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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2020.01.20

According to Gerry, Fourier Analysis is “A collection of related techniques for
solving the most important partial differential equations of physics (and chem-
istry).” For example, we’re going to be solving partial differential equations, ab-
breviated PDEs

∆ Laplace equations (related to computing energy of quantum particles)
� wave equations (describes the propagation of waves, hence also of light and

electromagnetic waves)
Ξ heat equation (describes the propagation of heat, is the quintessential dif-

fusion equation)

What is a PDE?

Definition 1. A PDE is an equation for an unknown function (unsub) which
depends on n > 1 independent real variables. Writing u for the unknown function,

u : Rn → C.

The PDE for u is an equation that u is supposed to satisfy and contains u together
with one or more partial derivatives of u. The PDE may also contain other, specified
functions.

Example 1. The Laplace equation for a function on R2 is:

uxx + uyy = 0.

The Laplace operator on R2 is:

∆ = ∂xx + ∂yy,

so writing it this way the Laplace equation looks like

∆u = 0.

The wave equation for a function on R3 × [0,∞)t is

utt = uxx + uyy + uzz.
1
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Sometimes there is a constant on one side or the other, but mathematicians often
use interesting time units to be able to assume ‘without loss of generality’ this
constant is 1. The heat equation for a function on R× [0,∞)t is

ut = uxx.

Similarly, I like to assume the constant is 1.

1.1. The sound check analogy. Have you ever noticed that at a metal concert,
even if the band has played thousands of concerts, even in the exact same venue,
they always do a sound check? Do you know why? It’s because the sound produced
by the band obeys the wave equation. This equation is really hard to solve. More-
over, it is really sensitive to the geometry of the space where the band plays. Even
if it’s the same venue, the number of people inside is not the same, and these people
are part of the geometry of the space. So, every time they play, the band has to
do a sound check to see how the geometry of everything is affecting the solution of
the wave equation which is basically how the band sounds.

The wave equation, and indeed all PDEs are HARD to solve. There is no single
unifying theory to guide us to the solution of all PDEs. It’s like the metal band:
we have to do a sound check for each and every concert. There is no magic pre-set
we can use for all our concerts. Similarly, we have to deal with each and every PDE
individually and carefully. To solve them, we must study a variety of methods and
learn how to use these methods and combine them when possible.

1.2. The first method: Separation of variables (SV). If you come to the
(obligatory for Kf, option for TM and F) extra three lectures, you will learn how
to classify every PDE on the planet. For the great majority of these, we have no
hope to solve then analytically (that is, to write down a mathematical formula as
the solution to the PDE).

In case you have forgotten, here is a reminder.

Definition 2. An ODE is an equation for an unknown function (unsub) which
depends on one independent real variable. Writing u for the unknown function, an
ODE for u is an equation that u is supposed to satisfy and contains u together with
one or more derivatives of u. The ODE may also contain other, specified functions.

Question 3. What is the difference between an ODE and a PDE?1

So, to introduce the technique of separation of variables, let’s think about a
really down-to-earth example. A vibrating string, like the guitar or bass strings in
our metal band. The ends of the string are held fixed, so they’re not moving. You
know this if you play or watch people play guitar. Let’s mathematicize the string,
by identifying it with the interval [0, `] ⊂ R. The string length is `. Let’s define

u(x, t) := the height of the string at the point x ∈ [0, `] at time t ∈ [0,∞[.

1Answer: the unknown function (unsub) in an ODE depends on only one variable, so the
derivatives in the equation are ‘ordinary derivatives.’ The unknown function in a PDE depends
on at least two variables, so we can no longer speak of ordinary derivatives, because the only

derivatives that make sense when a function depends on two or more variables are partial deriva-
tives. So, it’s just a matter of how many variables does the unknown function in the equation
depend on?
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Then, let’s just define the sitting-still height to be height 0. So, the fact that ends
are sitting still means that

u(0, t) = u(`, t) = 0 ∀t.

A positive height means above the sitting-still height, whereas a negative height
means under the sitting-still height. The wave equation (I’m not going to derive it,
but maybe you clever physics students can do that?) says that:

uxx = c2utt.

The constant c depends on how fast the string vibrates.

Question 4. Is this equation a PDE or an ODE?2

Technique 0 = Separation of Variables starts like this: we assume that

u(x, t) = X(x)T (t),

that is a product of two functions, each of which depends only on one variable.
Why can we do this? Who knows, maybe it is rubbish! Maybe u is not of this
form. Kind of like the sound check: we guess at the sound levels and then play a
bit to see if it sounds good. Same here. We just have to try.

Assuming that u is of this form, we put this into the PDE:

uxx = c2utt ⇐⇒ X ′′(x)T (t) = c2X(x)T ′′(t).

Now, we would like to separate variables by getting everything dependent on x to
one side of the equation and everything dependent on t to the other side. To achieve
this, we divide both sides by X(x)T (t):

X ′′

X
(x) = c2

T ′′

T
(t).

Stop. Think. The left side depends only on x, whereas the right side depends only
on t.

Exercise 1. Explain in your own words why if one side of an equation depends on
x and the other side depends on t, then both sides must be constant.

What should we solve for first? X or T? We’ve got more information on X than
we do on T , because we know that the ends are still. This means that

X(0) = X(`) = 0.

So, the equation for just f is

X ′′

X
(x) = constant ,

X(0) = X(`) = 0.

Let’s give the constant a name. Call it λ. Then write

X ′′(x) = λX(x), X(0) = X(`) = 0.

Well, we can solve this. There are three cases to consider:

2Answer: it’s a PDE because the function depends on two independent variables: position on
the string x and time t.
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λ = 0 This means X ′′(x) = 0. Integrating both sides once gives X ′(x) = constant
= m. Integrating a second time gives X(x) = mx + b. Requiring X(0) =
X(`) = 0, well, the first makes b = 0, and the second makes m = 0. So,
the solution is X(x) ≡ 0. The 0 solution. The waveless wave. Not too
interesting.

λ > 0 The solution here will be of the form

X(x) = ae
√
λx + be−

√
λx.

Exercise 2. Show that it is equivalent to write the solution as A cosh(
√
λx)+

B sinh(
√
λx), for two constants A and B. Determine the relationship be-

tween A and B and a and b. Show that in order to guarantee that X(0) =
X(`) = 0 you need a = A = B = b = 0. You should do this exercise,
because it I strongly suspect you can do it. Think of it as a warm-up for
Folland’s exercises.

Thus, with our teamwork, (me providing hints and you doing the actual
work by solving the exercise) we have gotten the 0 solution again. The
waveless wave. No fun there.

λ < 0 Finally, we have solution of the form

a cos(
√
|λ|x) + b sin(

√
|λ|x).

To make X(0) = 0, we need a = 0. Uh oh... are we going to get that stupid
0 solution again? Well, let’s see what we need to make X(`) = 0. For that
we just need

b sin(
√
|λ|`) = 0.

That will be true if

|λ| = k2π2

`2
, k ∈ Z.

Super! We still don’t know what b ought to be, but at least we’ve found all
the possible X’s, up to constant factors.

Just to clarify the fact that we’ve now found all solutions, we recall here a
theorem from your multivariable calculus class.

th:omc Theorem 5 (Second order ODEs). Consider the second order linear homogeneous
ODE,

au′′ + bu′ + cu = 0, a 6= 0.

If b = c = 0, then a basis of solutions is given by

{x, 1},
so that all solutions are of the form

u(x) = Ax+B, A,B ∈ R.
If c = 0, then a basis of solutions is {e−b/ax, 1} so that all real solutions are given
by

u(x) = Ae−bx/a +B.

If c 6= 0, then a basis of solutions is one of the following:

(1) {er1x, er2x} if b2 6= 4ac, where

r1 =
−b+

√
b2 − 4ac

2a
, r2 =

−b−
√
b2 − 4ac

2a
.
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(2) {erx, xerx} if b2 = 4ac, with r = − b
2a .

Exercise 3. Our equation is

X ′′ = λX ⇐⇒ X ′′ − λX = 0.

So, in the language of the above theorem, a = 1, b = 0, and c = λ. Use this to find
all solutions which satisfy X(0) = X(`) = 0.

The solutions we’ve found are, up to constant factors:

Xk(x) = sin

(
kπx

`

)
, λk = −k

2π2

`2
.

Do not worry about the constant factors at this point in time. Save
them for later.3

Now, let’s find the friends of X, the time functions, T which depend only on
time. These come in pairs, so that X1 comes together with T1. This is because
the value of the constant λ1, comes from X1. However, we’ve also got X2, and the
value of the constant λ2 is different. So, for each pair we have

X ′′k
Xk

= λk = −k
2π2

`2
= c2

T ′′k
Tk
.

This is almost the same equation we had before. Here we have, re-arranging:

T ′′k = −k
2π2

c2`2
Tk.

Exercise 4. Use Theorem
th:omcth:omc
5 to show that a basis of solutions is given by{

e
ikπt
c` , e−

ikπt
c`

}
.

Show that it is equivalent to use{
cos

(
kπt

c`

)
, sin

(
kπt

c`

)}
as a basis. Hint: remember eiθ = cos θ + i sin θ for i =

√
−1 for any θ ∈ R.

Let us pause to think about what this means. The physics students may recognize
that the numbers

{|λk|}k≥1
are the resonant frequencies of the string. Basically, they determine how it sounds.
The number |λ1| is the fundamental tone of the string. The higher |λk| for k ≥ 2
are harmonics. It is interesting to note that they are all square-integer multiplies
of λ1. Here’s a question: if you can “hear” the value of |λ1|, then can you tell me
how long the string is? Well, yes, cause

|λ1| =
1

`2
, =⇒ ` =

1√
|λ1|

.

So, you can hear the length of a string. A couple of famous unsolved math problems:
can one hear the shape of a convex drum? Can one hear the shape of a smoothly
bounded drum? We can talk about these problems if you’re interested.

3The reason we should do this is because the less baggage we are carrying around, (i.e. the
fewer symbols we got to write), the less likely we are to screw something up. So, we should

remember the patience principle and be patient, wait to get the constants later.
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So, now that we’ve got all these solutions, what should we do with them? Good
question...

1.3. Superposition principle and linearity. Superposition basically means adding
up a bunch of solutions. You can think of it like adding up a bunch of solutions to
get a super solution!

Definition 6. A second order linear PDE for an unknown function u of n variables
is an equation for u and its mixed partial derivatives up to order two of the form

L(u) = f,

where f is a given function, and there are known functions a(x), bi(x), cij(x) for
x ∈ Rn such that

L(u) = a(x)u(x) +

n∑
i=1

bi(x)uxi(x) +
n∑

i,j=1

cij(x)uij(x).

In this context, L is called a second order linear partial differential operator.

The reason it’s called linear is because it’s well, linear.

Exercise 5. For two functions u and v, which depend on n variables, show that

L(u+ v) = L(u) + L(v).

Moreover, for any constant c ∈ R, show that

L(cu) = cL(u).

Definition 7. The wave operator, �, defined for u(x, y) with (x, y) ∈ R2 is

�(u) = −uxx + c2utt.

Exercise 6. Verify that the wave operator is a second order linear partial differ-
ential operator.

We have shown that the functions

uk(x, t) = Xk(x)Tk(t)

satisfy

�uk = 0∀k.
Hence, if we add them up this remains true:

�(u1 + u2 + u3 + . . .) = 0.

OBS!4

Exercise 7. Show that the equations

X ′′k = λkXk ⇐⇒ f ′′k − λkXk = 0

do not add up. In particular, show that just the first two of these equations do not
add up,

X ′′1 +X ′′2 − (λ1 + λ2)(X1 +X2) 6= 0.

4I love this Swedish expression. Nothing quite like it in the languages I know. Well, the closest

is maybe which is also very cute.
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The reason these equations do not add up is because it’s not the same L. The
equation for Xk is

X ′′k − λkXk = 0.

This depends on k, and since each λ1 6= λ2 6= λ3, . . ., the differential operator is

Lk =
d2

dx2
+ λk.

This exercise shows that one must take care when smashing solutions (i.e. super-
posing) together!

When we look at the different uk(x, t) in the wave equation, it’s all good, because
it’s always the same wave operator. Hence, we may indeed smash all our solutions
together, include the (to be determined) coefficients, and write

u(x, t) =
∑
k≥1

uk(x, t) =
∑
k≥1

sin

(
kπx

`

)(
ak cos

(
kπt

c`

)
+ bk sin

(
kπt

c`

))
,

and it satisfies
�u(x, t) = 0, u(0, t) = u(`, t) = 0.

We’ve still got some unanswered questions:

(1) What are the constants ak and bk?
(2) If we can figure out what the constants are, then we are still left with this

thing: ∑
k≥1

sin

(
kπx

`

)
(ak cos(kπt/`) + bk sin(kπt/`)) .

Is this hot mess going to converge?

2. Exercises to be done by oneself

1.1.1 Show that u(x, t) = t−1/2e−x
2/(4kt) satisfies the heat equation

ut = kuxx.

1.2.5(a) Show that for n = 1, 2, 3, . . . un(x, y) = sin(nπx) sinh(nπy) satisfies

uxx + uyy = 0, u(0, y) = u(1, y) = u(x, 0) = 0.

1.3.5 By separation of variables, derive the solutions un(x, y) = sin(nπx) sinh(nπy)
of

uxx + uyy = 0, u(0, y) = u(1, y) = u(x, 0) = 0.

1.3.7 Use separation of variables to find an infinite family of independent solu-
tions to

ut = kuxx, u(0, t) = 0, ux(`, t) = 0,

representing heat flow in a rod with one end held at temperature zero and
the other end insulated.
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1. 2019.01.22

Let’s look at another example. Consider a circular shaped rod, like a rod that’s
been bent into a circle. Let’s mathematicize it! To specify points on the rod, we
just need to know the angle at the point. For this reason, we use the real variable
x for the position, where x gives us the angle at the point on the rod. We use
the variable t ≥ 0 for time. The function u(x, t) is the temperature on the rod at
position x at time t.

The heat equation (homogeneous, which means no sources or sinks) tells us that:

ut = kuxx,

for some constant k > 0. At this point our only techniques are separation of
variables and superposition. We first use separation of variables to find solutions.
So, let us do the same first step as we did in solving the homogeneous wave equation.
It’s just a means to an ends, by writing

u(x, t) = X(x)T (t).

Plug it into the heat equation:

T ′(t)X(x) = kX ′′(x)T (t).

We want to separate variables, so we want all the t-dependent bits on the left say,
and all the x-dependent bits on the right. This can be achieved by dividing both
sides by X(x)T (t),

T ′(t)

T (t)
= k

X ′′(x)

X(x)
.

We now know that both sides must be constant. Let us call the constant λ, so that

T ′

T
= λ = k

X ′′

X
.

Exercise 1. In your own words, explain why both sides of the equation must be
constant.

Now, we need to pick a side to begin... We actually have some information which
is hiding inside the geometry of the problem. The geometry is referring to the x
variable. What can you say about the angle x on the rod and the angle x+ 2π on

1
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the rod? They are the same. This means that our temperature function must be
the same at x and at x+ 2π. So, we must have

X(x+ 2π) = X(x).

We can repeat this, obtaining

X(x+ 2πn) = X(x) ∀n ∈ Z.

This means that X is a periodic function with period equal to 2π. So, we have a
bit of extra information about it. The equation for X is:

X ′′(x) =
λ

k
X(x)

for a constant λ.

Exercise 2. Case 1: Show that if λ = 0, there is no solution to X ′′(x) = 0 which
is 2π periodic, other than the constant solutions.

Case 2: If λ > 0, then a basis of solutions is,

{e
√
λx/
√
k, e−

√
λx/
√
k}.

So, we can write

X(x) = ae
√
λx/
√
k + be−

√
λx/
√
k.

For the 2π periodicity to hold, we need

X(0) = X(2π) =⇒ a+b = ae
√
λ2π/

√
k+be−

√
λ2π/

√
k =⇒ a(e

√
λ2π/

√
k−1) = b(1−e−

√
λ2π/

√
k)

=⇒ a = b
(1− e−

√
λ2π/

√
k)

e
√
λ2π/

√
k − 1

.

We also need

X(−2π) = X(0) =⇒ a+b = ae−
√
λ2π/

√
k+be

√
λ2π/

√
k =⇒ a(e−

√
λ2π/

√
k−1) = b(1−e

√
λ2π/

√
k)

=⇒ a = b
1− e

√
λ2π/

√
k

e−
√
λ2π/

√
k − 1

.

So, we have two equations for a, therefore they should be equal:

a = b
1− e−

√
λ2π/

√
k

e
√
λ2π/

√
k − 1

= b
1− e

√
λ2π/

√
k

e−
√
λ2π/

√
k − 1

.

If b = 0 then a = 0 so the whole solution is the zero solution. If b 6= 0 then we must
have

1− e−
√
λ2π/

√
k

e
√
λ2π/

√
k − 1

=
1− e

√
λ2π/

√
k

e−
√
λ2π/

√
k − 1

.

Changing the sign of the top and bottom on the right side, this is equivalent to:

1− e−
√
λ2π/

√
k

e
√
λ2π/

√
k − 1

=
e
√
λ2π/

√
k − 1

1− e−
√
λ2π/

√
k
.

Call the left side ?. Then the right side is 1
? . So the equation is

? =
1

?
=⇒ ?2 = 1 =⇒ ? = ±1.

Exercise 3. Show that ? > 0.
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If

? = 1 =⇒ 1− e−
√
λ2π/

√
k = e

√
λ2π/

√
k − 1 =⇒ 2 = e

√
λ2π/

√
k + e−

√
λ2π/

√
k.

I don’t like the negative exponent thing (it is really a fraction), so I am going to

multiply by e
√
λ2π/

√
k. Also, doing this turns it into a quadratic equation:

2e
√
λ2π/

√
k = e4π

√
λ/
√
k + 1 ⇐⇒ e4π

√
λ/
√
k − 2e2π

√
λ/
√
k + 1 = 0

Now we can factor this equation because the left side is

(e2π
√
λ/
√
k − 1)2 = 0 =⇒ e2π

√
λ/
√
k = 1 ⇐⇒ 2π

√
λ/
√
k = 0 .

That  indicates a contradiction. Therefore, in the case where λ > 0, the only
solution which is 2π periodic is the zero solution.

Hence, we are left with Case 3: λ < 0. Then, a basis of solutions is

{sin(
√
|λ|x/

√
k), cos(

√
|λ|x/

√
k).

We need these solutions to be 2π periodic. They will be as long as
√
|λ|/
√
k is an

integer. So we need

λ < 0,

√
|λ|√
k

= n ∈ Z =⇒ λn = −n2k.

Hence, our solution

Xn(x) = an cos(nx) + bn sin(nx), n ∈ N0.

Exercise 4. Show that allowing complex coefficients, it is equivalent to use a basis
of solutions

{eπinx}n∈Z.
Find An and Bn in terms of an and bn so that

Xn(x) = Ane
inx +Bne

−inx.

Now, we can solve for the partner function, Tn(t). Since

T ′n(t)

Tn(t)
= λn = −n2k,

the equation for Tn is

T ′n(t) = −n2kTn(t).

Consequently,

Tn(t) = e−n
2kt up to constant factor.

So, we now have found the solutions

un(x, t) = Xn(x)Tn(t) = e−n
2kt(an cos(nx) + bn sin(nx)).

These solutions satisfy the heat equation

∂tun − k∂xxun = 0.

Let us define the heat operator for functions of one real variable and one time
variable,

Ξ := ∂t − k∂xx.
Then we have

Ξun(t) = 0∀n ∈ N0.



4 JULIE ROWLETT

Consequently, we can use the superposition principle to smash all these solutions
we have found into a super solution

u(x, t) =
∑
n≥0

un(x, t) =
∑
n≥0

e−n
2tk(an cos(nx) + bn sin(nx)).

We do this because we do not know how many of the un functions we will need. In
case we don’t end up needing them all, then their coefficients will be zero, so they
will just disappear on their own anyways. Let’s think about the physics. The rod
has some temperature function at time t = 0, which we call u0(x). Then u0(x) is
also a 2π periodic function. We would like

u(x, 0) = u0(x) ⇐⇒
∑
n≥0

an cos(nx) + bn sin(nx) = u0(x).

So, given u0(x), can we find an and bn so that this is true?
Fourier made the bold statement that we can do this. It took a long time to

rigorously prove him right (like 100 years, because this whole theory about Hilbert
spaces, measure theory, and functional analysis needed to get developed by Hilbert
& his contemporaries).

1.1. Introduction to Fourier Series of periodic functions. If we have a finite
one dimensional, connected set, then we can always mathematicize it as either (1) a
bounded interval or (2) a circle. When we take a bounded interval of length 2`, and
we take any function whatsoever on that interval, we can always extend it to the
rest of R to be 2` periodic, by simply repeating its values from the interval. Hence,
for both of these contexts we can do everything we desire with periodic functions.

Definition 1. A function f : R → R is periodic with period p iff for all x ∈ R,
f(x+ p) = f(x), and moreover, p > 0 is the smallest real number for which this is
true.

For example, sin(x) is periodic with period 2π. Our heat equation examples,
fn(x) = an cos(nx) + bn sin(nx) are periodic with period 2π/n. We shall prove a
super useful little lemma about periodic functions and their integrals.

Lemma 2 (Integration of periodic functions lemma). If f is periodic with period
p then for any a ∈ R ∫ a+p

a

f(x)dx

is the same.

Exercise 5. Give an example for how this fails to be true if the function f is not
periodic. That is, take some non-periodic function and show that integrating it from
say a to a+ p is not the same as integrating it from c to c+ p.

