seek is

p(x) =

17∑
n=0

⟨f, ℘n⟩
||℘n||2

℘n(x),

with

⟨f, ℘n⟩ =
∫ 4

−4
f(x)℘n(x)dx =

∫ 4

−4
ecos(x)Pn(x/4)dx,

||℘n||2 =
∫ 4

−4
|℘n(x)|2dx =

8

2n+ 1
.

So the points breakdown is like this:

(a) 2 points for using Legendre polynomials. As Beyonce would say,
you need to SAY their name. (Not just write Pn without explain-
ing what Pn is!!) If you write Pn but don’t say their name, you
get 1 out of 2 points.

(b) 2 points for modifying them to Pn(x/4). (this is pretty much all
or nothing)

(c) 2 points for the correct scalar product: ⟨f, ℘n⟩ =
∫ 4
−4 e

cos(x)Pn(x/4)dx.
(i don’t really see how to do partial credit on this part either,
probably all or nothing here too).

(d) 2 points for the correct norm downstairs: ||℘n||2 =
∫ 4
−4 |℘n(x)|2dx =

8
2n+1 . (similarly, unclear how to do partial credit here?)

(e) 2 points for putting it all together correctly. (I suppose if you do
everything else right but goof this up in some minor way, then
you could get 1 point instead of 2).

Please keep in mind that you do not actually have to compute any
integrals here! Just write down what the correct integrals are!
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