Proof: If we think about it, we want to show that the function

g(a) :=

∫ a+p

a

f(x)dx

is a constant function. This looks awfully similar to the fundamental theorem of
calculus. Now, this statement above is not true for non-periodic functions. So,
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we’re going to need to use the assumption that f is periodic with period p. This
tells us that f has the same value at both endpoints of the integral, so

f(a) = f(a+ p) =⇒ f(a+ p)− f(a) = 0.

Now, since we want to consider a as a variable, we don’t want it at both the top and
the bottom of the integral defining g. Instead, we can use linearity of integration
to write

g(a) =

∫ a+p

0

f(x)dx−
∫ a

0

f(x)dx.

Then, using the fundamental theorem of calculus on each of the two terms on the
right,

g′(a) = f(a+ p)− f(a) = 0.

Above, we use the fact that f is periodic with period p. Hence, g′(a) ≡ 0 for all
a ∈ R. This tells us that g is a constant function, so its value is the same for all
a ∈ R.

So you survived a bit of theory, now let’s return to our physical motivation!
We wanted to find coefficients so that the u(x, t) we found to solve the heat equa-
tion would match up with the initial data, u0(x). If it does, then (using some
advanced PDE theory beyond the scope of this humble course), u(x, t) is indeed
THE UNIQUE solution to the heat equation with initial data u0(x). Hence, u(x, t)
actually tells us the temperature on the rod at position x at time t. Cool. So,
setting t = 0 in the definition of u(x, t) we want

vxvx (1.1) u0(x) =
∑
n≥0

an cos(nx) + bn sin(nx).

It is totally equivalent to work with complex exponentials, because

cos(nx) =
einx + e−inx

2
, sin(nx) =

einx − e−inx

2i
.

Exercise 6. Show that we can write u0(x) as a series above in (
vxvx
1.1) if and only if

we can write
u0(x) =

∑
n∈Z

cne
inx.

Moreover, show that

c0 =
a0
2
, cn =

1

2
(an − ibn), n ≥ 1, cn =

1

2
(an + ibn), n ≤ −1.

Finally, use this to show that

a0 = 2c0, an = cn + c−n, n ≥ 0, bn = i(cn − c−n), n ≥ 0.

It is slightly more convenient for these purposes to do the calculation using the
{einx}n∈Z basis. This will be elucidated in a moment. The equation we want to
obtain is:

u0(x) =
∑
n∈Z

cne
inx.

The object on the right is a sum of coefficients cn ∈ C times functions einx. It is
simply a linear combination of the functions einx. If we could show that in a suitable
sense these functions for a sort of “basis” then we should be able to expand our
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function u0 in terms of this basis. Sure, the basis is infinite, so, you’ve graduated
to “linear algebra for adults,” in which your vectors are now infinite dimensional.
1 To continue with the linear algebra concept, we need a notion of dot product,
in order to expand u0 in terms of our basis functions einx. This is obtained using
something called a scalar product, or dot product, or inner product: they all mean
the same thing.

Definition 3. For two functions, f and g, which are real or complex valued func-
tions defined on [a, b] ⊂ R, we define their scalar product to be

〈f, g〉 =

∫ b

a

f(x)g(x)dx.

We say that f and g are orthogonal if 〈f, g〉 = 0. We define the L2([a, b]) norm of
a function to be

||f ||L2([a,b]) =
√
〈f, f〉.

OBS! Learn this definition right now!!!! It is really important. Every detail:

〈f, g〉 =

∫ b

a

f(x)g(x)dx, ||f ||2 = 〈f, f〉.

Now, if you wonder why it is defined this way, that is because defining things this
way has the very pleasant consequence that it works. Meaning, when we define
things this way, we are able to use the separation of variables technique to solve
the PDEs.

2. Exercises to be done by oneself: Hints

1.1.1 Show that u(x, t) = t−1/2e−x
2/(4kt) satisfies the heat equation

ut = kuxx.

Hint: Use the product rule when you’re differentiating with respect to
t. When you’re differentiating with respect to x, remember that from x’s
perspective, t is just a constant.

1.2.5(a) Show that for n = 1, 2, 3, . . . un(x, y) = sin(nπx) sinh(nπy) satisfies

uxx + uyy = 0, u(0, y) = u(1, y) = u(x, 0) = 0.

Hint: Use the product rule and remember that in the eyes of x, sinh(nπy)
is constant. Similarly, in the eyes of y, sin(nπx) is constant.

1.3.5 By separation of variables, derive the solutions un(x, y) = sin(nπx) sinh(nπy)
of

uxx + uyy = 0, u(0, y) = u(1, y) = u(x, 0) = 0.

Hint: Start by writing u(x, y) = X(x)Y (y). Plop it into the PDE. Get
all the x dependent terms to one side of the equation and the y dependent
terms to the other side. (probably do this by dividing by XY ). Solve for
X first. Use the conditions on X(0) = X(1) = 0. (Why?) Then once you
have found your Xs (there will be many!) find their partner functions. Use
the condition Y (0) = 0 (Why?) to help with this.

1Grigori Rozenblioum, who taught this class for many years, and is in general an awesome
mathematician, used to say “If you can pass this course, then you’ve earned the right to buy

Vodka at Systembolaget, regardless of your actual age.”
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1.3.7 Use separation of variables to find an infinite family of independent solu-
tions to

ut = kuxx, u(0, t) = 0, ux(`, t) = 0,

representing heat flow in a rod with one end held at temperature zero and
the other end insulated. Hint: Start by writing u(x, t) = X(x)T (t). Follow
the same type of procedure as for the preceding problem, but now you have
the conditions on X that X(0) = 0, X ′(`) = 0 (Why?) Find the X first
(there will be many!), and then use these to find their partner functions. It
will be kind of similar to the example from lecture today, but the boundary
conditions are different, so this will change things.

References

[1] Gerald B. Folland, Fourier Analysis and Its Applications, Pure and Applied Undergraduate

Texts Volume 4, (1992).
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1. 2019.01.24

Proposition 1. On the interval [−π, π], the functions

φn(x) =
einx√

2π

are an orthonormal set with respect to the scalar product,

〈f, g〉 =

∫ π

−π
f(x)g(x)dx.

Proof: By definition, we consider∫ π

−π

einx√
2π

eimx√
2π
dx.

We bring the constant factor out in front of the integral the constant factor, and
we recall that eimx = e−imx, so we are computing

1

2π

∫ π

−π
einxe−imxdx.

Exercise 1. Why is

eimx = e−imx?

Explain in your own words or prove it algebraically.

So, we compute,∫ π

−π
eix(n−m)dx =

2π m = n
eix(n−m)

n−m

∣∣∣π
x=−π

n 6= m
.

Now, we know that

eiπ(n−m) =

{
1 n−m is even

−1 n−m is odd.
.

To see this, I just imagine where we are on the Liseberghjul... Or you can write
this out as

eiπ(n−m) = cos(π(n−m)) + i sin(π(n−m)).
1
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The sine term is always zero since n and m are integers, and the cosine is either 1
or −1. Similarly,

e−iπ(n−m) =

{
1 n−m is even

−1 n−m is odd.
.

So in all cases, when n 6= m,

eiπ(n−m) − e−iπ(n−m) = 0.

Hence,

1

2π

∫ π

−π
einxe−imxdx =

{
2π
2π = 1 n = m

0 n 6= m
.

This is precisely what it means to be orthonormal!

So, now we know that {φn(x)}n∈Z are an orthonormal set. We want them to
actually be an orthonormal basis, so that we can write for any u0(x),

u0(x) =
∑
n∈Z

cnφn(x), φn(x) =
einx√

2π
.

In analogue to linear algebra, we should expect the coefficients to be the scalar
product of our function u0(x) with the basis functions (vectors), φn(x). More
generally, for a 2π periodic function v(x), we hope to be able to write it as

v(x) =
∑
n∈Z

cnφn(x), cn =

∫ π

−π
v(x)φn(x)dx =

1√
2π

∫ π

−π
v(x)e−inxdx,

so that

v(x) =
∑
n∈Z

(
1

2π

∫ π

−π
f(ξ)e−inξdξ

)
einx.

This motivates:

Definition 2. Assume f is defined [−π, π]. The Fourier coefficients of f are

cn :=
1

2π
〈f, einx〉 =

1

2π

∫ π

−π
f(x)e−inxdx.

The Fourier series of f is ∑
n∈Z

cne
inx.

1.1. Computing Fourier series. Let’s start with the function f(x) = |x|. It
satisfies f(−π) = f(π). We will prove later that the Fourier series which is defined
to be ∑

n∈Z
cne

inx, cn =
1

2π

∫ π

−π
f(x)e−inxdx

converges to f(x) for all points x ∈ (−π, π). What happens at the endpoints
±π? We must postpone this question for now. Looking at the series, we make the
following observation ∑

n∈Z
cne

in(x+2π) =
∑
n∈Z

cne
inx.
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Consequently, the series is 2π periodic. So, although the series will converge to
f(x) = |x| for x ∈ (−π, π), because we are going to prove that it does, once we
leave this interval, the series will no longer converge to f(x) = |x|. The series will
converge to the function which is equal to f(x) = |x| inside the interval (−π, π),
and which is 2π periodic on the whole real line. So, the function to which the series
converges has a graph that looks like a zig-zag. It’s really important to keep this
in mind.

So, now let’s compute the Fourier coefficients:

cn =
1

2π

∫ π

−π
|x|e−inxdx, c0 =

1

2π

∫ π

−π
|x|dx =

2π2

2(2π)
=
π

2
.

Since

|x| =

{
−x x < 0

x x ≥ 0

we compute: ∫ 0

−π
−xe−inxdx,

∫ π

0

xe−inxdx.

We do substitution in the first integral to change it:∫ 0

−π
−xe−inxdx =

∫ π

0

xeinxdx =
xeinx

in

∣∣∣∣π
0

−
∫ π

0

einx

in
dx

=
πeinπ

in
− einπ

(in)2
+

1

(in)2
.

Similarly we also use integration by parts to compute∫ π

0

xe−inxdx =
xe−inx

−in

∣∣∣∣π
0

−
∫ π

0

e−inx

(−in)
dx

=
πe−inπ

−in
− e−inπ

(−in)2
+

1

(−in)2
.

Adding them up and using the 2π periodicity, we get

2einπ

n2
− 2

n2
=

2(−1)n − 2

n2
.

OBS! We need to divide by 2π to get

cn =
(−1)n − 1

πn2
, n ∈ Z \ {0}.

The Fourier series is therefore

π

2
+

∑
n∈Z, odd

einx
(
− 2

πn2

)
.

Exercise 2. Use these calculations to compute the series∑
n≥0

an cos(nx) + bn sin(nx)

and to show that all of the bn are equal to zero.
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Now let’s return to our example from Wednesday. We wish to solve the heat
equation on a circular rod. Let

u(x, t) = the temperature at the point/angle x and time t.

Then the heat equation (physics!) dictates that

ut − kuxx = 0 ∀x ∈ R, t > 0.

Above k > 0 is a constant which comes from - you guessed it - physics! There is
some initial temperature along the rod as well,

u(x, 0) = f(x).

Since the rod is circular,

u(x+ 2π, t) = u(x, t) ∀x ∈ R,

so similarly,

f(x+ 2π) = f(x) ∀x ∈ R.
When we solved the heat equation using separation of variables we obtained a
solution which could be written either using complex exponentials or using sines
and cosines. For simplicity, I am taking the complex exponentials,

u(x, t) =
∑
n∈Z

e−n
2ktcne

inx.

So, we would like

u(x, 0) =
∑
n∈Z

cne
inx = f(x).

Now we know how to find the coefficients,

cn =
1

2π

∫ π

−π
f(x)e−inxdx.

For the function, for example, f(x) = |x| for x ∈ (−π, π) which is defined on the
rest of the real line to be 2π periodic, this is a function which makes sense as the
initial temperature of the rod. We have computed these coefficients. The theory
we will prove later will show that the Fourier series converges to f(x) for all x ∈ R.
Moreover, the theory will show that our solution u(x, t) is the unique solution to
the heat equation with initial condition given by f . Nice!

We are not limited to computing Fourier series of periodic functions, it’s just that
Fourier series will always be periodic functions themselves. For example, consider
the function f(x) = x defined on (−π, π). By the theory we shall prove later, the
Fourier series will converge to this function inside the interval (−π, π). Outside this
interval, the series will converge to a function which is 2π periodic, and is equal
to x for x ∈ (−π, π). So this will have little jumps at the points (2n + 1)π for
n ∈ Z. It will be discontinuous there. We don’t need to worry about that, it’s no
problem whatsoever. For the moment we just are content that the Fourier series
will converge to f(x) = x for x ∈ (−π, π). This is because in our applications, we
will use these series to solve PDEs in bounded intervals. For now we are working
with the bounded interval (−π, π) but later we’ll see that we can use the same
techniques to handle any bounded interval.
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Exercise 3. Compute in the same way the Fourier coefficients

cn =
1

2π

∫ π

−π
xe−inxdx n ∈ Z.

Use that calculation to show that an = 0 for all n, and then compute the Fourier
sine series, ∑

n≥1

bn sin(nx).

Exercise 4. Look at these two Fourier series, that is the series for |x| and x. Do
the series converge? Do they converge absolutely? Compare and contrast them!

1.2. Introducing Hilbert spaces. A Hilbert space is a complete normed vector
space whose norm is induced by a scalar product.

Definition 3. A Hilbert space, H, is a vector space. This means that H is a set
which contains elements. If f and g are elements of H, then for any a, b ∈ C we
have

af + bg ∈ H.
This is what it means to be a vector space. Moreover, Hilbert spaces have two
other nice features: a scalar product and a norm. Let us write the scalar product
as

〈f, g〉 : H ×H → C.
To be a scalar product it must satisfy:

〈af, g〉 = a〈f, g〉 ∀a ∈ C,

〈h+ f, g〉 = 〈h, g〉+ 〈f, g〉,
and

〈f, g〉 = 〈g, f〉.
The norm is defined through the scalar product via:

||f || :=
√
〈f, f〉.

The norm must satisfy

||f || = 0 ⇐⇒ f = 0, ||f + g|| ≤ ||f ||+ ||g||.
Finally, what it means to be complete is that if a sequence {fn} ∈ H is Cauchy,
which means that for any ε > 0 there exists N ∈ N such that

||fn − fm|| < ε ∀n,m ≥ N,
then there exists f ∈ H such that

lim
n→∞

fn = f,

by which we mean that

lim
n→∞

||fn − f || = 0.

Exercise 5. As an example, we can take H = Cn. For z = (z1, z2, . . . , zn) ∈ Cn
and w = (w1, . . . , wn) ∈ Cn the scalar product

〈z, w〉 :=

n∑
j=1

zjwj .
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Show that the scalar product defined in this way satisfies all the demands made upon
it in the definition above. Why is H = Cn complete?

Now, let us fix a finite interval [a, b]. We shall be particularly interested in a
Hilbert space known as L2([a, b]) or once we have specified a and b, simply L2. This
is the actual grown-up mathematician definition of the Hilbert space, L2. It can be
gleefully ignored.

Definition 4 (The precise definition of L2). The Hilbert space L2([a, b]) is the set
of equivalence of classes of functions where f and g are equivalent if

f(x) = g(x) for almost every x ∈ [a, b] with respect to the one dimensional Lebesgue measure.

Moreover, for any f belonging to such an equivalence class, we require

l2finitel2finite (1.1)

∫ b

a

|f(x)|2dx <∞.

If f and g are each members of equivalence classes satisfying (
l2finitel2finite
1.1) the scalar product

of f and g is then defined to be

l2spl2sp (1.2) 〈f, g〉 =

∫ b

a

f(x)g(x)dx.

One can prove that with this definition we obtain a Hilbert space.

Theorem 5. The space L2([a, b]) for any bounded interval [a, b] defined as above,
with the scalar product defined as above, is a Hilbert space.

This theorem is beyond the scope of this course. Moreover, the precise mathe-
matical definition of L2 is overkill for what we would like to do (solve PDEs). This
is why I offer you:

Definition 6 (Our working-definition of L2). L2([a, b]) is the set of functions which
satisfy (

l2finitel2finite
1.1), and is equipped with the scalar product defined in (

l2spl2sp
1.2).

Although we don’t necessarily need it right now, you may be happy to know that
the L2 scalar product satisfies a Cauchy-Schwarz inequality,

|〈f, g〉| ≤ ||f ||||g||.

Exercise 6. Use the Cauchy-Schwarz inequality to prove that for any f ∈ L2 on
the interval [−π, π], the Fourier coefficients,

cn =
1

2π

∫ π

−π
f(x)e−inxdx,

satisfy

|cn| ≤
||f ||√

2π
.

2. Exercises to be done by oneself: Answers

1.3.7 Use separation of variables to find an infinite family of independent solu-
tions to

ut = kuxx, u(0, t) = 0, ux(`, t) = 0,

representing heat flow in a rod with one end held at temperature zero and
the other end insulated.
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Answer:

un(x, t) = e−(2n+1)2π2kt/(4l2) sin

(
(2n+ 1)πx

2l

)
.
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1. 2019.01.27

The following proposition shows that any function that is bounded on a closed
interval is an L2 function.

Proposition 1 (The Standard Estimate). Assume f is defined on some interval
[a, b]. Assume that f satisfies a bound of the form |f(x)| ≤M for x ∈ [a, b].1 Then,∣∣∣∣∣

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ (b− a)M.

Proof: Standard estimate!∣∣∣∣∣
∫ b

a

f(x)dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)|dx ≤
∫ b

a

Mdx = M(b− a).

Exercise 1. Use The Standard Estimate to prove that any function which is con-
tinuous on a closed, bounded interval [a, b] is in L2 on that interval.

Example 1. So, it seems that a lot of functions will be in L2. What are some
functions which are not in L2? Let’s consider the interval [−π, π]. The function
f(x) = 1

x is not in L2 on that interval, because∫ π

−π

1

x2
dx

is infinite. We could still have unbounded functions on this interval which are in
L2, as long as their integrals can be defined. For example, let’s define

f(x) :=

{
x−1/3 x 6= 0

0 x = 0
.

1We actually only need this for “almost every” x, but to make that precise, we need some
Lebesgue measure theory.

1
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Then, we can integrate∫ π

−π
|f(x)|2dx =

|x|5/33

5

∣∣∣∣π
−π

=
6π5/3

5
.

So, the function doesn’t have to be bounded for the integral to be finite, but it also
can’t blow up too badly.

2. Bessel’s Inequality (L2 convergence of Fourier series)

Today we’re going to investigate the issue of convergence of Fourier series. To
move towards this question of convergence, we prove an important estimate known
as the Bessel Inequality. Bessel’s Theorem will be a very important ingredient in
the proof of our first big theorem which is one of the theory items, which can appear
on the exam.

Theorem 2 (Bessel Inequality). Assume that f is square-integrable on [−π, π].
Then the Fourier coefficients {cn}n∈Z of f satisfy∑

n∈Z
|cn|2 ≤

1

2π

∫ π

−π
|f(x)|2dx.

Proof: It is sufficient to show that

2π

N∑
n=−N

|cn|2 ≤ ||f ||2 ∀N ∈ N.

Since on the right side we have the L2 norm of a function, we would like to have
the L2 norm of a function. Recall the Pythagorean Theorem: when a ⊥ b then the
length of the vector a+ b = c is equal to a2 + b2. The same thing works in higher
dimensions. In particular, since the functions einx are orthogonal for n 6= m, it is
also true that cne

inx are orthogonal for n 6= m, so we have

besselpythagbesselpythag (2.1) ||
N∑

n=−N
cne

inx||2 =

N∑
n=−N

||cneinx||2 =

N∑
n=−N

2π|cn|2.

Now, let’s write

SN (x) :=

N∑
n=−N

cne
inx.

This is the partial Fourier expansion of f . Let us compare it to f using the L2

norm:

0 ≤ ||SN − f ||2 = 〈SN − f, SN − f〉 = 〈SN , SN − f〉 − 〈f, SN − f〉
= 〈SN , SN 〉 − 〈SN , f〉 − 〈f, SN 〉+ 〈f, f〉
= ||SN ||2 − 〈SN , f〉 − 〈f, SN 〉+ ||f ||2.

Let us compute the two terms in the middle:

〈SN , f〉 =

∫ π

−π

N∑
n=−N

cne
inxf(x)dx =

N∑
n=−N

cn

∫ π

−π
einxf(x)dx =

N∑
n=−N

cn

∫ π

−π
e−inxf(x)dx

=

N∑
n=−N

cn2πcn.
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We compute:

〈f, SN 〉 =

∫ π

−π
f(x)

N∑
n=−N

cneinxdx =

N∑
n=−N

cn

∫ π

−π
f(x)e−inxdx =

N∑
n=−N

cn2πcn.

Since

|cn|2 = cncn

we have

0 ≤ ||SN−f ||2 = ||SN ||2−〈SN , f〉−〈f, SN 〉+||f ||2 = ||SN ||2−2(2π)

N∑
n=−N

|cn|2+||f ||2.

By (
besselpythagbesselpythag
2.1), we have

0 ≤ 2π
N∑

n=−N
|cn|2 − 2(2π)

N∑
n=−N

|cn|2 + ||f ||2 =⇒ 2π
N∑

n=−N
|cn|2 ≤ ||f ||2.

Corollary 3. We have∑
n∈N
|an|2 + |bn|2 = 4|c0|2 + 2

∑
n∈Z\0

|cn|2,

and

lim
|n|→∞

?n = 0, ? = a, b, or c.

Exercise 2. The proof is an exercise. First, use the previous exercises where we
expressed the a’s and b’s in terms of the c’s. Next, what can you say about the
terms of a non-negative, convergent series?

2.1. Pointwise convergence of Fourier Series. By Bessel’s inequality, we know
that ∑

n∈Z
|cn|2 ≤

1

2π

∫ π

−π
|f |2.

Now, it’s important to note that when the series of |cn|2 converges, then eventually
|cn|2 < 1 so also |cn| < 1. Then, |cn| > |cn|2. So, just because the series of |cn|2
converges, the series with just cn might not. For example,∑

n≥1

1

n2
<∞

whereas ∑
n≥1

1

n
=∞.

So Bessel’s inequality doesn’t tell us that the Fourier series∑
n∈Z

cne
inx

always converges. This is a bit of a concern, because we want to use our method
to solve PDEs. In fact, we will see that Fourier series always converge ‘in norm,’
meaning with respect to the L2 norm. However, to solve PDEs, we would like the
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series to converge at specific points. To state the theorem which tells us when and
how a Fourier series converges, we need the following definition.

Definition 4. A function is piecewise Ck on a bounded interval, I, if there is a
finite set of points in the interval (possibly empty set) such that f is Ck on I \ S.
Moreover, we assume that the left and right limits of f (j) exist at all of the points
in S, for all j = 0, 1, . . . , k.

Now we are going to prove the great big theorem about pointwise convergence
of Fourier series.

Theorem 5 (Convergence of Fourier series). Assume that f is piecewise C1 on
[−π, π]. Define f on the rest of R to be a 2π periodic function. Denote the left
limit at x by f(x−) and the right limit by f(x+), so that for each x ∈ R,

f(x) := lim
t→x,t<x

f(t), f(x+) := lim
t→x,t>x

f(t).

Let

SN (x) :=

N∑
−N

cne
inx,

where

cn =
1

2π

∫ π

−π
f(x)e−inxdx.

Then

lim
N→∞

SN (x) =
1

2
(f(x−) + f(x+)) , ∀x ∈ R.

Proof: This is a big theorem, because it requires several clever ideas in the proof.
Smaller theorems can be proven by just “following your nose.” So, to try to help
with the proof, we’re going to highlight the big ideas. To learn the proof, you can
start by learning all the big ideas in the order in which they’re used. Once you’ve
got these down, then try to fill in the math steps starting at one idea, working to
get to the next idea. The big ideas are like light posts guiding your way through
the dark and spooky math.

Idea 1: Fix a point x ∈ R. This first step is more getting into a frame of mind.
Think of x as fixed. Then the numbers f(x−) and f(x+) are just the left and right
limits of f at x, so these are also fixed. Our goal is to prove that:

fseriesconvgfseriesconvg (2.2) lim
N→∞

SN (x) =
1

2
(f(x−) + f(x+)) .

Idea 2: Expand the series SN (x) using its definition.

SN (x) =

N∑
−N

1

2π

∫ π

−π
f(y)e−inydyeinx.

Now, let’s move that lonely einx inside the integral so it can get close to its friend,
e−iny. Then,

SN (x) =

N∑
−N

1

2π

∫ π

−π
f(y)e−iny+inxdy.

We want to prove (
fseriesconvgfseriesconvg
2.2). Above we have f(y) rather than f(x). This leads us to. . .

Idea 3: Change the variable. Let t = y − x.
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Then y = t+ x. We have

SN (x) =

N∑
−N

1

2π

∫ π−x

−π−x
f(t+ x)e−intdt.

Remember that very first fact we proved for periodic functions? It said that the
integral of a periodic function of period P from any point a to a + P is the same,
no matter what a is. Here P = 2π. This leads to...

Idea 4: Shift the integral∫ π−x

−π−x
f(t+ x)e−intdt =

∫ π

−π
f(t+ x)e−intdt.

Thus

SN (x) =

N∑
−N

1

2π

∫ π

−π
f(t+ x)e−intdt =

∫ π

−π
f(t+ x)

1

2π

N∑
−N

eintdt.

Idea 4: Define the N th Dirichlet kernel, DN (t).

DN (t) =
1

2π

N∑
−N

eint.

Idea 5: Collect the even and odd terms of DN to compute its integral.
Recall that

n ∈ N =⇒ eint + e−int = 2 cos(nt), n > 0.

Hence, we can pair up all the terms ±1, ±2, etc, and write

DN (t) =
1

2π
+

N∑
n=1

1

π
cos(nt).

So, DN (t) is an even function. Moreover, since cos(nt) is 2π periodic and even,∫ π

−π
cos(nt)dt = 0 ∀n ≥ 1,

so ∫ π

−π
DN (t)dt =

∫ π

−π

1

2π
dt = 1.

Since DN (t) is even, we also have:

dnintdnint (2.3)

∫ 0

−π
DN (t)dt =

1

2
=

∫ π

0

DN (t)dt.

Idea 6: Go back to the original definition of DN (t) and re-write it to look like a
geometric series.

As it stands, DN (t) looks almost like a geometric series, but the problem is that
it goes from minus exponents to positive ones. We can fix that by factoring out the
largest negative exponent, so

DN (t) =
1

2π
e−iNt

2N∑
n=0

eint.

We know how to sum a partial geometric series. This gives

dngeodngeo (2.4) DN (t) =
1

2π
e−iNt

1− ei(2N+1)t

1− eit
=
e−iNt − ei(N+1)t

2π(1− eit)
.
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Since

SN (x) =

∫ π

−π
f(t+ x)DN (t)dt,

(
fseriesconvgfseriesconvg
2.2) is equivalent to

lim
N→∞

∣∣∣∣∫ π

−π
f(t+ x)DN (t)dt− 1

2
(f(x−) + f(x+))

∣∣∣∣ = 0.

The SN business has an integral, but the f(x±) don’t. They have got a convenient
factor of one half, so...

Idea 7: Use our calculation of the integral of DN to write

1

2
f(x−) =

∫ 0

−π
DN (t)dtf(x−),

1

2
f(x+) =

∫ π

0

DN (t)dtf(x+).

Hence we are bound to prove that

lim
N→∞

∣∣∣∣∫ π

−π
f(t+ x)DN (t)dt−

∫ 0

−π
DN (t)f(x−)dt−

∫ π

0

DN (t)f(x+)dt

∣∣∣∣ = 0.

It is quite natural now to split the integral into the left and right sides, so that we
must prove

lim
N→∞

∣∣∣∣∫ 0

−π
DN (t)(f(t+ x)− f(x−))dt+

∫ π

0

DN (t)(f(t+ x)− f(x+))dt

∣∣∣∣ .
Idea 8: Use the second property (

dngeodngeo
2.4) we proved about DN (t).∣∣∣∣∫ 0

−π
DN (t)(f(t+ x)− f(x−))dt+

∫ π

0

DN (t)(f(t+ x)− f(x+))dt

∣∣∣∣ =

∣∣∣∣∫ 0

−π

e−iNt − ei(N+1)t

2π(1− eit)
(f(t+ x)− f(x−))dt+

∫ π

0

e−iNt − ei(N+1)t

2π(1− eit)
(f(t+ x)− f(x+))dt

∣∣∣∣ .
Since there are these factors of e−iNt and ei(N+1)t, this sort of looks like some
twisted version of a Fourier coefficient. This observation leads us to. . .

Idea 9: Define a new function

g(t) =

{
f(t+x)−f(x−)

1−eit t ∈ [−π, 0)
f(t+x)−f(x+)

1−eit t ∈ (0, π]
.

The function g is well-defined on the interval [−π, π]\{0} because the denominator
does not vanish there. Moreover, it has the same properties as f has on this interval.
We extend g to all of R to be 2π periodic. What happens to g when t→ 0?

lim
t→0−

f(t+ x)− f(x−)

1− eit
= lim
t→0−

t(f(t+ x)− f(x−))

t(1− eit)
=
f ′(x−)

−iei0
= if ′(x−).

For the other side, a similar argument shows that

lim
t→0+

f(t+ x)− f(x−)

1− eit
= if ′(x+).

Therefore, g has finite left and right limits at t = 0, because f does. Hence, g
is also a piecewise differentiable and piecewise continuous 2π periodic function.
Consequently, g is bounded on [−π, π] so it is in L2([−π, π]) and Bessel’s inequality
holds.
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Idea 10: Recognize the Fourier coefficients of the new function∫ 0

−π

e−iNt − ei(N+1)t

2π(1− eit)
(f(t+x)−f(x−))dt+

∫ π

0

e−iNt − ei(N+1)t

2π(1− eit)
(f(t+x)−f(x+))dt

=
1

2π

∫ π

−π
e−iNtg(t)dt− 1

2π

∫ π

−π
ei(N+1)tg(t)dt.

The first term above is by definition GN , the N th Fourier coefficient of g, whereas
the second term above is by definition G−N−1, the −N − 1 Fourier coefficient of g.
By Bessel’s inequality,

lim
N→∞

GN = 0 = lim
N→∞

G−N−1.

2.2. Exercises for the week from [
folland
1].

2.2.1. Exercises to be demonstrated in the large group.

(1) Compute the Fourier series of the function defined on (−π, π)

f(x) :=

{
0 −π < x < 0

x 0 < x < π
.

(2) Compute the Fourier series of the function defined on (−π, π)

f(x) := | sin(x)|.
(3) Compute the Fourier series of the function defined on (−π, π)

f(x) :=


1 −a < x < a

−1 2a < x < 4a

0 elsewhere in (−π, π).

.

Here one ought to assume that 0 < a < π for this to make sense.
(4) Compute the Fourier series of the function defined on (−π, π)

f(x) = x2.

2.2.2. Exercises to be done by oneself (earlier in the week).

(1) Compute the Fourier series of the function defined on (−π, π)

f(x) := x(π − |x|).
(2) Compute the Fourier series of the function defined on (−π, π)

f(x) = ebx.

(3) Use the Fourier series for the function f(x) = | sin(x)| to compute the sum
∞∑
n=1

1

4n2 − 1
=

1

2
,

∞∑
n=1

(−1)n+1

4n2 − 1
=
π − 2

4
.

(4) Use the Fourier series for the function f(x) = x(π − |x|) to compute the
sum

∞∑
n=1

(−1)n+1

(2n− 1)3
=
π3

32
.



8 JULIE ROWLETT

(5) Let f(x) be the periodic function such that f(x) = ex for x ∈ (−π, π), and
extended to be 2π periodic on the rest of R. Let∑

n∈Z
cne

inx

be its Fourier series. Therefore, by Theorem 2.1

ex =
∑
n∈Z

cne
inx, ∀x ∈ (−π, π).

If we differentiate this series term-wise then we get
∑
incne

inx. On the
other hand, we know that (ex)′ = ex. So, then we should have∑

incne
inx =

∑
cne

inx =⇒ cn = incn ∀n.

This is clearly wrong. Where is the mistake?

2.2.3. Exercises to be demonstrated in the small groups.

(1) Use the Fourier series of the function f(x) = x(π− |x|), defined on (−π, π)
and extended to be 2π periodic on R, to compute the sums:∑

n≥1

1

n2
=
π2

6
,
∑
n≥1

(−1)n+1

n2
=
π2

12
.

(2) Use the Fourier series of the function f(x) = ebx, defined on (−π, π) and
extended to be 2π periodic on R, to compute the sum:∑

n≥1

1

n2 + b2
=

π

2b
coth(bπ)− 1

2b2
.

(3) Use the Fourier series of the function f(x) = x2, defined on (−π, π) and
extended to be 2π periodic on R, to compute the sums:

x2 − π2x = 12
∑
n≥1

(−1)n sin(nx)

n3
, x ∈ (−π, π)

x4 − 2π2x2 = 48
∑
n≥1

(−1)n+1 cos(nx)

n4
− 7π4

15∑
n≥1

1

n4
=
π4

90
.

2.2.4. Exercises to be done by oneself (later in the week).

(1) Determine the Fourier sine and cosine series of the function

f(x) =

{
x 0 ≤ x ≤ π

2

π − x π
2 ≤ x ≤ π

(2) Expand the function

f(x) =

{
1 0 < x < 2

−1 2 < x < 4

in a cosine series on [0, 4].
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(3) Expand the function ex in a series of the form∑
n∈Z

cne
2πinx, x ∈ (0, 1).

(4) Define

f(t) =


t 0 ≤ t ≤ 1

1 1 < t < 2

3− t 2 ≤ t ≤ 3

and extend f to be 3-periodic on R. Expand f in a Fourier series. Deter-
mine, in the form of a Fourier series, a 3-periodic solution to the equation

y′′(t) + 3y(t) = f(t).

References
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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2019.01.29

As a corollary to the theorem on the pointwise convergence of Fourier series we
have

Corollary 1. If f and g are 2π periodic and piecewise C1. Assume that at any
point at which f is discontinuous, it satisfies

f(x) =
f(x+) + f(x−)

2
,

and the same is true for g. Then if f and g have the same Fourier coefficients,
then f = g.

Proof: By assumption, f and g have the same Fourier series. Let us write the
partial series

SN (x) =

N∑
−N

cne
inx.

By the theorem on the pointwise convergence of Fourier series,

eq1day5eq1day5 (1.1) lim
N→∞

SN (x) =
f(x+) + f(x−)

2
=
g(x+) + g(x−)

2
, ∀x ∈ R.

Now, at a point where f is continuous,

f(x+) + f(x−)

2
= f(x).

Similarly, at a point where g is continuous

g(x+) + g(x−)

2
= g(x).

So, by the assumptions on f and g, we have for all x ∈ R

f(x) =
f(x+) + f(x−)

2
, g(x) =

g(x+) + g(x−)

2
.

Thus, by (
eq1day5eq1day5
1.1),

f(x) = g(x) ∀x ∈ R.

1
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1.1. Fourier series to compute sums. On an exam one may see the following:
Beräkna:

∞∑
n=0

1

1 + n2
.

Tips: Utveckla ex som en Fourier-serie p̊a intervallet (−π, π)).
The best advice is to follow the hint. Moreover, if this Fourier series is contained

in Beta, then begin by writing down the series contained in Beta. In case the series
is not contained in Beta, we compute it:∫ π

−π
exe−inxdx =

ex(1−in)

1− in

∣∣∣∣x=π
x=−π

=
eπe−inπ

1− in
− e−πeinπ

1− in
= (−1)n

2 sinh(π)

1− in
.

Hence, the Fourier coefficients are

1

2π
(−1)n

2 sinh(π)

1− in
,

and the Fourier series for ex on this interval is

ex =

∞∑
−∞

(−1)n sinh(π)

π(1− in)
einx, x ∈ (−π, π).

We can pull out some constant stuff,

ex =
sinh(π)

π

∞∑
−∞

(−1)neinx

1− in
, x ∈ (−π, π).

Now, we use the theorem which tells us that the series converges to the average of
the left and right hand limits at points of discontinuity, like for example π. The left
limit is eπ. Extending the function to be 2π periodic, means that the right limit
approaching π is equal to e−π. Hence

eπ + e−π

2
=

sinh(π)

π

∞∑
−∞

(−1)neinπ

1− in
.

Now, we know that einπ = (−1)n, thus

eπ + e−π

2
=

sinh(π)

π

∞∑
−∞

1

1− in
.

We now consider the sum, and we pair together ±n for n ∈ N, writing
∞∑
−∞

1

1− in
= 1 +

∑
n∈N

1

1− in
+

1

1 + in
= 1 +

∑
n∈N

2

1 + n2
.

Hence we have found that

eπ + e−π

2
=

sinh(π)

π

∞∑
−∞

(−1)neinπ

1− in
=

sinh(π)

π

(
1 +

∑
n∈N

2

1 + n2

)
.

The rest is mere algebra. On the left we have the definition of cosh(π). So, moving
over the sinh(π) we have

π cosh(π)

sinh(π)
= 1 + 2

∑
n∈N

1

1 + n2
=⇒

(
π cosh(π)

sinh(π)
− 1

)
1

2
=
∑
n∈N

1

1 + n2
.

Wow.
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1.1.1. Caution. To what does the Fourier series converge when x is not in the
interval (−π, π)? When we build a Fourier series for a function defined on the
interval (−π, π), it is of the form: ∑

n∈Z
cne

inx.

Each of the terms einx is a 2π periodic function. Hence the Fourier series is also a
2π periodic function. So, for x = 2π, the series does not converge to e2π. Rather,
it converges to e0 because, writing

S(x) =
∑
n∈Z

cne
inx, S(x+ 2kπ) = S(x) ∀k ∈ Z.

For x ∈ (−π, π), by the Theorem we proved, we have that S(x) = ex. However, for
x outside this interval, the series converges to the function which is equal to ex on
(−π, π) and is extended to be 2π periodic. Hence the series converges to the value
at 0 since 2π = 0 + 2π, and the series is 2π periodic. This is a really important
subtlety.

Example: Use a Fourier series to compute∑
n≥1

(−1)n

n2 + b2
.

Hint: Compute the Fourier series of the function which is equal to ebx for |x| < π
and extended to be 2π periodic.

To do this, in case the series is not contained in Beta, we compute the coefficients
directly:

cn =
1

2π

∫ π

−π
ebxe−inxdx =

1

2π(b− in)
e(b−in)π − 1

2π(b− in)
e(b−in)(−π).

To simplify things, let us note that

e±inπ = (−1)n.

Thus

cn =
1

2π(b− in)
(−1)nebπ− 1

2π(b− in)
(−1)ne−bπ =

(−1)n

2π(b− in)

(
ebπ − e−bπ

)
=

(−1)n

π(b− in)
sinh(bπ).

The Fourier series is therefore

1

π
sinh(bπ)

∑
n∈Z

(−1)n

b− in
einx.

Given the presence of the (−1)n, which we also want, it makes sense to try com-
puting with x = 0. The series is at this point

1

π
sinh(bπ)

∑
n∈Z

(−1)n

b− in
.

Let us re-arrange things a wee bit:

1

π
sinh(bπ)

∑
n∈Z

(−1)n

b− in
=

sinh(bπ)

πb
+

1

π
sinh(bπ)

∑
n≥1

(−1)n

b− in
+

1

π
sinh(bπ)

∑
n≤1

(−1)n

b− in
.
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Let us re-write

1

π
sinh(bπ)

∑
n≤1

(−1)n

b− in
=

1

π
sinh(bπ)

∑
n≥1

(−1)n

b+ in
,

with the observation that
(−1)n = (−1)−n.

Consequently the series is:

sinh(bπ)

πb
+

1

π
sinh(bπ)

∑
n≥1

(
(−1)n

b− in
+

(−1)n

b+ in

)

=
sinh(bπ)

πb
+

1

π
sinh(bπ)

∑
n≥1

(−1)n
b+ in+ b− in
(b− in)(b+ in)

=
sinh(bπ)

πb
+

1

π
sinh(bπ)

∑
n≥1

(−1)n
2b

b2 + n2
.

On the other hand, we use the theorem PWF
∑

to say that at the point x = 0 the
Fourier series of this function converges to

f(0+) + f(0−)

2
.

At the point 0, note that our function is defined to be ebx for |x| < π and certainly
|0| < π, so in particular, the function is continuous and thus the left and right limits
are both equal and equal to f(0) which is 1. Thus the series converges to 1, and so

1 =
sinh(bπ)

πb
+

1

π
sinh(bπ)

∑
n≥1

(−1)n
2b

b2 + n2
.

Re-arranging, we get

1− sinh(bπ)

πb
=

2b sinh(bπ)

π

∑
n≥1

(−1)n

b2 + n2
=⇒ π

2b sinh(bπ)
− 1

2b2
=
∑
n≥1

(−1)n

b2 + n2
.

1.2. Differentiating and Integrating Fourier series. First, let us demonstrate
a fact about the Fourier series of a function and its derivative. Note that this is a
theory item, so you may be asked to prove this on the exam.

Theorem 2. Assume that f is 2π periodic, continuous, and piecewise C1. Let an,
bn, and cn be the Fourier coefficients as we have defined them previously, and let
a′n, b′n, c′n be the Fourier coefficients of f ′ according to the same definition. Then
we have

a′n = nbn, b′n = −nan, c′n = incn.

Proof: DO NOT DIFFERENTIATE THE FOURIER SERIES TERMWISE.
To do this, you would need to prove that the series can be differentiated termwise,
which at this point we do not have the techniques to demonstrate. So, it will be an
incomplete and incorrect proof. Not a good thing.

Instead, use the definition of Fourier coefficients and integration by parts:

c′n =
1

2π

∫ π

−π
f ′(x)e−inxdx =

1

2π
f(x)e−inx

∣∣x=π
x=−π −

1

2π

∫ π

−π
f(x)(−ine−inx)dx

=
in

2π

∫ π

−π
f(x)e−inxdx = incn.
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Above, we have used the fact that f is 2π periodic, and e−inx is also 2π periodic so

1

2π
f(x)e−inx

∣∣x=π
x=−π = 0.

In the last step we use the definition of cn. Recall that

an = cn + c−n, an =
1

π

∫ π

−π
f(x) cos(nx)dx, ∀n ∈ N≥1,

and

bn = i(cn − c−n), bn =
1

π

∫ π

−π
f(x) sin(nx)dx, ∀n ∈ N≥1,

with

a0 = c0 =
1

2π

∫ π

−π
f(x)dx,

and the same relationship holds true for a′n, b′n, c′n. We therefore compute

a′n = c′n + c′−n = incn − inc−n = in(cn − c−n) = nbn,

b′n = i(c′n − c′−n) = i(incn + inc−n) = −n(cn + c−n) = −nan.

Now, using the theorem we have just proven, we obtain

Corollary 3. Assume that f is 2π periodic, continuous, piecewise C1, and assume
that f ′ is also piecewise C1. Then, if

∞∑
−∞

cne
inx

is the Fourier series for f , we have that∑
n∈Z

incne
inx

is the Fourier series for f ′.

Before demonstrating the results concerning integration of Fourier series, it shall
be useful to introduce a certain Hilbert space known as “little ell two.”

Definition 4. Let

`2(C) := {(zn)n∈Z, zn ∈ C∀n, and
∑
n∈Z
|zn|2 <∞}.

This is a Hilbert space with the scalar product

〈z, w〉 :=
∑
n∈Z

znwn, z = (zn)n∈Z , w = (wn)n∈Z.

The norm on the Hilbert space, `2 = `2(C) is defined by

||z|| =
√∑
n∈Z
|zn|2.

We also have a Cauchy-Schwarz inequality:

|〈z, w〉| ≤ ||z||||w||.
We will use this together with the relationship between the Fourier coefficients for
a piecewise C1 and continuous function, f , to prove
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Theorem 5. Assume that f is 2π periodic, continuous, and piecewise C1. Then
the Fourier series of f converges absolutely uniformly to f on all of R.

Proof: By assumption, f ′ is piecewise continuous. Bessel’s inequality tells us
that ∑

Z
|c′n|2 <∞.

We use the preceding theorem to say that for all n 6= 0,

|cn| =
∣∣∣∣c′n 1

n

∣∣∣∣ .
Hence we can estimate∑

n∈Z
|cneinx| =

∑
n∈Z
|cn| = |c0|+

∑
n∈Z\0

|c′n|
|n|

.

By Bessel’s inequality ∑
n∈Z
|c′n|2 <∞,

and we know very well that ∑
n∈Z\0

|n|−2 <∞.

So, using the Cauchy-Schwarz inequality on `2, we have∑
n∈Z
|cn| = |c0|+

∑
n∈Z\0

|c′n|
|n|
≤ |c0|+

√ ∑
n∈Z\0

|c′n|2
√ ∑
n∈Z\0

|n|−2 <∞.

Therefore the Fourier series converges absolutely, and uniformly for all x ∈ R,
because we see that the convergence estimates are independent of the point x.
Since the function is continuous, the limit of the series is, by the Theorem on the
pointwise convergence of Fourier series

f(x+) + f(x−)

2
= f(x).

We can repeat this idea to show that the more differentiable a function is, the
faster its Fourier series converges.

Theorem 6. Let f be 2π periodic, and assume that f is Ck−1, and f (k−1) is
piecewise C1, and f is piecewise Ck. Then the Fourier coefficients of f satisfy∑

|nkan|2 <∞,
∑
|nkbn|2 <∞,

∑
|nkcn|2 <∞.

If |cn| ≤ c|n|−k−α for some c > 0 and α > 1, for all n 6= 0, then f ∈ Ck.

Proof: We apply the theorem relating the Fourier coefficients of f to those of
the derivatives of f . Do it k times. We get

c(k)n = (in)kcn.

Next, we apply Bessel’s inequality to conclude that since f is piecewise Ck, f (k) is
bounded on the interval hence it is in L2 on the interval, and so∑

|c(k)n |2 <∞.
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Since

|c(k)n | = |n|k|cn|
this shows that ∑

|nkcn|2 <∞.

We have similar estimates for an and bn using the same theorem, specifically

|a(k)n | = |nkan|, |b(k)n | = |nkbn|.

Hence, ∑
|nkan| <∞,

∑
|nkbn| <∞.

Now we demonstrate the result which says that if the Fourier coefficients are
sufficiently rapidly decaying, then the function f is actually in Ck. Let

g(x) := f (k−1)(x).

Then g is continuous and by assumption it is piecewise C1. Therefore, by the
theorem on the pointwise convergence of Fourier series, the Fourier series of g
converges to g(x) for all x in R. Next, we use the assumption and the fact that the
Fourier coefficients of g are

c(k−1)n = (in)k−1cn.

Therefore∑
n∈Z
|c(k−1)n einx| =

∣∣∣c(k−1)0

∣∣∣+
∑
n 6=0

|nk−1||cn| ≤
∣∣∣c(k−1)0

∣∣∣+ c
∑
n 6=0

|n|k−1−k−α <∞.

Hence, the series converges absolutely and uniformly in R. Moreover, differentiating
the series termwise is legitimate, because the result∑

n∈Z
inc(k−1)n einx

also converges absolutely and uniformly in R:∑
n∈Z
|inc(k−1)n | ≤

∑
n 6=0

|n||c(k−1)n | ≤ c
∑
n 6=0

|n||n|k−1−k−α <∞

because α > 1. Since the series is equal to g(x) = f (k−1)(x) for all x ∈ R, and the
series is a differentiable function for all x ∈ R, this shows that g is differentiable for
all x ∈ R. Moreover, g′ is continuous on R, because the series defines a continuous
function.1 This is the case because the series defining g′ converges absolutely and
uniformly for all of R. Hence, f (k−1) is in C1 on all of R, and therefore f is in Ck
on all of R.

We will prove a theorem about integrating Fourier series. To get warmed up,
here is an exercise.

1This is true because the series should really be viewed as the limit of the partial series,
and each partial series defines a smooth, thus also continuous, function. The uniform limit of

continuous functions is itself a continuous function.
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Exercise 1. Show that if you compute the indefinite integrate∫
einxdx, n ∈ Z \ {0},

the result is also a 2π periodic function. What happens in the case n = 0?

Theorem 7. Let f be a 2π periodic function which is piecewise continuous. Define

F (x) :=

∫ x

0

f(t)dt.

If c0 = 0, then

F (x) = C0 +
∑
n 6=0

cn
in
einx, C0 =

1

2π

∫ π

−π
F (x)dx.

Similarly,

F (x) =
1

2
A0 +

∑
n≥1

an
n

sin(nx)− bn
n

cos(nx).

Proof: We first note that F is continuous and piecewise C1, because it is the
integral of a piecewise continuous function. Moreover, assuming c0 = 0, we see that

F (x+2π)−F (x) =

∫ x+2π

0

f(t)dt−
∫ x

0

f(t)dt =

∫ x+2π

x

f(t)dt =

∫ π

−π
f(t)dt = 2πc0 = 0.

Above we have used the nifty lemma that allows us to slide around integrals of
periodic functions. So, F satisfies the assumptions of the theorem on pointwise con-
vergence of Fourier series. We therefore have pointwise convergence of the Fourier
series of F . Moreover, applying the theorem relating the Fourier coefficients of
F ′ = f to those of F , we have

Cn =
cn
in

n 6= 0.

(That’s because cn = C ′n and the theorem says C ′n = inCn which shows cn = inCn,
which we can re-arrange as above). Of course, the formula for C0 is just the usual
formula for it, because we can’t say anything more specific without knowing more
information on f . The re-statement in terms of a and b follows from the relationship
between these and the cn.

Remark 1. If c0 6= 0, then define a new function

g(t) := f(t)− c0.
Since f is 2π periodic, so is g. Then, apply the theorem above to g. Note that

G(x) =

∫ x

0

g(t)dt = F (x)− c0x.

Moreover, the Fourier coefficients of g,

1

2π

∫ π

−π
(f(x)− c0)e−inxdx = cn =

1

2π

∫ π

−π
f(x)e−inxdx, ∀n 6= 0.

So, the series for G(x) from the theorem is

C̃0 +
∑
n 6=0

cn
in
einx,
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with

C̃0 =
1

2π

∫ π

−π
(F (x)− c0x) dx = C0.

So, in fact, it is the same C0, where we have used the oddness of the function x
above. Then, we get something of a corollary which says that in general, the series
in the theorem,

C0 +
∑
n 6=0

cn
in
einx, C0 =

1

2π

∫ π

−π
F (x)dx

converges to F (x)− c0x.

1.3. Fourier sine and cosine series. Let’s say we are just looking at [0, π]. There
are two ways to extend a function defined over there to all of [−π, π]. One way is
oddly, and the other way is evenly. If we want to extend oddly, we define

f(x) := −f(−x), x ∈ (−π, 0).

Then, we have computed in an exercise that the an coefficients are all zero, and the
bn coefficients are

bn =
1

π

∫ π

−π
f(x) sin(nx)dx =

2

π

∫ π

0

f(x) sin(nx)dx.

Here we used the fact that sine is also an oddball. On the other hand, if we want
to extend evenly, we define

f(x) := f(−x), x ∈ (−π, 0).

Then, we have computed in an exercise that the bn are all zero, because our function
is even. Here we have the coefficients

an =
1

π

∫ π

−π
f(x) cos(nx)dx =

2

π

∫ π

0

f(x) cos(nx)dx, n ≥ 0.

Above we used the fact that cosine is even. In this way, we may define Fourier sine
and cosine series for functions on [0, π]. The Fourier sine series is defined to be∑

n≥1

bn sin(nx), bn =
2

π

∫ π

0

f(x) sin(nx)dx

whereas the Fourier cosine series is

a0
2

+
∑
n≥1

an cos(nx), an =
2

π

∫ π

0

f(x) cos(nx)dx, ∀n ∈ N.

Theorem 8. Let f be a function which is piecewise C1 on [0, π]. Then the Fourier
sine and cosine series converge to f(x) for all x ∈ (0, π) at which f is continuous.
For other points, they converge to

1

2
(f(x−) + f(x+)) .

Proof: First, we extend the function either evenly or oddly. Next, we extend it
to all of R to be 2π periodic. Like Riker, we just make it so. We’re only proving
a statement about points in (0, π). So, what happens outside of this set of points,
well it don’t matter. We apply the theorem on pointwise convergence of Fourier
series now.
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1.4. How to compute sums using the Integration Theorem for Fourier
Series. Example: Use a Fourier series to compute:∑

n≥1

1

n4
.

Hint: Expand x2 in a Fourier series. This is an even function, hence no sines
in its Fourier series. The other terms

an =
1

π

∫ π

−π
x2 cos(nx)dx =

2

π

∫ π

0

x2 cos(nx)dx.

We do this integral:∫ π

0

x2 cos(nx)dx =

∫
x2
(

sin(nx)

n

)′
dx = x2

sin(nx)

n

∣∣∣∣π
0

−
∫ π

0

2x
sin(nx)

n
dx.

Above we did integration by parts. The first part vanishes. The second term we
handle with integration by parts again,∫ π

0

x sin(nx)dx =

∫ π

0

x (− cos(nx)/n)
′
dx = −x cos(nx)

n

∣∣∣∣π
0

+

∫ π

0

cos(nx)/ndx.

Now this time the second term vanishes because integrating gives us a sine which
is 0 at 0 and at π. So, recalling the constant factors, we get∫ π

0

x2 cos(nx)dx =
2π cos(πn)

n2
=

2π(−1)n

n2
.

Hence our coefficients,

an =
2 ∗ 2(−1)n

n2
.

Moreover, we also compute the term

a0 =
1

π

∫ π

−π
x2dx =

2π3

3π
=

2π2

3
.

Hence, the Fourier series expansion of x2 is

π2

3
+ 4

∑
n≥1

(−1)n cos(nx)

n2
.

Let x = π. Since our periodically extended function, x2 is continuous on all of R,
the Fourier series converges to its value at x = π which means

π2 =
π2

3
+ 4

∑
n≥1

(−1)n(−1)n

n2
=⇒ π2

6
=
∑
n≥1

1

n2
.

To get up to summing n−4 we use Theorem 2.4 about integrating Fourier series.
We see that

c0 =
π2

3
.

We also see that for f(t) = t2,

F (x) :=

∫ x

0

f(t)dt =
x3

3
.
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The series from the theorem is

C0 + 4
∑
n≥1

(−1)n sin(nx)

n3
.

The term

C0 =
1

2π

∫ π

−π
F (x)dx = 0,

because F (x) above is odd. Hence, the theorem together with the remark after it
says that

4
∑
n≥1

(−1)n sin(nx)

n3
=
x3

3
− π2x

3
, x ∈ [−π, π].

Exercise: Compute
∑
n−3.

To proceed, we’re going to need to use the theorem once more to get n4 in the
denominator. Before we do this, let’s multiply everything by 3 to make it nicer.
Then

x3 − π2x = 12
∑
n≥1

(−1)n sin(nx)

n3
, x ∈ [−π, π].

So, here we have

f(t) = t3 − π2t =⇒ F (x) =

∫ x

0

f(t)dt =
x4

4
− π2x2

2
.

We see also that

c0 =
1

2π

∫ π

−π
f(t)dt = 0.

Hence, we apply the theorem directly to F . The theorem says

F (x) = C0 + 12
∑
n≥1

− (−1)n cos(nx)

n4
.

We compute

C0 =
1

2π

∫ π

−π
F (x)dx =

1

π

∫ π

0

x4

4
− π2x2

2
dx =

π4

20
− π4

6
.

Therefore

F (x) =
x4

4
− π2x2

2
=
π4

20
− π4

6
− 12

∑
n≥1

(−1)n cos(nx)

n4
, x ∈ [−π, π].

We do the same trick now of choosing

x = π =⇒ cos(nx) = cos(nπ) = (−1)n, (−1)n(−1)n = 1∀n.

Hence,

F (π) =
π4

4
− π4

2
=
π4

20
− π4

6
− 12

∑
n≥1

1

n4
.

Re-arranging things ∑
n≥1

1

n4
=

1

12

(
π4

20
− π4

6
+
π4

2
− π4

4

)
.
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Just for fun, we determine what this is...

π4

20
− π4

6
+
π4

2
− π4

4
=
π4

2

(
1

10
− 1

3
+

1

2

)
=
π4

2

(
3− 10 + 15

30

)
=
π4

2

(
8

30

)
=

2π4

15
.

So, recalling the factor of 1
12 , we see that∑

n≥1

1

n4
=

2π4

(12)(15)
=

π4

6(15)
=
π4

90
.

Wow, who would have guessed that? Not I said the fly!

1.4.1. Exercises to be done by oneself: Hints.

(1) Compute the Fourier series of the function defined on (−π, π)

f(x) := x(π − |x|).
Hint: Use Beta.

(2) Compute the Fourier series of the function defined on (−π, π)

f(x) = ebx.

Hint: Use Beta.
(3) Use the Fourier series for the function f(x) = | sin(x)| to compute the sum

∞∑
n=1

1

4n2 − 1
=

1

2
,

∞∑
n=1

(−1)n+1

4n2 − 1
=
π − 2

4
.

Hint: use Beta to show that the Fourier series of the function defined to be
| sin(x)| for |x| < π and extended to be 2π periodic is:

2

π
− 4

π

∞∑
n=1

cos(2nx)

4n2 − 1
.

Use the theorem on the pointwise convergence of Fourier series to compute
the value for x = 0. Then use algebra to obtain the value for∑

n≥1

1

4n2 − 1
.

Next, take x = π
2 , and proceed similarly to compute the sum∑

n≥1

(−1)n+1

4n2 − 1
.

(4) Use the Fourier series for the function f(x) = x(π − |x|) to compute the
sum

∞∑
n=1

(−1)n+1

(2n− 1)3
=
π3

32
.

Hint: use Beta to show that the Fourier series of the function x(π − |x|)
defined on |x| < π and extended to be 2π periodic is:

8

π

∑
n≥1

sin(2n− 1)x

(2n− 1)3
.
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To compute the sum, set x = π
2 and use the theorem on the pointwise

convergence of Fourier series.
(5) Let f(x) be the periodic function such that f(x) = ex for x ∈ (−π, π), and

extended to be 2π periodic on the rest of R. Let∑
n∈Z

cne
inx

be its Fourier series. Therefore, by Theorem 2.1

ex =
∑
n∈Z

cne
inx, ∀x ∈ (−π, π).

If we differentiate this series term-wise then we get
∑
incne

inx. On the
other hand, we know that (ex)′ = ex. So, then we should have∑

incne
inx =

∑
cne

inx =⇒ cn = incn ∀n.

This is clearly wrong. Where is the mistake?
Hint: What are the hypotheses of the theorem on differentiation of

Fourier series (Theorem 2 in today’s notes)? Are they all satisfied in this
case?
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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2019.01.31

1.1. Example of the vibrating string. Assume that at t = 0, the ends of the
string are fixed, and we have pulled up the middle of it. This makes a shape which
mathematically is described by the function

v(x) =

{
x, 0 ≤ x ≤ π
2π − x, π ≤ x ≤ 2π

Assume that at t = 0 the string is not yet vibrating, so the initial conditions are
then {

u(x, 0) = v(x)

ut(x, 0) = 0

We assume the ends of the string are fixed, so we have the boundary conditions

u(0) = u(2π) = 0.

The string is identified with the interval [0, 2π]. Determine the function u(x, t)
which gives the height at the point x on the string at the time t ≥ 0 which satisfies
all these conditions.

1.1.1. First Step: Separate Variables. We use our first technique, separation of
variables. The wave equation demands that

�u = 0, �u = ∂ttu− ∂xxu.
Write

u(x, t) = X(x)T (t).

Hit it with the wave equation:

X(x)T ′′(t)−X ′′(x)T (t) = 0.

We again separate the variables by dividing the whole equation by X(x)T (t). Then
we have

T ′′(t)

T (t)
− X ′′(x)

X(x)
= 0 =⇒ T ′′

T
=
X ′′

X
= constant.

The two sides depend on different variables, which makes them both have to be con-
stant. We give that a name, λ. Then, since we have those handy dandy boundary

1
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conditions for X (but a much more complicated initial condition for u(x, 0) = v(x))
we start with X. We solve

X ′′ = λX, X(0) = X(2π) = 0.

Exercise 1. Show that the cases λ ≥ 0 won’t satisfy the boundary condition.

We are left with λ < 0 which by our multivariable calculus theorem tells us that

X(x) = a cos(
√
|λ|x) + b sin(

√
|λ|x).

To get X(0) = 0, we must have a = 0. To get X(2π) = 0 we will need√
|λ|2π = kπ k ∈ Z.

Hence √
|λ| = k

2
, k ∈ Z.

Since sin(−x) = − sin(x) are linearly dependent, we only need to take k ∈ N
(without 0, you know, American N). So, we have X which we index by n, writing

Xn(x) = sin(nx/2) n ∈ N.

For now, we don’t worry about the constant factor. Next, we have the equation for
the partner-function (can’t forget the partner function!)

T ′′n
Tn

= λn.

Since we know that λn < 0 and
√
|λn| = n/2 we have

λn = −n
2

4
.

Hence, our handy dandy multivariable calculus theorem tells us that the solution

Tn(t) = an cos(nt/2) + bn sin(nt/2).

Now, we have

un(x, t) = Xn(x)Tn(t), �un = 0 ∀n ∈ N.

1.1.2. Supersolution obtained by superposition principle. Since the PDE is linear
and homogeneous, we also have

�
∑
n≥1

un(x, t) =
∑
n≥1

�un(x, t) = 0.

We don’t know which of these un we need to build our solution according to the
initial conditions, so we just take all of them for now.

1.1.3. Fourier series to find the coefficients using the initial conditions. We need

u(x, t) :=
∑
n≥1

un(x, t)

to satisfy the initial conditions. The first is that

u(x, 0) =
∑
n≥1

Xn(x)an = v(x).
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We are working on the interval [0, 2π]. The coefficients are obtained by using Xn

as a basis for L2 on this interval. The coefficients are therefore

an1an1 (1.1) an =
1

||Xn||2
〈v,Xn〉 =

∫ 2π

0
v(x)Xn(x)dx∫ 2π

0
|Xn(x)|2dx

.

If one wishes to do these integrals, one is welcome to do so. That will not be
necessary on the exam, however.

To obtain the bn coefficients, we use the other initial condition which says that

ut(x, 0) =
∑
n≥1

Xn(x)T ′n(0) =
∑
n≥1

Xn(x)
(
−an

n

2
sin(0) + bn

n

2
cos(0)

)
=
∑
n≥1

Xn(x)
n

2
bn = 0.

These coefficients are calculated in the same way:

n

2
bn =

〈0, Xn〉
||Xn||2

= 0∀n.

Hence, our solution is ∑
n≥1

an sin(nx/2) cos(nt/2),

with an given in equation (
an1an1
1.1).

1.2. Summary of methods for solving PDEs on bounded intervals. Thus
far we have collected the following techniques to solve PDEs like the heat and wave
equation on bounded intervals:

(1) Separation of variables (a means to an end),
(2) Superposition position (smash solutions together to make a supersolution),
(3) Fourier series to find the coefficients obtained using the initial data (L2

scalar product and divide by the norm).

These methods work well on bounded intervals.

1.3. Another wave equation example. Solve:

utt = uxx, t > 0, x ∈ (−1, 1),
u(0, x) = 1− |x|
ut(0, x) = 0

ux(t,−1) = 0

ux(t, 1) = 0

We use separation of variables, writing u(x, t) = X(x)T (t). It is just a means to an
end. We write the PDE:

T ′′X = X ′′T.

Divide everything by XT to get

T ′′

T
=
X ′′

X
.

Since the two sides depend on different variables, they are both constant. Start
with the X side because we have more simple information about it. The boundary
conditions that

ux(t,−1) = ux(t, 1) = 0 =⇒ X ′(−1) = X ′(1) = 0.
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So, we have the equation

X ′′

X
= constant, call it λ.

Thus we are solving

X ′′ = λX, X ′(−1) = X ′(1) = 0.

Case 1: λ = 0: In this case, we have solved this equation before. One way to think
about it is like the second derivative is like acceleration. If X ′′ = 0, it’s like saying
X has constant acceleration. Therefore X can only be a linear function. Now, we
have the boundary condition which says that X ′(−1) = X ′(1) = 0. So the slope of
the linear function must be zero, hence X must be a constant function in this case.
So, the only solutions in this case are the constant functions.

Case 2: λ > 0: In this case, a general solution is of the form:

X(x) = Ae
√
λx +Be−

√
λx.

Let us assume that A and B are not both zero. The left boundary condition requires

A
√
λe−

√
λ −
√
λBe

√
λ = 0.

Since λ > 0 we can divide by
√
λ to say that we must have

Ae−
√
λ = Be

√
λ =⇒ A

B
= e2

√
λ.

The right boundary condition requires

A
√
λe
√
λ −
√
λBe−

√
λ = 0.

Since λ > 0, we can divide by
√
λ, to make this:

Ae
√
λ = Be−

√
λ =⇒ e2

√
λ =

B

A
.

Hence combining with the other boundary condition we get:

A

B
= e2

√
λ =

B

A
=⇒ A2 = B2 =⇒ A = ±B =⇒ A

B
= ±1.

Neither of these are possible because

e2
√
λ > 1 since 2

√
λ > 0.

So, we run amok under the assumption that A and B are not both zero. Hence,
the only solution in this case requires A = B = 0. This is the waveless wave.

Case 3: λ < 0: In this case a general solution is of the form:

X(x) = a cos(
√
|λ|x) + b sin(

√
|λ|x).

To satisfy the left boundary condition we need

−a
√
|λ| sin(−

√
|λ|) + b

√
|λ| cos(−

√
|λ|) = 0 ⇐⇒ a sin(

√
|λ|) = −b cos(

√
|λ|).

To satisfy the right boundary condition we need

−a
√
|λ| sin(

√
|λ|) + b

√
|λ| cos(

√
|λ|) = 0 ⇐⇒ a sin(

√
|λ|) = b cos(

√
|λ|).

Hence we need

eq:bceq:bc (1.2) a sin(
√
|λ|) = −b cos(

√
|λ|) = b cos(

√
|λ|).

We do not want both a and b to vanish. So, we need to have either
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(1) the sine vanishes, so we need sin(
√
|λ|) = 0 which then implies that√

|λ| = nπ, n ∈ Z

(2) or the cosine vanishes so we need cos(
√
|λ|) = 0 which then implies that√

|λ| =
(
n+

1

2

)
π, n ∈ N.

Note that these two cases are mutually exclusive. In case (1), by (
eq:bceq:bc
1.2) this means

that b = 0. In case (2), by (
eq:bceq:bc
1.2) this means that a = 0. So, we have two types of

solutions, which up to constant factor look like:

Xm(x) =

{
cos(mπx/2) m is even

sin(mπx/2) m is odd

In both cases,

λm = −m
2π2

4
.

We can now solve for the partner function, Tm(t). The equation is

T ′′m
Tm

=
X ′′m
Xm

= λm = −m
2π2

4
.

Therefore, we are in case 3 for the Tm function as well, so we know that

Tm(t) = am cos

(
mπt

2

)
+ bm sin

(
mπt

2

)
.

Then we have for

um(x, t) = Xm(x)Tm(t), �um = 0 ∀m.
(Recall that � = ∂tt − ∂xx, that is the wave operator). Hence, our functions solve
a homogeneous PDE, so we can use the superposition principle to smash them all
together to make a super solution:

u(x, t) =
∑
m∈N

um(x, t) =
∑
n∈N

Xm(x)

(
am cos

(
mπt

2

)
+ bm sin

(
mπt

2

))
.

How do we determine the coefficients? Using the initial data and a Fourier series
for it!!!

The initial data is {
u(0, x) = 1− |x|
ut(0, x) = 0

Let us plug t = 0 into our solution:

u(x, 0) =
∑
m∈N

Xm(x)am.

We demand that this is the initial data, so we need

1− |x| =
∑
m∈N

Xm(x)am.

It is a Fourier series on the right side!! We therefore just need to expand the function
1− |x| in a Fourier series. If we think about the basis functions {Xm(x)}m≥0 then

am =
〈1− |x|, Xm(x)〉
||Xm||2

,
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where

〈1− |x|, Xm(x)〉 =

∫ 1

−1
(1− |x|)Xm(x)dx,

||Xm||2 =

∫ 1

−1
|Xm(x)|2dx.

On an exam, you are not actually required to compute these integrals!
Now, for the other coefficients (the bn), we use the condition on the derivative:

ut(x, 0) =
∑
m∈N

mn
mπ

2
Xm(x) = 0.

We know how to Fourier expand the zero function: its coefficients are all just zero.
Hence, it suffices to take

bm = 0∀m.

1.4. Fourier series on an arbitrary interval. When we use our tools to solve
a PDE on a finite interval, as above, the initial data is not a periodic function.
Moreover, it was not defined on the interval (−π, π). The technique still works!
It is actually quite beautiful. When we determined the coefficients, we solved for
the Fourier coefficients on the interval (−1, 1). Here we explain how to do that in
general.

For a function f defined on an interval [a − `, a + `] for some a ∈ R, and some
` > 0, we begin by extending f to be 2` periodic on R. Next, we define

g(t) := f

(
t`

π
+ a

)
= f(x),

that is
t`

π
+ a = x, t =

(x− a)π

`
.

Then, the function g(t) is 2π periodic, because

g(t+ 2π) = f

(
(t+ 2π)`

π
+ a

)
= f

(
t`

π
+ a+ 2`

)
= f

(
t`

π
+ a

)
.

Above, we used the fact that f is 2` periodic. If g is in L2, then we can expand it
into a Fourier series: ∑

n∈Z
cne

int,

with coefficients

cn =
1

2π

∫ π

−π
g(t)e−intdt =

1

2π

∫ π

−π
f

(
t`

π
+ a

)
e−intdt.

Substituting in the integral,

x =
t`

π
+ a, dx =

`dt

π
the coefficients become:

cn =
1

2π

π

`

∫ a+`

a−`
f(x)e−in(x−a)π/`dx =

1

2`

∫ a+`

a−`
f(x)e−in(x−a)π/`dx.

Then, we get by substituting for t in terms of x the Fourier series for f ,∑
n∈Z

cne
in( (x−a)π

` ).
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The same relationship holds for the Fourier cosine and sine coefficients:

a0 = 2c0, an = cn + c−n, bn = i(cn − c−n), n ≥ 1,

or equivalently

an =
1

`

∫ a+`

a−`
f(x) cos(n(x− a)π/`)dx, bn =

1

`

∫ a+`

a−`
f(x) sin(n(x− a)π/`)dx,

and the Fourier series has the form
a0
2

+
∑
n≥1

an cos(n(x− a)π/`) + bn sin(n(x− a)π/`).

To what does the Fourier series converge?

Theorem 1. Assume that f is defined on an interval [a− `, a+ `] for some a ∈ R,
and some ` > 0, such that f is piecewise C1 on this interval. Then the Fourier
series for f , defined by∑

n∈Z
cne

in( (x−a)π
` ), cn =

1

2`

∫ a+`

a−`
f(x)e−in(x−a)π/`dx,

or equivalently the series

a0
2

+
∑
n≥1

an cos(n(x− a)π/`) + bn sin(n(x− a)π/`)

converges to f(x) for all x ∈ (a − `, a + `) at which f is continuous. At a point
x ∈ (a− `, a+ `) where f is not continuous, the series converges to

eq:avgeq:avg (1.3)
f(x+) + f(x−)

2
.

Exercise 2. Prove the theorem. As a hint: apply the Theorem PCF
∑

to the
function g above.

1.5. Two primary applications of Fourier series. We now have to main uses
for Fourier series.

(1) Solving PDEs on bounded intervals. This proceeds in three steps: (1)
separation of variables (a means to an end), (2) smashing all solutions
obtained in this way together to create a super solution (superposition),
and (3) using a Fourier series to express the initial data.

(2) Using Theorem 2.1 to compute nifty sums like:∑
n≥1

1

n2
.

To compute such a sum, you will first compute the Fourier series of a certain
function f which is defined on (−π, π) and extended 2π periodically:∑

n∈Z
cne

inx.

Next, substituting a specific value of x you want to recover the desired sum,
like

∑
n−2. You use the theorem to conclude that the series converges to

the average of the left and right limit of the function at x. Then re-arrange
to obtain your desired sum.



8 JULIE ROWLETT

The simplest way to compute the sum∑
n≥1

1

n4

requires deep theorems about Hilbert spaces, which is our next topic. These theo-
rems will tell us that ∑

n∈Z
|cn|2 =

1

2π

∫ π

−π
|f(x)|2dx,

for

f(x) := x2 for |x| ≤ π, and extended to be 2π periodic on R,

with

cn =
1

2π

∫ π

−π
f(x)e−inxdx.

If we have looked up the Fourier series (or we compute it), we find:

π2

3
+
∑
n≥1

4(−1)n cos(nx)

n2
.

This is not given in terms of cn but we can nonetheless obtain the cn since:

an = cn + c−n =
4(−1)n

n2
, bn = i(cn − c−n) = 0∀n ≥ 1 =⇒ cn = c−n

and thus

an = 2cn =⇒ cn =
2(−1)n

n2
= c−n ∀n ≥ 1.

The magical Hilbert space theory therefore tells us that∑
n∈Z
|cn|2 =

1

2π

∫ π

−π
|x2|2dx =

1

2π

2π5

5
=
π4

5
.

On the left side,∑
n∈Z
|cn|2 = |c0|2 + 2

∑
n≥1

|cn|2 =
π4

9
+ 2

∑
n≥1

∣∣∣∣2(−1)n

2n2

∣∣∣∣2 =
π4

9
+ 2

∑
n≥1

4

4n4

=
π4

9
+ 8

∑
n≥1

1

n4
.

Consequently,

π4

5
=
π4

9
+ 8

∑
n≥1

1

n4
=⇒ π4

5
− π4

9
= 8

∑
n≥1

1

n4
=⇒ 9π4 − 5π4

8 ∗ 45
=
∑
n≥1

1

n4
=
π4

90
.

Our main motivation for developing Hilbert space theory (in case we are not simply
motivated by the love of the theory itself) are that this theory will:

(1) provide new tools to be able to explicitly evaluate series using Fourier series
(as done above);

(2) determine if our solution found by the Fourier series method is indeed the
unique solution to our PDE on a bounded interval;

(3) provide new tools to be able to solve PDEs in other compact geometric
settings (like in a rectangle, disk, annulus, cylinder, box, sphere, and so
forth).
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1.5.1. Exercises to be done by oneself: Answers.

(1) Compute the Fourier series of the function defined on (−π, π)

f(x) := x(π − |x|).

Okay, it is ∑
n≥1

8 sin((2n− 1)x)

π(2n− 1)3
.

(2) Compute the Fourier series of the function defined on (−π, π)

f(x) = ebx.

Okay, it is ∑
n∈Z

sinh(bπ)(−1)n

π(b− in)
einx.

(3) Use the Fourier series for the function f(x) = | sin(x)| to compute the sum

∞∑
n=1

1

4n2 − 1
=

1

2
,

∞∑
n=1

(−1)n+1

4n2 − 1
=
π − 2

4
.

The Fourier series is

2

π
− 4

π

∑
n≥1

cos(2nx)

4n2 − 1
.

So, to obtain the first sum, one can use x = 0. The series will converge to
0, so you get that

2

π
− 4

π

∑
n≥1

1

4n2 − 1
= 0.

Then, re-arranging, one obtains the desired sum. To get the sum with the
(−1)n+1 upstairs, one should use x = π

2 , because then upstairs one has

cos(2nπ/2) = cos(nπ) = (−1)n.

The series will converge to | sin(π/2)| = 1. The same idea applies to re-
arrange and obtain the desired sup.

(4) Use the Fourier series for the function f(x) = x(π − |x|) to compute the
sum

∞∑
n=1

(−1)n+1

(2n− 1)3
=
π3

32
.

We have computed the Fourier series above. The question now is what
value of x to use? Well, upstairs we have

sin((2n− 1)x).

For x = π/2 this becomes

sin((2n− 1)π/2).

This will alternate between +1 like when n = 1 and −1 like when n = 2.
So, we can compute in this way that

sin((2n− 1)π/2) = (−1)n+1.
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Consequently, for x = π/2 the series is∑
n≥1

8(−1)n+1

π(2n− 1)3
.

It converges to the average of the left and right limits of f(x) at x = π/2.
These are the same and are both equal to

π2

4
.

Hence
π2

4
=
∑
n≥1

8(−1)n+1

π(2n− 1)3
.

Re-arrange to get the desired sum.
(5) Let f(x) be the periodic function such that f(x) = ex for x ∈ (−π, π), and

extended to be 2π periodic on the rest of R. Let∑
n∈Z

cne
inx

be its Fourier series. Therefore, by Theorem 2.1

ex =
∑
n∈Z

cne
inx, ∀x ∈ (−π, π).

If we differentiate this series term-wise then we get
∑
incne

inx. On the
other hand, we know that (ex)′ = ex. So, then we should have∑

incne
inx =

∑
cne

inx =⇒ cn = incn ∀n.

This is clearly wrong. Where is the mistake?
DO NOT DIFFERENTIATE THE SERIES TERMWISE!!! That’s the

mistake. One can only differentiate termwise when the function satisfies
the hypotheses of Theorem 2.3. That theorem requires the function to
be continuous on R. The function ex on (−π, π) and extended to be 2π
periodic on R has discontinuities at π + 2nπ for all n ∈ Z. So it fails to
satisfy the hypotheses of the theorem, thus that theorem does not apply to
this function.

(6) Determine the Fourier sine and cosine series of the function

f(x) =

{
x 0 ≤ x ≤ π

2

π − x π
2 ≤ x ≤ π

Okay, they are

π

4
− 2

π

∑
n≥1

cos((4n− 2)x)

(2n− 1)2
,

4

π

∑
n≥1

(−1)n+1 sin((2n− 1)x)

(2n− 1)2
.

(7) Expand the function

f(x) =

{
1 0 < x < 2

−1 2 < x < 4
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in a cosine series on [0, 4]. Okay, it is

4

π

∑
n≥1

(−1)n+1

2n− 1
cos

(
(2n− 1)πx

4

)
.

(8) Expand the function ex in a series of the form∑
n∈Z

cne
2πinx, x ∈ (0, 1).

Okay, it is

(e− 1)
∑
n∈Z

e2πinx

1− 2πin
.

(9) Define

f(t) =


t 0 ≤ t ≤ 1

1 1 < t < 2

3− t 2 ≤ t ≤ 3

and extend f to be 3-periodic on R. Expand f in a Fourier series. Deter-
mine, in the form of a Fourier series, a 3-periodic solution to the equation

y′′(t) + 3y(t) = f(t).

This is Extra Exercise 2, and the solution is contained in the extra övningar
document on the course homepage.
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JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. Hilbert spaces

Why should we bother to understand Hilbert spaces? Hilbert spaces are impor-
tant because they are the missing mathematics (which Fourier did not have!) to
rigorously justify using Fourier series to solve PDEs. We have learned the following
procedure:

(1) Start with a PDE where the x variable is in a finite (bounded) interval.
(2) Separate variables by writing u, (the unsub) as a product like u(x, t) =

X(x)T (t). Plug it into the PDE.
(3) Solve for X using the boundary conditions. This will probably give lots of

Xs which can be indexed by N.
(4) Each Xn has a partner Tn. Solve for these. Probably, you’ve got some

unknown constants.
(5) Is the PDE homogeneous? If so, X1T1 +X2T2 + . . . also solves the PDE so

you can smash them together into a big party series. If *not* then you may
need to do something else (i.e. steady state solution). In the homogeneous
case, you will then use the IC and the collection {Xn} to find the coefficients
in Tn and end up with a solution of the form∑

n∈N
Xn(x)Tn(t).

It’s precisely in this last step where the Hilbert space theory is being used
to say that you can use the Xn obtain the IC, because the Hilbert space
theory tells us when certain functions are basis functions for L2!

A Hilbert space is a complete1, normed vector space whose norm is defined by a
scalar product. The definition of a vector space means that if u and v are elements
in your Hilbert space, then for all complex numbers a and b,

au+ bv is in your Hilbert space.

So, taking a = b = 0, there is always a 0 vector in your Hilbert space. The fact
that it is normed means that every element of the Hilbert space has a length, which

Date: 2020.02.03.
1Every Cauchy sequence converges. Do you remember what a Cauchy sequence is? If not,

please look it up or ask!

1
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is equal to its norm. To define this, we describe the scalar product. For a Hilbert
space H, the scalar product satisfies:

u, v ∈ H =⇒ 〈u, v〉 ∈ C,

c ∈ C =⇒ 〈cu, v〉 = c〈u, v〉,
u, v, w ∈ H =⇒ 〈u+ w, v〉 = 〈u, v〉+ 〈w, v〉,

〈u, v〉 = 〈v, u〉,
〈u, u〉 ≥ 0, = 0 ⇐⇒ u = 0.

Therefore, we can define the norm of a vector as

||u|| :=
√
〈u, u〉.

The norm of a vector is also equal to its distance from the 0 element of the Hilbert
space. Similarly,

||u− v|| =
√
〈u− v, u− v〉

is the distance between the elements u and v in your Hilbert space. We say that a
set of elements

{uα} ⊂ H
is an orthonormal basis (ONB) for H if for any v ∈ H there exist complex numbers
(cα) such that

v =
∑

cαuα, 〈uα, uβ〉 = δα,β =

{
1 α = β

0 α 6= β.

This is the Kronecker δ. You may be wondering why we haven’t written an index
for α. Well, that’s because à priori, they could be uncountable.

Theorem 1. A Hilbert space is separable if and only if it has either a finite ONB
or a countable ONB.

There is a cute proof here:
http://www.polishedproofs.com/relationship-between-a-countable-orthonormal-basis-and-a-countable-dense-subset/.
We’re only going to be working with Hilbert spaces which have either a finite

ONB or a countable ONB. The dimension of a Hilbert space is the number of
elements in an ONB. Any finite dimensional Hilbert space is in bijection with the
standard one

Cn, u, v ∈ Cn =⇒ 〈u, v〉 = u · v.
Thus, writing

u = (u1, . . . , un), with each component uk ∈ C, k = 1, . . . , n

and similarly for v,

〈u, v〉 =

n∑
k=1

ukvk.

The bijection between any finite (n) dimensional Hilbert space and Cn comes from
taking an ONB of the Hilbert space and mapping the elements of the ONB to the
standard basis vectors of Cn. Here are some useful basic results for Hilbert spaces.

Proposition 2. Let H be a Hilbert space. For any u and v in H,

||u+ v||2 = ||u||2 + 2<〈u, v〉+ ||v||2.

 http://www.polishedproofs.com/relationship-between-a-countable-orthonormal-basis-and-a-countable-dense-subset/
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Proof: Compute:

||u+ v||2 = 〈u+ v, u+ v〉 = 〈u, u+ v〉+ 〈v, u+ v〉
= 〈u, u〉+ 〈u, v〉+ 〈v, v〉+ 〈v, u〉
= ||u||2 + 〈u, v〉+ ||v||2 + 〈u, v〉.

We all know that for a complex number z,

z + z = 2<(z).

So,

〈u, v〉+ 〈u, v〉 = 2<〈u, v〉.

1.1. Cauchy-Schwarz Inequality, Triangle Inequality, and Pythagorean
Theorem.

Proposition 3. For any Hilbert space, H, for any u and v in H,

|〈u, v〉| ≤ ||u||||v||.

Proof: Assume that at least one of the two is non-zero. Let’s assume v 6= 0,
because otherwise we can just swap their names. We begin by considering the
length of the vector u plus v scaled by a factor of t. If t → 0, the length tends to
||u||2. What happens for other values of t? We compute it:

||u+ tv||2 = ||u||2 + 2t<〈u, v〉+ t2||v||2, t ∈ R.
This is a real valued function of t. It’s a quadratic function of t in fact. The
derivative is

2t||v||2 + 2<〈u, v〉.
It’s an upwards shaped quadratic function, so its unique minimum is when

t = −<〈u, v〉
||v||2

.

If we then check out what happens at this value of t,

||u+ tv||2 = ||u||2 − 2
<〈u, v〉
||v||2

<〈u, v〉+ <〈u, v〉2 ||v||
2

||v||4
= ||u||2 − <〈u, v〉

2

||v||2
.

We know that
0 ≤ ||u+ tv||2

so we get

0 ≤ ||u||2 − <〈u, v〉
2

||v||2
=⇒ 0 ≤ ||u||2||v||2 −<〈u, v〉2.

This gives us
<〈u, v〉2 ≤ ||u||2||v||2.

Well, this is annoying because of that silly <. I wonder how we could make it turn
into |〈u, v〉|? Also, we don’t want to screw up the ||u||2||v||2 part. Well, we know
how the scalar product interacts with complex numbers, for λ ∈ C,

〈λu, v〉 = λ〈u, v〉.
So, if for example

〈u, v〉 = reiθ, r = |〈u, v〉| and θ ∈ R.
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We can modify u, without changing ||u||,

||e−iθu|| = ||u||.

Moreover

〈e−iθu, v〉 = e−iθ〈u, v〉 = e−iθreiθ = |〈u, v〉| .
So, if we repeat everything above replacing u with e−iθu we get

<〈e−iθu, v〉2 ≤ ||e−iθu||2||v||2 = ||u||2||v||2,

and by the above calculation

〈e−iθu, v〉 = |〈u, v〉| ∈ R =⇒ <〈e−iθu, v〉2 = |〈u, v〉|2 .

So, we have

|〈u, v〉|2 ≤ ||u||2||v||2.
Taking the square root of both sides completes the proof of the Cauchy-Schwarz
inequality.

We also have a triangle inequality.

Proposition 4. For any u and v in a Hilbert space H,

||u+ v|| ≤ ||u||+ ||v||.

Proof: We just use the previous two results:

||u+ v||2 = ||u||2 + 2<〈u, v〉+ ||v||2 ≤ ||u||2 + 2||u||||v||+ ||v||2 = (||u||+ ||v||)2.

Taking the square root we obtain the triangle inequality.

We have the Pythagorean theorem.

Proposition 5. If u and v are orthogonal, then

||u+ v||2 = ||u||2 + ||v||2.

Moreover, if {un}Nn=1 are orthogonal, then

||
N∑
n=1

un||2 =

N∑
n=1

||un||2.

Proof: The first statement follows from

||u+ v||2 = ||u||2 + 2<〈u, v〉+ ||v||2 = ||u||2 + ||v||2,

if u and v are orthogonal, because in that case their scalar product is zero. More-
over, for any collection of orthogonal vectors {u1, . . . , un} we proceed by induction.
Assume that

||u1 + . . .+ un−1||2 =

n−1∑
k=1

||uk||2.

Then, if un is orthogonal to all of u1, . . . , un−1 we also have

〈un, u1 + . . .+ un−1〉 = 〈un, u1〉+ . . .+ 〈un, un−1〉 = 0 + . . .+ 0.
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Hence un is also orthogonal to the sum,

n−1∑
k=1

uk.

By the Pythagorean theorem,

||un +

n−1∑
k=1

uk||2 = ||un||2 + ||
n−1∑
k=1

uk||2.

By the induction assumption

= ||un||2 +

n−1∑
k=1

||uk||2 =

n∑
k=1

||uk||2.

1.2. Continuity of the scalar product.

Proposition 6. Using only the assumptions that the scalar product satisfies:

〈u, v〉 = 〈v, u〉

〈au, v〉 = a〈u, v〉
〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉

〈u, u〉 ≥ 0, 〈u, u〉 = 0 ⇐⇒ u = 0,

then the scalar product is a continuous function from H ×H → C.

Proof: It suffices to estimate

|〈u, v〉 − 〈u′, v′〉| .
I would like to somehow get

u− u′ and v − v′.
So, well, just throw them in the first and last

〈u− u′, v〉 = 〈u, v〉 − 〈u′, v〉.
That shows that

〈u− u′, v〉+ 〈u′, v〉 = 〈u, v〉.
So, we see that

〈u, v〉 − 〈u′, v′〉 = 〈u− u′, v〉+ 〈u′, v〉 − 〈u′, v′〉
We can smash the last two terms together because −1 ∈ R so

−〈u′, v′〉 = 〈u′,−v′〉 =⇒ 〈u′, v〉 − 〈u′, v′〉 = 〈u′, v − v′〉.
Hence,

|〈u, v〉 − 〈u′, v′〉| = |〈u− u′, v〉+ 〈u′, v − v′〉| .
By the triangle inequality

|〈u− u′, v〉+ 〈u′, v − v′〉| ≤ |〈u− u′, v〉|+ |〈u′, v − v′〉| .
By the Cauchy-Schwarz inequality

|〈u− u′, v〉|+ |〈u′, v − v′〉| ≤ ||u− u′||||v||+ ||u′||||v − v′||.
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We therefore see that for any fixed pair (u, v) ∈ H ×H, given ε > 0, we can define

δ := min

{
ε

2(||v||+ 1)
,

ε

2(||u||+ 1)
, 1

}
.

Then we estimate

||u− u′|| < δ =⇒ ||u′|| < ||u||+ δ ≤ ||u||+ 1,

||u− u′||||v|| ≤ ε||v||
2(||v||+ 1)

<
ε

2
.

and

||u′||||v − v′|| ≤ (||u||+ 1)ε

2(||u||+ 1)
≤ ε

2
,

so we obtain

|〈u, v〉 − 〈u′, v′〉| < ε.

Remark 1. This fact is useful because it allows us to bring limits inside the scalar
product. You will see that we do this many times! In particular, if one has two
sequences,

{un}n≥1, {vn}n≥1 in a Hilbert space, H,

and

lim
n→∞

un = u ∈ H, lim
n→∞

vn = v ∈ H,

then the continuity of the scalar product implies that

lim
n→∞

〈un, vn〉 = 〈u, v〉.

This fact allows us to prove an infinite dimensional Pythagorean theorem!

Theorem 7 (Infinite dimensional Pythagorus). Assume that {uk}k≥1 are in a
Hilbert space, and that ∑

k≥1

uk

converges to an element u in that Hilbert space. Further, assume that the uk are
pairwise orthogonal. Then we have

||u||2 =
∑
k≥1

||uk||2.

Proof: The meaning of ∑
k≥1

uk = u

is that

lim
n→∞

n∑
k=1

uk = u.

This is equivalent to

lim
n→∞

||uk − u|| = 0.

The definition of scalar product says that

||u||2 = 〈u, u〉.
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Let us denote

Un :=

n∑
k=1

uk.

Since it is a finite sum of elements of the Hilbert space, this is an element of the
Hilbert space, because Hilbert spaces are vector spaces. The continuity of the scalar
product shows that

lim
n→∞

〈Un, Un〉 = 〈U,U〉.

For each n, we also have

〈Un, Un〉 =

n∑
k=1

||uk||2,

by the usual (finite) Pythagorean Theorem. Hence, we have

lim
n→∞

n∑
k=1

||uk||2 = ||U ||2.

This shows that the sum on the left converges and is equal to ||U ||2.

1.3. Bessel’s inequality and the three equivalent conditions to be an
ONB. We prove a very useful inequality.

Theorem 8 (Bessel’s Inequality for general Hilbert spaces). Let {φn}n∈N be an
orthonormal set in a Hilbert space H. Then if f ∈ H,

g :=
∑
n∈N
〈f, φn〉φn ∈ H,

and we have the inequality

||g||2 =
∑
n∈N
|〈f, φn〉|2 ≤ ||f ||2.

Proof: We will prove the inequality above first, and then use it to prove that
g ∈ H. By the Pythagorean theorem, for each N ∈ N,

‖
N∑
n=1

f̂nφn‖2 =

N∑
n=1

|f̂n|2.

Above, we have used the convenient notation

f̂n = 〈f, φn〉.

We call f̂n the nth Fourier coefficient of f with respect to the orthonormal set
(ONS) {φn}. We compute that the square of the distance between f and its partial
Fourier series

0 ≤ ‖f −
N∑
n=1

f̂nφn‖2 = ‖f‖2 − 2<〈f,
N∑
1

f̂nφn〉+ ‖
N∑
1

f̂nφn‖2.

Let’s look at the middle bit:

〈f,
N∑
1

f̂nφn〉 =

N∑
1

f̂n〈f, φn〉 =

N∑
1

f̂nf̂n =

n∑
1

|f̂n|2.
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Hence,

0 ≤ ||f ||2 − 2

N∑
1

|f̂n|2 +

N∑
n=1

|f̂n|2 = ||f ||2 −
N∑
1

|f̂n|2

so re-arranging
N∑
1

|f̂n|2 ≤ ||f ||2.

Letting N →∞, we obtain the inequality∑
n∈N
|〈f, φn〉|2 ≤ ||f ||2.

To prove that in fact

g ∈ H,
we will show that

{FN}N≥1, FN :=

N∑
n=1

f̂nφn

is a Cauchy sequence in H. Since Hilbert spaces are complete, it follows that this
Cauchy sequence converges to a limit F ∈ H. So, let ε > 0 be given. Then, by
Bessel’s inequality, since

∞∑
1

|f̂n|2 <∞,

there exists N ∈ N such that
∞∑
N

|f̂n|2 < ε2.

This is because the tail of any convergent series can be made as small as we like.
So, now if we have N1 ≥ N2 ≥ N , we estimate

||FN1
− FN2

||2 = ||
N1∑
N2+1

f̂nφn||2 =

N1∑
N2+1

|f̂n|2

≤
∞∑

N2+1

|f̂n|2 ≤
∞∑
N

|f̂n|2 < ε2.

Consequently we have that for all N1 ≥ N2 ≥ N ,

||FN1 − FN2 || < ε.

This is the definition of being a Cauchy sequence. Consequently, we obtain that

lim
N→∞

N∑
n=1

f̂nφn = g ∈ H.

By our infinite Pythagorean theorem, since φn are orthonormal, we also have that

f̂nφn ∈ H are orhthogonal. We therefore have

||g||2 =
∑
n≥1

||f̂nφn||2 =
∑
n≥1

|f̂n|2||φn||2 =
∑
n≥1

|f̂n|2 ≤ ||f ||2.
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1.4. The 3 equivalent conditions to be an ONB in a Hilbert space. Perhaps
what makes the following theorem so nice is the pleasant setting of a Hilbert space,
or translated directly from German, a Hilbert room. Hilbert rooms are cozy. The
reason is because there is a notion of orthogonality, so it is very easy to find one’s
way around, much like the grid-like streets in the USA.

Theorem 9. Let {φn}n∈N be orthonormal in a Hilbert space, H. The following
are equivalent:

(1) f ∈ H and 〈f, φn〉 = 0∀n ∈ N =⇒ f = 0.

(2) f ∈ H =⇒ f =
∑
n∈N
〈f, φn〉φn.

(3) ||f ||2 =
∑
n∈N
|〈f, φn〉|2 .

The last of these is known as Parseval’s equation. If any of these three equivalent
conditions hold, then we say that {φn} is an orthonormal basis of H.

Proof: We shall proceed in order prove (1) =⇒ (2), then (2) =⇒ (3), and
finally (3) =⇒ (1). Stay calm and carry on.

First we assume statement (1) holds, and then we shall show that (2) must hold
as well. Bessel’s Inequality Theorem says that

g :=
∑
n∈N
〈f, φn〉φn ∈ H.

So, we would like to prove that in fact g = f , somehow using the fact that statement
(1) holds true. Idea: let’s try to show that f − g = 0. This will imply that f = g.
To use (1) we should compute then

〈f − g, φn〉.
Let’s do this.

〈f − g, φn〉 = 〈f, φn〉 − 〈g, φn〉.
We insert the definition of g as the series,

〈g, φn〉 = 〈
∑
m≥1

〈f, φm〉φm, φn〉 =
∑
m≥1

〈f, φm〉〈φm, φn〉 = 〈f, φn〉.

Above, we have used in the second equality the linearity of the inner product and the
continuity of the inner product. In the third equality, we have used that 〈φm, φn〉
is 0 if m 6= n, and is 1 if m = n. Hence, only the term with m = n survives in the
sum. Thus,

〈f − g, φn〉 = 〈f, φn〉 − 〈g, φn〉 = 〈f, φn〉 − 〈f, φn〉 = 0, ∀n ∈ N.
By (1), this shows that f − g = 0 =⇒ f = g.

Next, we shall assume that (2) holds, and we shall use this to demonstrate (3).
By (2),

f =
∑
n∈N

f̂nφn, f̂n := 〈f, φn〉.

To obtain (3), we can simply apply our infinite dimensional Pythagorean theorem,
which says that

||f ||2 =
∑
n∈N
||f̂nφn||2 =

∑
n∈N
|f̂n|2||φn||2 =

∑
n∈N
|f̂n|2.
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Finally, we assume (3) holds and use it to show that (1) must also hold. This
is pleasantly straightforward. We assume that for some f in our Hilbert space,
〈f, φn〉 = 0 for all n. Using (3), we compute

||f ||2 =
∑
n∈N
|〈f, φn〉|2 =

∑
n∈N

0 = 0.

The only element in a Hilbert space with norm equal to zero is the 0 element. Thus
f = 0.

1.5. Exercises for the week: demonstreras. Those exercises from [
folland
1] which

shall be demonstrated are:

(1) (3.3.9) Suppose {φn} is an orthonormal basis for L2(a, b). Show that for
any f, g ∈ L2(a, b)

〈f, g〉 =
∑
〈f, φn〉〈g, φn〉.

(2) (3.3.10.c) Evaluate the following series by applying Parseval’s equation to
certain Fourier expansions:∑

n≥1

n2

(n2 + 1)2
.

(3) (3.3.10.b) Evaluate the following series by applying Parseval’s equation to
certain Fourier expansions:∑

n≥1

1

(2n− 1)6

(4) (3.4.3) Let D be the unit disk {x2 + y2 ≤ 1} and let fn(x, y) = (x + iy)n.
Show that {fn}n≥0 is an orthogonal set in L2(D), and compute ||fn|| for
all n.

(5) (3.5.4) Find all λ so that there exists a solution f(x) defined on [0, `] to the
equation

f ′′ + λf = 0, f ′(0) = 0, f(`) = 0.

(6) (EO 23) Find all solutions f on [0, a] and corresponding λ to the equation:

f ′′ + λf = 0, f(0) = f ′(0), f(a) = −2f ′(a).

(7) (4.2.1) Suppose a rod is mathematicized as the interval [0, `], and the end at
x = 0 is held at temperature zero while the end at x = ` is insulated. Find
a series expansion for the temperature u(x, t) given the initial temperature
f(x) and no sinks or sources.

1.6. Exercises for the week: räkna själv. Those exercises from [
folland
1] which one

should solve are:

(1) (3.3.1) Show that if {fn}n≥1 are elements of a Hilbert space, H, and we
have for some f ∈ H that

lim
n→∞

fn = f,

then for all g ∈ H we have

lim
n→∞

〈fn, g〉 = 〈f, g〉.
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(2) (3.3.2) Show that for all f , g in a Hilbert space one has

|||f || − ||g||| ≤ ||f − g||.
(3) (3.3.10.d) Use Parseval’s equation to compute∑

n≥1

sin2(na)

n4
.

(4) (3.4.1) Show that {e2πi(mx+ny)}n,m∈Z is an orthogonal set in L2(R) where R
is any square whose sides have length one and are parallel to the coordinate
axes.

(5) (3.4.6) Find an example of a sequence {fn} in L2(0,∞) such that fn(x)→ 0
uniformly for all x > 0 but fn 6→ 0 in the L2 norm.

(6) (3.5.7) Find all solutions f on [0, 1] and all corresponding λ to the equation:

f ′′ + λf = 0, f(0) = 0, f ′(1) = −f(1).

(7) (4.2.3) Let f(x) be the initial temperature at the point x in a rod of length
`, mathematicized as the interval [0, `]. Assume that heat is supplied at
a constant rate at the right end, in particular ux(`, t) = A for a constant
value A, and that the left end is held at the constant temperature 0, so
that u(0, t) = 0. Find a series expansion for the temperature u(x, t) such
that the initial temperature is given by f(x).
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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. The best approximation theorem

The Fourier series of f an element of a Hilbert space, H, with respect to an
orthonormal set {φn} is ∑

n

f̂nφn,

where

f̂n = 〈f, φn〉, and the set {φn} is orthonormal, meaning 〈φn, φm〉 =

{
1 n = m

0 n 6= m.

The Fourier series is actually equal to f if and only if the orthonormal set is in fact
an orthonormal basis. In any case, even though the Fourier series might not be
equal to f , it is the best approximation to f in the following sense.

Theorem 1 (Best Approximation). Let {φn}n∈N be an orthonormal set in a Hilbert
space, H. If f ∈ H, and ∑

n∈N
cnφn ∈ H,

then

||f −
∑
n∈N
〈f, φn〉φn|| ≤ ||f −

∑
n∈N

cnφn||, ∀{cn}n∈N ∈ `2,

and equality holds ⇐⇒ cn = 〈f, φn〉 is true ∀n ∈ N.

Proof: We make a few definitions: let

g :=
∑

f̂nφn, f̂n = 〈f, φn〉,

and

ϕ :=
∑

cnφn.

Idea: write

||f − ϕ||2 = ||f − g + g − ϕ||2 = ||f − g||2 + ||g − ϕ||2 + 2<〈f − g, g − ϕ〉.

Idea: show that

〈f − g, g − ϕ〉 = 0.
1
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Just write it out (stay calm and carry on):

〈f, g〉 − 〈f, ϕ〉 − 〈g, g〉+ 〈g, ϕ〉

=
∑

f̂n〈f, φn〉 −
∑

cn〈f, φn〉 −
∑

f̂n〈φn,
∑

f̂mφm〉+
∑

f̂n〈φn,
∑

cmφm〉

=
∑
|f̂n|2 −

∑
cnf̂n −

∑
|f̂n|2 +

∑
f̂ncn = 0,

where above we have used the fact that φn are an orthonormal set. Then, we have

||f − ϕ||2 = ||f − g||2 + ||g − ϕ||2 ≥ ||f − g||2,

with equality iff

||g − ϕ||2 = 0.

Let us now write out what this norm is, using the definitions of g and ϕ. By their
definitions,

g − ϕ =
∑

(f̂n − cn)φn.

By the Pythagorean theorem, due to the fact that the φn are an orthonormal set,

and hence multiplying them by the scalars, f̂n − cn, they remain orthogonal, we
have

||g − ϕ||2 =
∑∣∣∣f̂n − cn∣∣∣2 .

This is a sum of non-negative terms. Hence, the sum is only zero if all of the terms
in the sum are zero. The terms in the sum are all zero iff∣∣∣f̂n − cn∣∣∣ = 0∀n ⇐⇒ cn = f̂n∀n ∈ N.

Corollary 2. Assume that {φn} is an OS in a Hilbert space H. Then the best
approximation to f ∈ H of the form

N∑
n=1

cnφn

is given by taking

cn =
〈f, φn〉
||φn||2

.

Exercise 1. Prove this corollary using the best approximation theorem.

1.1. Application of the best approximation theorem. The goal is to find the
numbers {cj}3j=0 so that ∫ π

−π
|f −

3∑
j=0

cje
ijx|2dx

is minimized. Here,

f(x) =

{
0 −π < x < 0

1 0 ≤ x ≤ π
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Since the functions eijx are orthogonal on L2(−π, π) we can apply the best approx-
imation theorem! It says that the best approximation is to set The best approxi-
mation theorem’s corollary says that

cj =
f̂j

||eijx||2
=
〈f, φj〉
||φj ||2

, φj(x) = eijx.

We therefore compute

cj =
1

2π

∫ π

−π
f(x)e−ijxdx =

{
1
2 j = 0
(−1)j−1
−2πij j = 1, 2, 3

2. Spectral Theorem Motivation

Partial differential operators act on functions which are elements of certain
Hilbert spaces, known as Sobolev spaces. For example, the operator

∆ = −∂2x
acts on the Hilbert space H2. Don’t worry about what it is precisely, because all
that matters is that it is a Hilbert space. The operator ∆ takes elements of the
Hilbert space H2 and sends them to the Hilbert space L2. It is a linear operator
because

∂2x(f(x) + g(x)) = f ′′(x) + g′′(x) = ∂2x(f(x)) + ∂2x(g(x)).

Thinking of functions as vectors, then ∆ is like a linear map that takes in vectors
and spits out vectors. Just like linear maps on finite dimensional vector spaces,
which can be represented by a matrix, a linear operator on a Hilbert space can be
represented by a matrix. If it is a sufficiently “nice” operator, then there will exist
an orthonormal basis of eigenfunctions with corresponding eigenvalues. Here it is
useful to recall

Theorem 3 (Spectral Theorem for Cn). Assume that A is a Hermitian matrix.
Then there exists an orthonormal basis of Cn which consists of eigenvectors of A.
Moreover, each of the eigenvalues is real.

Proof: Remember what Hermitian means. It means that for any u, v ∈ Cn, we
have

〈Au, v〉 = 〈u,Av〉.
By the Fundamental Theorem of Algebra, the characteristic polynomial

p(x) := det(A− xI)

factors over C. The roots of p are {λk}nk=1. These are by definition the eigenvalues
of A. First, we consider the case when A has zero as an eigenvalue. If this is the
case, then we define

K0 := Ker(A) = {u ∈ Cn : Au = 0}.
We note that all nonzero u ∈ K0 are eigenvectors of A for the eigenvalue 0. Since
K0 is a k-dimensional subspace of Cn, it has an ONB {v1, . . . , vk}. If k = n, we
are done. So, assume that k < n. Then we consider

K⊥0 = {u ∈ Cn : 〈u, v〉 = 0∀v ∈ K0}.
Note that if u ∈ K⊥0 then

〈Au, v〉 = 〈u,Av〉 = 0 ∀v ∈ K0.
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Hence A : K⊥0 → K⊥0 . Moreover, if

u ∈ K⊥0 , Au = 0 =⇒ u ∈ K0 ∩K⊥0 =⇒ u = 0.

Hence A is bijective from K⊥0 to itself. Since A has eigenvalues {λj}nj=1, and 0
appears with multiplicity k, λk+1 6= 0. It has some non-zero eigenvector. Let’s call
it u. Since it is an eigenvector it is not zero, so we define

vk+1 :=
u

||u||
.

Proceeding inductively, we define K1 to be the span of the vectors {v1, . . . , vk+1}.
We look at A restricted to K⊥1 . We note that A maps K1 to itself because if

v =

k+1∑
1

cjvj =⇒ Av =

k+1∑
1

cjAvj =

k+1∑
1

cjλjvj ∈ K1.

Similarly, if w ∈ K⊥1 ,

〈Aw, v〉 = 〈w,Av〉 = 0∀v ∈ K1.

So, A maps K⊥1 into itself. Since the kernel of A is in K1, A is a surjective
and injective map from K⊥1 into itself. We note that A restricted to K⊥1 satisfies
the same hypotheses as A, in the sense that it is still Hermitian, and it has a
characteristic polynomial of degree equal to the dimension of K⊥1 So, there is an
eigenvalue λk+2, for A as a linear map from K⊥1 to itself. It has an eigenvector,
which we may assume has unit length, contained in K⊥1 . Call it vk+2. Continue
inductively until we reach in this way {v1, . . . , vn} to span Cn.

Why are the eigenvalues all real? This follows from the fact that if λ is an
eigenvalue with eigenvector u then

〈Au, u〉 = λ||u||2 = 〈u,Au〉 = λ||u||2.

Since u is an eigenvector it is not zero, so this forces λ = λ.

2.1. An example. Let us do an example. On [−π, π], the functions which satisfy

∆f = λf, f(−π) = f(π)

are

f(x) = fn(x) = einx.

The corresponding

λn = n2.

So, the eigenvalues of ∆ with this particular boundary condition are n2, and the
corresponding eigenfunctions are e±inx. We have proven that these are orthogonal.
We note that for all f and g in L2 which satisfy f(−π) = f(π), g(−π) = g(π) and
which are also (at least weakly) twice differentiable, we would also get f ′(−π) =
f ′(π) and similarly for g, so that

〈∆f, g〉 =

∫ π

−π
−f ′′(x)g(x)dx = −f ′(x)g(x)

∣∣∣π
−π

+

∫ π

−π
f ′(x)g′(x)dx

= −f ′(x)g(x)
∣∣∣π
−π

+ f(x)g′(x)
∣∣∣π
−π
−
∫ π

−π
f(x)g′′(x)dx.
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Due to the boundary conditions, all that survives is

−
∫ π

−π
f(x)g′′(x)dx = 〈f,∆g〉.

So we see that
〈∆f, g〉 = 〈f,∆g〉.

This is just like the spectral theorem for Hermitian matrices! There is a simi-
lar spectral theorem here, a “grown-up linear algebra” theorem, called The Adult
Spectral Theorem. This grown-up version of the spectral theorem says that, like
a Hermitian matrix, the operator ∆ also has an L2 orthonormal basis of eigen-
functions. Hence, by this Spectral Theorem, we will be able to conclude that the
orthonormal set, {

einx√
2π

}
n∈Z

,

is an ONB. To state the Adult Spectral Theorem, we need to introduce Regular
Sturm-Liouville Problems (SLPs).

2.2. Regular SLPs. Let L be a linear, second order ordinary differential operator.
So, we can write

L(f) = r(x)f ′′(x) + q(x)f ′(x) + p(x)f(x).

Above, r, q, and p are specified REAL VALUED functions. As a simple example,
take r(x) = −1, and q(x) = p(x) = 0. Then we have

L(f) = ∆f = −f ′′(x).

We are working with functions defined on an interval [a, b] which is a finite interval.
So, the Hilbert space in which everything is happening is L2 on that interval. Like
with matrices, we can think about the adjoint of the operator L. The adjoint by
definition satisfies

〈Lf, g〉 = 〈f, L∗g〉,
where we are using L∗ to denote the adjoint operator. Whatever it is. On the
left side, we know what everything is, so we write it out by definition of the scalar
product

〈Lf, g〉 =

∫ b

a

L(f)g(x)dx =

∫ b

a

(r(x)f ′′(x) + q(x)f ′(x) + p(x)f(x)) g(x)dx.

Integrating by parts, we get

= (rḡ)f ′|ba −
∫ b

a

(rḡ)′f ′ + (qg)f |ba −
∫ b

a

(qḡ)′f +

∫ b

a

pfḡ

= (rḡ)f ′ + (qḡ)f |ba −
∫ b

a

[(rḡ)′f ′ + (qḡ)′f − pfḡ] .

We integrate by parts once more on the (rḡ)′f ′ term to get

= (rḡ)f ′ − (rḡ)′f + (qḡ)f)|ba +

∫ b

a

(rḡ)′′f − (qḡ)′f + fpḡ.

So, if the boundary conditions are chosen to make the stuff evaluated from a to b
(these are called the boundary terms in integration by parts) vanish, then we could
define

L∗g = (rg)′′ − (qg)′ + pg,
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since then

〈Lf, g〉 =

∫ b

a

(rḡ)′′f − (qḡ)′f + fpḡ = 〈f, L∗g〉.

Here we use that r, q and p are real valued functions, so r̄ = r, q̄ = q, and p̄ = p.
For the spectral theorem to work, we will want to have

L = L∗.

When this holds, we say that L is formally self-adjoint. So, we need

Lf = L∗f ⇐⇒ rf ′′ + qf ′ + pf = (rf)′′ − (qf)′ + pf.

We write the things out:

rf ′′+qf ′+pf = (rf ′+r′f)′−qf ′−q′f+pf ⇐⇒ rf ′′+qf ′ = rf ′′+2r′f ′+r′′f−qf ′−q′f

⇐⇒ qf ′ = 2r′f ′ + r′′f − qf ′ − q′f ⇐⇒ (2q − 2r′)f ′ + (r′′ − q′)f = 0.

To ensure this holds for all f , we set the coefficient functions equal to zero:

2q − 2r′ = 0 =⇒ q = r′, q′ = r′′.

Well, that just means that q = r′. So, we need L to be of the form

Lf = rf ′′ + r′f ′ + pf = (rf ′)′ + pf.

The boundary terms should also vanish, so we want:

(rḡ)f ′ − (rḡ)′f + (qḡ)f)|ba = (rḡ)f ′ − (rḡ)′f + (r′ḡ)f |ba = 0,

⇐⇒ rḡf ′ − r′ḡf − rḡ′f + r′ḡf |ba = 0 ⇐⇒ rḡf ′ − rḡ′f |ba = 0

⇐⇒ r(ḡf ′ − ḡ′f)|ba = 0.

So, it suffices to assume that we are working with functions f and g that satisfy

(ḡf ′ − ḡ′f)|ba = 0.

Writing this out we get:

ḡ(b)f ′(b)− ḡ′(b)f(b)− (ḡ(a)f ′(a)− ḡ′(a)f(a)) = 0 ⇐⇒

ḡ(b)f ′(b)− ḡ′(b)f(b) = ḡ(a)f ′(a)− ḡ′(a)f(a).

This is how we get to the definition of a regular SLP on an interval [a, b]. It is
specified by

(1) a formally self-adjoint operator

L(f) = (rf ′)′ + pf,

where r and p are real valued, r, r′, and p are continuous, and r > 0 on
[a, b].

(2) self-adjoint boundary conditions:

Bi(f) = αif(a) + α′if
′(a) + βif(b) + β′if

′(b) = 0, i = 1, 2.

The self adjoint condition further requires that the coefficients αi, α
′
i, βi, β

′
i

are such that for all f and g which satisfy these conditions

r(ḡf ′ − ḡ′f)|ba = 0.

(3) a positive, continuous function w on [a, b].
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The SLP is to find all solutions to the BVP

L(f) + λwf = 0, Bi(f) = 0, i = 1, 2.

The eigenvalues are all numbers λ for which there exists a corresponding non-zero
eigenfunction f so that together they satisfy the above equation, and f satisfies the
boundary condition.

We then have a miraculous fact.

Theorem 4 (Adult Spectral Theorem). For every regular Sturm-Liouville problem
as above, there is an orthonormal basis of L2

w consisting of eigenfunctions {φn}n∈N
with eigenvalues {λn}n∈N. We have

lim
n→∞

λn =∞.

Here, L2
w is the weighted Hilbert space consisting of (the almost everywhere-equivalence

classes of measurable) functions on the interval [a, b] which satisfy∫ b

a

|f(x)|2w(x)dx <∞,

and the scalar product is

〈f, g〉w =

∫ b

a

f(x)g(x)w(x)dx.

We are not equipped to prove this fact. You can rest assured however that it is
done through the techniques of functional analysis and bears similarity to the proof
of the spectral theorem for finite dimensional vector spaces. As a corollary to this
theorem we obtain

Theorem 5. The functions {
einx

}
n∈Z

are an orthogonal basis for the Hilbert space L2(−π, π).

Proof: These functions satisfy a regular SLP. This SLP is to find all constants
λ and functions f such that

f ′′ + λf = 0,

and f is 2π periodic. The operator L is just the operator

L(f) = f ′′.

The function r = 1, p = 0, and the weight is just 1. The boundary conditions are
thus:

f(−π)− f(π) = 0, f ′(−π)− f ′(π) = 0.

We can check that this is ‘self-adjoint’ by plugging it into the required condition.
Assume that some totally arbitrary f and g satisfy this condition, so that g(−π)−
g(π) = 0 also. Then

(ḡf ′ − ḡ′f)|π−π = ḡ(π)f ′(π)− ḡ′(π)f(π)− ḡ(−π)f ′(−π) + ḡ′(−π)f(−π) = 0.

By our ODE theory, we can already say that all solutions (up to constant factors)
to this problem are

fn(x) = einx, λn = n2π2.

Now, by the Adult Spectral Theorem, we know that these are an orthogonal basis
(they can be normalized if we so desire).



8 JULIE ROWLETT

2.3. Exercises for the week: Hints. Those exercises from [
folland
1] which one should

solve are:

(1) (3.3.1) Show that if {fn}n≥1 are elements of a Hilbert space, H, and we
have for some f ∈ H that

lim
n→∞

fn = f,

then for all g ∈ H we have

lim
n→∞

〈fn, g〉 = 〈f, g〉.

Hint: Apply the Cauchy-Schwarz inequality to 〈fn − f, g〉.
(2) (3.3.2) Show that for all f , g in a Hilbert space one has

|||f || − ||g||| ≤ ||f − g||.
Hint: First show that for any real numbers a and b,

|a− b|2 = a2 − 2ab+ b2.

Next, apply this fact with a = ||f || and b = ||g|| to show that

|||f || − ||g||| = ||f ||2 − 2||f ||||g||+ ||g||2.
Compare this to

||f − g||2 = ||f ||2 − 2<〈f, g〉+ ||g||2.
(3) (3.3.10.d) Use Parseval’s equation to compute∑

n≥1

sin2(na)

n4
.

Hint: The Fourier series of

f(x) :=


x −a < x < a

aπ−xπ−a a < θ < π

aπ+xa−π −π < x < −a

where implicitly we are assuming 0 < a < π is

2

π − a
∑
n≥1

sin(na)

n2
sin(nx)

(4) (3.4.1) Show that {e2πi(mx+ny)}n,m∈Z is an orthogonal set in L2(R) where R
is any square whose sides have length one and are parallel to the coordinate
axes. Hint: Compute the integral∫ a+1

x=a

∫ b+1

y=b

e2πi(mx+ny)e−2πi(kx+`y)dxdy, m, n, k, ` ∈ Z.

(5) (3.4.6) Find an example of a sequence {fn} in L2(0,∞) such that fn(x)→ 0
uniformly for all x > 0 but fn 6→ 0 in the L2 norm. Hint: Oh this is a
fun sort of challenge problem... Here is a little bit of idea. The function

1√
n2+x

is not in L2(0,∞). How about using this function as an idea, define

functions fn(x) which are say defined in some way for x ∈ [0, n] and make
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them zero for all x > n. Get them to decrease uniformly to zero for all x,
but get their L2 norms to be increasing... Play around with it!

(6) (3.5.7) Find all solutions f on [0, 1] and all corresponding λ to the equation:

f ′′ + λf = 0, f(0) = 0, f ′(1) = −f(1).

Hint: As we have computed before, consider three cases, λ = 0, λ > 0, and
λ < 0. Use the boundary conditions to solve for all the possible f .

(7) (4.2.3) Let f(x) be the initial temperature at the point x in a rod of length
`, mathematicized as the interval [0, `]. Assume that heat is supplied at
a constant rate at the right end, in particular ux(`, t) = A for a constant
value A, and that the left end is held at the constant temperature 0, so that
u(0, t) = 0. Find a series expansion for the temperature u(x, t) such that
the initial temperature is given by f(x). Hint: Divide and conquer. First
find a so-called steady state solution, that is find a function g(x) which does
not depend on t which satisfies

(∂t − ∂xx)g = 0, g(0) = 0, g′(`) = A.

Now, since g does not depend on t, when you apply the heat operator you
just get

−g′′(x) = 0, g(0) = 0, g′(`) = A.

Find g which solves this. Now, look for a solution u which satisfies

ut − uxx = 0, u(0, t) = ux(`, t) = 0, u(x, 0) = f(x)− g(x).

You can use the methods from last week, separation of variables, superpo-
sition (since everything including the BCs are homogeneous), and Fourier
series (Hilbert spaces!) to solve for u. The full solution will then be

u(x, t) + g(x).

References

[1] Gerald B. Folland, Fourier Analysis and Its Applications, Pure and Applied Undergraduate
Texts Volume 4, (1992).
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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. SLPs

Recall the definition of a regular SLP:

(1) a formally self-adjoint differential operator

L(f) = (rf ′)′ + pf,

where r and p are real valued, r, r′, and p are continuous, and r > 0 on
[a, b].

(2) self-adjoint boundary conditions:

Bi(f) = αif(a) + α′if
′(a) + βif(b) + β′if

′(b) = 0, i = 1, 2.

The self adjoint condition further requires that the coefficients αi, α
′
i, βi, β

′
i

are such that for all f and g which satisfy these conditions

r(ḡf ′ − ḡ′f)|ba = 0.

(3) a positive, continuous function w on [a, b].

The SLP is to find all solutions to the BVP

L(f) + λwf = 0, Bi(f) = 0, i = 1, 2.

The eigenvalues are all numbers λ for which there exists a corresponding non-zero
eigenfunction f so that together they satisfy the above equation, and f satisfies
the boundary condition. The magical theorem about SLPs says that for such a
regular SLP, there exists solutions {φn}n≥1 with corresponding eigenvalues λn such
that these {φn}n≥1 are an orthogonal basis for the weighted L2 space, L2

w(a, b).
Moreover, these eigenvalues are all real. Let’s see just what makes this theorem so
magical...

1.1. SLP example for a PDE. Here is how the SLP theory can be useful in
practice. We are given the problem

ut − uxx = 0, ux(0, t) = αu(0, t), ux(l, t) = −αu(l, t), u(x, 0) = f(x).

Above, we assume that
α > 0, f ∈ L2.

These boundary conditions are based on Newton’s law of cooling: the temperature
gradient across the ends is proportional to the temperature difference between the

1
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ends and the surrounding medium. It is a homogeneous PDE, so we have good
chances of being able to solve it using separation of variables. Thus, we write

u(x, t) = X(x)T (t) =⇒ T ′(t)X(x)−X ′′(x)T (t) = 0 =⇒ T ′

T
=
X ′′

X
.

This means both sides are equal to a constant. Call it λ. We start with the x side,
because we have more information about that due to the BCs. Are they self-adjoint
BCs? Let’s check! In the definition of SLP, we are looking for X to satisfy

X ′′

X
= λ ⇐⇒ X ′′ = λX ⇐⇒ X ′′ − λX = 0.

OBS! The relationship between the constant we have named λ from the PDE has
the opposite sign as the corresponding term in an SLP. So, the SLP would look like

X ′′ + ΛX = 0 Λ = −λ.
The r and w are both 1 in the definition of SLP, and the p is 0. The a = 0 and

b = l. So, we need to check that if f and g satisfy

f ′(0) = αf(0), g′(l) = −αg(l)

then
(ḡf ′ − ḡ′f)|l0 = 0.

We plug it in
ḡ(l)f ′(l)− ḡ′(l)f(l)− ḡ(0)f ′(0) + ḡ′(0)f(0)

= −ḡ(l)αf(l) + ¯αg(l)f(l)− ḡ(0)αf(0) + ¯αg(0)f(0) = 0.

Yes, the BC is a self-adjoint BC. So, the SLP theorem says there exists an L2 OB
of eigenfunctions. What are they? We check the cases.

X ′′ = λX.

What if λ = 0? Then
X(x) = ax+ b.

To get

X ′(0) = αX(0) =⇒ a = αb =⇒ b =
a

α
.

Next,

X ′(l) = −αX(l) =⇒ a = −α
(
al +

a

α

)
= −a(αl + 1).

Presumably a 6= 0 because if a = 0 the whole solution is just 0. So, we can divide
by it and we get

=⇒ 1 = − (αl + 1) =⇒ αl = −2.

Since l > 0 and α > 0, this is impossible. So, no non-zero solutions for λ = 0.
Next we try λ > 0. Then the solution looks like

X(x) = ae
√
λx + be−

√
λx

or equivalently, we can use sinh and cosh, to write

X(x) = a cosh(
√
λx) + b sinh(

√
λx).

We try out the BCs. They require

X ′(0) = αX(0) ⇐⇒ a
√
λ sinh(0) + b

√
λ cosh(0) = α (a cosh(0) + b sinh(0))

⇐⇒ b
√
λ = αa =⇒ b =

αa√
λ
.
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We check out the other BC:

X ′(l) = −αX(l) ⇐⇒ a
√
λ sinh(

√
λl)+αa cosh(

√
λl) = −α

(
a cosh(

√
λl) +

αa√
λ

sinh(
√
λl)

)
.

⇐⇒ a
√
λ sinh(

√
λl) +

α2a√
λ

sinh(
√
λl) = −2αa cosh(

√
λl)

If a = 0 the whole solution is zero, so we presume that is not the case and divide
by a. Then this requires

sinh(
√
λl)

cosh(
√
λl)

=
−2α√

λ+ α2/
√
λ
.

The left side is positive, but the right side is negative.  
Thus, we finally try λ < 0. Then the solution looks like

X(x) = a cos(
√
|λ|x) + b sin(

√
|λ|x).

To get

X ′(0) = αX(0) =⇒ b
√
|λ| = αa =⇒ b =

αa√
|λ|
.

Next we need

X ′(l) = −αX(l)

=⇒ −a
√
|λ| sin(

√
|λ|l)+ αa√

|λ|

√
|λ| cos(

√
|λ|l) = −α

(
a cos(

√
|λ|l) +

αa√
|λ|

sin(
√
|λ|l)

)
.

Presumably a 6= 0 because if that is the case then the whole solution is 0. So, we
may divide by a, and we need

2α cos
√
|λ| = sin(

√
|λ|l)

(√
|λ| − α2√

|λ|

)
.

This is equivalent to
2α√

|λ| − α2√
|λ|

= tan(
√
|λ|l)

⇐⇒
2α
√
|λ|

|λ| − α2
= tan(

√
|λ|l).

Well, that’s pretty weird, but according to the SLP theory, the sequence

{λn}n≥1 and {Xn(x)}n≥1, Xn(x) = an

(
cos(

√
|λn|x) +

α√
|λn|

sin(
√
|λn|x)

)
of eigenvalues and corresponding eigenfunctions is an orthogonal basis of L2. Here
since we are solving a PDE, it is most convenient to leave the coefficients simply as
an and solve for them according to the initial conditions of the PDE.

The partner functions

Tn(t) satisfy T ′n(t) = λnTn(t) =⇒ Tn(t) = eλnt.

Here it is good to note that the λn < 0 and tend to −∞ as n → ∞ which follows
from the Adult Spectral Theorem, because in the SLP terminology,

Λn = −λn →∞ =⇒ λn → −∞.
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So, for heat, that is realistic. We build the solution using superposition because
the PDE is linear and homogeneous, so

u(x, t) =
∑
n≥1

Tn(t)Xn(x).

Since we wish this to be equal to the initial data at t = 0, we demand

u(x, 0) =
∑
n≥1

an

(
cos(

√
|λn|x) +

α√
|λn|

sin(
√
|λn|x)

)
= f(x).

By the SLP theory, the functions above form an OB, so we can expand our initial
data function in terms of this OB. To do this we compute

an =
〈f(x), cos(

√
|λn|x) + α√

|λn|
sin(

√
|λn|x)〉

|| cos(
√
|λn|x) + α√

|λn|
sin(

√
|λn|x)||2

,

where

〈f(x), cos(
√
|λn|x)+

α√
|λn|

sin(
√
|λn|x)〉 =

∫ l

0

f(x)(cos(
√
|λn|x) +

α√
|λn|

sin(
√
|λn|x))dx,

|| cos(
√
|λn|x)+

α√
|λn|

sin(
√
|λn|x)||2 =

∫ l

0

| cos(
√
|λn|x)+

α√
|λn|

sin(
√
|λn|x)|2dx.

1.2. SLP example. SLPs may come from solving a PDE, but to avoid overcompli-
cating things, sometimes you will just need to solve an SLP by itself. For example:

(xf ′)′ + λx−1f = 0, f(1) = f(b) = 0, b > 1.

In this example the function r(x) = x, and the function p(x) = 0, whilst the weight
function w(x) = x−1. Let us consider three cases for λ.

Case λ = 0: If λ = 0, then the equation becomes

xf ′′ + f ′ = 0,

which we can re-arrange to
f ′′

f ′
= − 1

x
.

The left side is the derivative of log(f ′). So, integrating both sides (saving the
constant for later):

log(f ′) = − log(x).

Exponentiating both sides we get

f ′ =
1

x
=⇒ f(x) = A log(x) +B,

for some constants A and B. The boundary conditions demand that

f(1) = 0 =⇒ B = 0.

The other boundary condition demands that

f(b) = 0 =⇒ A = 0, since b > 1 so log(b) > 0.

We are left with the zero function. That is never an eigenfunction. So λ = 0 is not
an eigenvalue for this SLP.

Case λ > 0: If λ > 0, we observe that the equation we have is something called
an Euler equation. (Or we look up the ODE section of Beta and search for this
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type of ODE, and see that Beta tells us this is an Euler equaiton). Consequently,
we look for solutions of the form

f(x) = xν .

The differential equation we wish to solve is:

xf ′′ + f ′ + λx−1f = 0 =⇒ x2f ′′ + xf ′ + λf = 0,

so substituting f(x) = xν , this becomes

x2(ν)(ν − 1)xν−2 + xνxν−1 + λxν = 0.

This simplifies to:

xν
(
ν2 − ν + ν + λ

)
= 0 =⇒ ν2 = −λ.

Since λ > 0, this means

ν = ±i
√
λ.

So, a basis of solutions is xi
√
|λ| and x−i

√
λ. Note that

x±i
√
λ = e±i

√
λ log(x).

By Euler’s formula, an equivalent basis of solutions is

cos(
√
λ log(x)), sin(

√
λ log(x)).

Hence in this case our solution is of the form:

f(x) = A cos(
√
λ log(x)) +B sin(

√
λ log(x)).

The boundary conditions demand that

f(1) = 0 =⇒ A = 0.

The second boundary condition demands that

B sin(
√
λ log(b)) = 0.

Since we do not seek the zero function, we presume that B 6= 0 and thus require

sin(
√
λ log(b)) = 0 =⇒

√
λ log(b) = nπ, n ∈ N.

We therefore have countably many eigenfunctions and eigenvalues, which we may
index by the natural numbers, writing

λn =
n2π2

(log b)2
, fn(x) = sin

(
nπ log(x)

log(b)

)
.

Nice.
The last case to consider is case λ < 0: We proceed similarly as above and

obtain that a basis of solutions is

x±
√
|λ|.

Write our solution as

f(x) = Ax
√
|λ| +Bx−

√
|λ|.

The boundary conditions demand that:

f(1) = 0 =⇒ A+B = 0 =⇒ B = −A.
The next boundary condition demands that:

f(b) = Ab
√
|λ|−Ab−

√
|λ| = 0 =⇒ A = 0 or b

√
|λ| = b−

√
|λ| =⇒ b2

√
|λ| = 1 =⇒

√
|λ| = 0 .
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Thus the only way for the boundary conditions to be satisfied is if the eigenfunction
is the zero function, but this is not an eigenfunction! Hence no negative λ solutions.

The magical SLP theorem tells us that these rather peculiar functions

{fn(x)}n≥1
are an orthogonal basis for L2

1/x(1, b). This means that for any g ∈ L2
1/x(1, b), we

can expand it as a Fourier series with respect to this basis. The coefficients will be

〈g, fn〉1/x
||fn||21/x

, 〈g, fn〉1/x =

∫ b

1

g(x)fn(x)x−1dx, ||fn||21/x =

∫ b

1

|fn(x)|2x−1dx.

If the function we wish to expand is specified, we could compute these integrals.

1.3. Another SLP example. Consider the problem

(x2f ′)′ + λf = 0, f(1) = f(b) = 0, b > 1.

Here we have r(x) = x2 and w(x) = 1. The equation is:

2xf ′ + x2f ′′ + λf = 0.

We shall consider the three cases for λ.
Case λ = 0: In this case the equation simplifies to

x2f ′′+2xf ′ = 0 =⇒ f ′′

f ′
= − 2

x
=⇒ (log(f ′))′ = − 2

x
=⇒ log(f ′) = −2 log x =⇒ f ′ = e−2 log x = x−2.

So, this gives us a solution of the form

f(x) = −A 1

x
+B.

Let us verify the boundary conditions. We require f(1) = 0 so this means

−A+B = 0 =⇒ B = A.

We also require f(b) = 0 so this means

−A1

b
+B = 0 =

−A
b

+A =⇒ A

b
= A =⇒ b = 1 or A = 0.

So since b > 1 the only solution here is the zero function which is not an eigenfunc-
tion.

Case λ > 0: We consider the fact that this is an Euler equation, so we look for
solutions of the form f(x) = xν . Then the equation looks like:

x2(ν)(ν − 1)xν−2 + 2x(ν)xν−1 + λxν = 0 ⇐⇒ xν
(
ν2 − ν + 2ν + λ

)
= 0

so we need ν to satisfy:
ν2 + ν + λ = 0.

This is a quadratic equation, so we solve it:

ν = −1

2
±
√

1

4
− λ.

So, actually the cases λ > 0 and λ < 0 really should split up into whether λ = 1
4

or is larger or smaller. If λ = 1
4 , then we are only getting one solution this way,

x−1/2. To get a second solution we multiply by log x.

Exercise 1. Plug the function x−1/2 log x into the SLP for the value λ = 1
4 . Verify

that it satisfy the equation.
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Now, let’s see if such a function will satisfy the boundary conditions. We need

Ax−1/2 +Bx−1/2 log(x)
∣∣∣
x=1

= 0 =⇒ A = 0.

We also need

Bb−1/2 log(b) = 0, b > 1 =⇒ B = 0.

So we only get the zero solution in this case.
When λ < 1

4 , solutions are of the form

Axν+ +Bxν− , ν± = −1

2
±
√

1

4
− λ.

Exercise 2. Check the boundary conditions. Verify that they are satisfied if and
only if A = B = 0.

Finally we consider λ > 1
4 . Then we have

ν± = −1

2
± i
√
λ− 1

4
=⇒ f(x) =

A√
x
xi
√
λ−1/4 +

B√
x
x−i
√
λ−1/4.

Using Euler’s formula, this is equivalently expressed as

α√
x

cos(
√
λ− 1/4 log x) +

β√
x

sin(
√
λ− 1/4 log x).

Due to the boundary condition at x = 1 we must have α = 0. So to obtain the
other boundary condition, we need

sin(
√
λ− 1/4 log b) = 0 =⇒

√
λ− 1/4 log b = nπ, n ∈ N.

Hence

λ = λn =
1

4
+

n2π2

(log b)2
, fn(x) = x−1/2 sin

(
nπ log x

log b

)
.

Note that in general we are not bothering to normalize our eigenfunctions because
it is rather tedious and not fundamental to our learning experience in this subject.

1.4. Exercises for the week: Answers. Those exercises from [
folland
1] which one

should solve are:

(1) (3.3.1) Show that if {fn}n≥1 are elements of a Hilbert space, H, and we
have for some f ∈ H that

lim
n→∞

fn = f,

then for all g ∈ H we have

lim
n→∞

〈fn, g〉 = 〈f, g〉.

Answer: we would like to prove

lim
n→∞

〈fn, g〉 = 〈f, g〉.

This is equivalent to proving

lim
n→∞

〈fn, g〉 − 〈f, g〉 = 0.

So, next we follow the hint and estimate

|〈fn, g〉 − 〈f, g〉| = |〈(fn − f), g〉| ≤ ||fn − f ||||g||.
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The meaning of

lim
n→∞

fn = f

in a Hilbert space is that

lim
n→∞

||fn − f || = 0.

Hence, by some theorem about the product of limits, as long as they exist
(obs! limn→∞ ||g|| = ||g||, it’s just not changing at all), we have

lim
n→∞

||fn − f ||||g|| = ||g|| lim
n→∞

||fn − f || = 0.

(2) (3.3.2) Show that for all f , g in a Hilbert space one has

|||f || − ||g||| ≤ ||f − g||.

Answer: We follow the hint. For any real numbers a and b,

|a− b|2 = a2 − 2ab+ b2.

Next, we apply this fact with a = ||f || and b = ||g|| to obtain that

|||f || − ||g|||2 = ||f ||2 − 2||f ||||g||+ ||g||2.

We compare this to

||f − g||2 = ||f ||2 − 2<〈f, g〉+ ||g||2,

since

||f ||||g|| ≥ <〈f, g〉 =⇒ ||f ||2 − 2<〈f, g〉+ ||g||2 ≥ ||f ||2 − 2||f ||||g||+ ||g||2.

Thus we obtain

||f − g||2 ≥ |||f || − ||g|||2.
Taking the square root of both sides completes the proof.

(3) (3.3.10.d) Use Parseval’s equation to compute∑
n≥1

sin2(na)

n4
.

Answer:
a2(π − a)2

6
.

(4) (3.4.1) Show that {e2πi(mx+ny)}n,m∈Z is an orthogonal set in L2(R) where R
is any square whose sides have length one and are parallel to the coordinate
axes. Answer:∫ a+1

x=a

∫ b+1

y=b

e2πi(mx+ny)e−2πi(kx+`y)dxdy =

∫ a+1

x=a

e2πi(m−k)xdx

∫ b+1

y=b

e2πi(n−`)ydy.

For m 6= k, ∫ a+1

x=a

e2πi(m−k)xdx =
e2πi(m−k)x

2πi(m− k)

∣∣∣∣a+1

a

.

The function above is 1 periodic, so this is zero. Same holds for n 6= `.
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(5) (3.4.6) Find an example of a sequence {fn} in L2(0,∞) such that fn(x)→ 0
uniformly for all x > 0 but fn 6→ 0 in the L2 norm. Answer: let

fn(x) :=

{
1√
x+
√
n

0 ≤ x ≤ n

0 x > n
.

Then

0 ≤ lim
n→∞

fn(x) ≤ lim
n→∞

1√√
n

= 0.

So the convergence to zero is uniform on [0,∞). On the other hand

||fn||2L2 =

∫ ∞
0

|fn(x)|2dx =

∫ n

0

1

x+
√
n
dx = ln(x+

√
n)
∣∣n
x=0

= ln(n+
√
n)− ln(

√
n) = ln

(
n+
√
n√

n

)
= ln(

√
n+ 1).

This simultaneously shows that fn ∈ L2(0,∞) for all n, as well as that the
L2 norm of fn tends to infinity.

(6) (3.5.7) Find all solutions f on [0, 1] and all corresponding λ to the equation:

f ′′ + λf = 0, f(0) = 0, f ′(1) = −f(1).

Answer: the eigenvalues are λn = ν2n where νn are the positive solutions
of tan(ν) = −ν, and the eigenfunctions are sin(νnx).

(7) (4.2.3) Let f(x) be the initial temperature at the point x in a rod of length
`, mathematicized as the interval [0, `]. Assume that heat is supplied at
a constant rate at the right end, in particular ux(`, t) = A for a constant
value A, and that the left end is held at the constant temperature 0, so
that u(0, t) = 0. Find a series expansion for the temperature u(x, t) such
that the initial temperature is given by f(x). Answer:

u(x, t) = Ax+
∑
n≥1

(
bn +

(−1)n8A`

(2n− 1)2π2

)
e−(n−1/2)

2π2kt/(`2) sin((n− 1/2)πx/`).
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JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. SLPs

Recall the definition of a regular SLP:

(1) a formally self-adjoint differential operator

L(f) = (rf ′)′ + pf,

where r and p are real valued, r, r′, and p are continuous, and r > 0 on
[a, b].

(2) self-adjoint boundary conditions:

Bi(f) = αif(a) + α′if
′(a) + βif(b) + β′if

′(b) = 0, i = 1, 2.

The self adjoint condition further requires that the coefficients αi, α
′
i, βi, β

′
i

are such that for all f and g which satisfy these conditions

r(ḡf ′ − ḡ′f)|ba = 0.

(3) a positive, continuous function w on [a, b].

The SLP is to find all solutions to the BVP

L(f) + λwf = 0, Bi(f) = 0, i = 1, 2.

The eigenvalues are all numbers λ for which there exists a corresponding non-zero
eigenfunction f so that together they satisfy the above equation, and f satisfies the
boundary condition.

1.1. SLP example. Consider the problem

(x2f ′)′ + λf = 0, f(1) = f(b) = 0, b > 1.

Here we have r(x) = x2 and w(x) = 1. The equation is:

2xf ′ + x2f ′′ + λf = 0.

We shall consider the three cases for λ.
Case λ = 0: In this case the equation simplifies to

x2f ′′+2xf ′ = 0 =⇒ f ′′

f ′
= − 2

x
=⇒ (log(f ′))′ = − 2

x
=⇒ log(f ′) = −2 log x =⇒ f ′ = e−2 log x = x−2.

1
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So, this gives us a solution of the form

f(x) = −A 1

x
+B.

Let us verify the boundary conditions. We require f(1) = 0 so this means

−A+B = 0 =⇒ B = A.

We also require f(b) = 0 so this means

−A1

b
+B = 0 =

−A
b

+A =⇒ A

b
= A =⇒ b = 1 or A = 0.

So since b > 1 the only solution here is the zero function which is not an eigenfunc-
tion.

Case λ > 0: We consider the fact that this is an Euler equation, so we look for
solutions of the form f(x) = xν . Then the equation looks like:

x2(ν)(ν − 1)xν−2 + 2x(ν)xν−1 + λxν = 0 ⇐⇒ xν
(
ν2 − ν + 2ν + λ

)
= 0

so we need ν to satisfy:

ν2 + ν + λ = 0.

This is a quadratic equation, so we solve it:

ν = −1

2
±
√

1

4
− λ.

So, actually the cases λ > 0 and λ < 0 really should split up into whether λ = 1
4

or is larger or smaller. If λ = 1
4 , then we are only getting one solution this way,

x−1/2. To get a second solution we multiply by log x.

Exercise 1. Plug the function x−1/2 log x into the SLP for the value λ = 1
4 . Verify

that it satisfy the equation.

Now, let’s see if such a function will satisfy the boundary conditions. We need

Ax−1/2 +Bx−1/2 log(x)
∣∣∣
x=1

= 0 =⇒ A = 0.

We also need

Bb−1/2 log(b) = 0, b > 1 =⇒ B = 0.

So we only get the zero solution in this case.
When λ < 1

4 , solutions are of the form

Axν+ +Bxν− , ν± = −1

2
±
√

1

4
− λ.

Exercise 2. Check the boundary conditions. Verify that they are satisfied if and
only if A = B = 0.

Finally we consider λ > 1
4 . Then we have

ν± = −1

2
± i
√
λ− 1

4
=⇒ f(x) =

A√
x
xi
√
λ−1/4 +

B√
x
x−i
√
λ−1/4.

Using Euler’s formula, this is equivalently expressed as

α√
x

cos(
√
λ− 1/4 log x) +

β√
x

sin(
√
λ− 1/4 log x).
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Due to the boundary condition at x = 1 we must have α = 0. So to obtain the
other boundary condition, we need

sin(
√
λ− 1/4 log b) = 0 =⇒

√
λ− 1/4 log b = nπ, n ∈ N.

Hence

λ = λn =
1

4
+

n2π2

(log b)2
, fn(x) = x−1/2 sin

(
nπ log x

log b

)
.

Note that in general we are not bothering to normalize our eigenfunctions because
it is rather tedious and not fundamental to our learning experience in this subject.

2. The theory item on SLPs

There is one theory item about SLPs which one does need to be able to prove.

Theorem 1 (Cute facts about SLPs). Let f and g be eigenfunctions for a regular
SLP in an interval [a, b] with weight function w(x) > 0. Let λ be the eigenvalue for
f and µ the eigenvalue for g. Then:

(1) λ ∈ R och µ ∈ R;
(2) If λ 6= µ, then: ∫ b

a

f(x)g(x)w(x)dx = 0.

Proof: By definition we have Lf + λwf = 0. Moreover, L is self-adjoint, which
similar to matrices guarantees that

〈Lf, f〉 = 〈f, Lf〉.
By being an eigenfunction,

Lf = −λwf.
So combining these facts:

〈Lf, f〉 = 〈−λwf, f〉 = −λ〈wf, f〉

= 〈f, Lf〉 = 〈f,−λwf〉 = −λ〈f, wf〉.
Since w is real valued,

〈wf, f〉 =

∫ b

a

w(x)f(x)f(x)dx =

∫ b

a

|f(x)|2w(x)dx,

〈f, wf〉 =

∫ b

a

f(x)w(x)f(x)dx =

∫ b

a

|f(x)|2w(x)dx.

Since w > 0 and f is an eigenfunction,∫ b

a

|f(x)|2w(x)dx > 0.

So, the equation

−λ〈wf, f〉 = −λ
∫ b

a

|f(x)|2w(x)dx = −λ〈f, wf〉 = −λ
∫ b

a

|f(x)|2w(x)dx

implies
λ = λ.

For the second part, we use basically the same argument based on self-adjointness:

〈Lf, g〉 = 〈f, Lg〉.
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By assumption

〈Lf, g〉 = −λ〈wf, g〉 = −λ
∫ b

a

w(x)f(x)g(x)dx.

Similarly,

〈f, Lg〉 = 〈f,−µwg〉 = −µ〈f, wg〉 = −µ〈f, wg〉 = −µ
∫ b

a

f(x)g(x)w(x)dx,

since µ ∈ R and w(x) is real. So we have

−λ
∫ b

a

w(x)f(x)g(x)dx = −µ
∫ b

a

f(x)g(x)w(x)dx.

If the integral is non-zero, then it forces λ = µ which is false. Thus the integral
must be zero.

3. Solving PDEs with inhomogeneities: turning a ♥ problem into a
♥♥ problem

Let’s consider the problem

u(x, 0) =

{
x+ π, −π ≤ x ≤ 0

π − x, 0 ≤ x ≤ π

u(−π, t) = u(π, t) = 0

ut(x, 0) = 0, x ∈ [−π, π]

utt(x, t)− uxx(x, t) = 5 x ∈ [−π, π], t > 0.

We nickname this problem ♥. For the first time, we have an inhomogeneous PDE.

Idea: Deal with a time independent inhomogeneity in the PDE
by finding a steady state solution.

The idea is that we look for a function f(x) which depends only on x which
satisfies the boundary conditions and also satisfies the inhomogeneous PDE. Since
f only depends on x, the PDE for f is

−f ′′(x) = 5 ⇐⇒ f ′′(x) = −5.

This means that

f ′(x) = −5x+ b =⇒ f(x) = −5x2

2
+ bx+ c.

Now, we want f to satisfy the boundary conditions. So, we want

−5π2

2
− bπ + c = 0 = −5π2

2
+ bπ + c.

If we subtract these equations, then we see that we need to have b = 0. If we add
these equations then we see that we need

−5π2 + 2c = 0 =⇒ c =
5π2

2
.

Thus, we have found a solution to

−f ′′(x) = 5, f(±π) = 0,
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which is

f(x) = −5x2

2
+

5π2

2
.

If we then look for a solution to

u(x, 0) =

{
x+ π, −π ≤ x ≤ 0

π − x, 0 ≤ x ≤ π
=: v(x)

u(−π, t) = u(π, t) = 0

ut(x, 0) = 0, x ∈ [−π, π]

utt(x, t)− uxx(x, t) = 0 x ∈ [−π, π], t > 0,

and we add it to f , we will get

u(x, 0) + f(x) = v(x) + f(x) 6= v(x).

The initial condition gets messed up because of f . So, we need to compensate for
this. For that reason, we look for a solution to a new problem:

u(x, 0) = −f(x) + v(x)

u(−π, t) = u(π, t) = 0

ut(x, 0) = 0, x ∈ [−π, π]

utt(x, t)− uxx(x, t) = 0 x ∈ [−π, π], t > 0.

We nickname this new problem ♥♥ because we like it better than ♥. Then, our
full solution will be

U(x, t) = u(x, t) + f(x).

This solution U will then solve ♥. Here it is important to note that when we add
u and f , the boundary condition still holds. So, please think about this, because
in certain variations on the theme, it could possibly not be true.

Now we can use the techniques we have learned thus far. Separate variables,
writing u(x, t) = X(x)T (t). We get the equation

T ′(t)X(x)−X ′′(x)T (t) = 0 ⇐⇒ T ′

T
=
X ′′

X
= λ.

Since we have super nice BCs for X, we start with the X. We want to solve

X ′′(x) = λX(x), X(−π) = X(π) = 0.

First case: λ = 0. Then
X(x) = ax+ b.

The BCs say
X(−π) = −aπ + b = 0 =⇒ aπ = b.

Next we need
X(π) = aπ + b = 0 =⇒ b = −aπ.

Combining these,
aπ = −aπ =⇒ a = 0 =⇒ b = 0.

So, no solution here because the zero solution doesn’t count! Moving right along,
let us try

λ > 0.

Then, our solution looks like real exponentials or equivalently sinh and cosh.
HINT: If you interval looks like [0, l], it’s probably easiest to work with sinh

and cosh because sinh(0) = 0 and cosh′ = sinh. So this will often make things
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simpler. On the other hand, if you have an interval like [a, b] with a and be not
zero, it may be easier to work with the exponentials. So, that’s why I’m choosing
to do that here. Hence

X(x) = ae
√
λx + be−

√
λx.

The BCs require

X(−π) = ae−
√
λπ + be

√
λπ = 0.

Let’s multiply by e
√
λπ, to get

a+ be2
√
λπ = 0 =⇒ a = −be2

√
λπ.

We check the other BCs

X(π) = ae
√
λπ + be−

√
λπ = 0

substituting the value of a,

−be2
√
λπe
√
λπ + be−

√
λπ = 0.

If b = 0 the whole solution is 0, so we assume this is not the case and divide by b.

Multiplying by e
√
λπ we get

−e4
√
λπ + 1 = 0 ⇐⇒ e4

√
λπ = 1 ⇐⇒ 4

√
λπ = 0 ⇐⇒ λ = 0,

which is a contradiction. So, no solutions lurking over here.
Thus, we consider λ < 0. Then our solution looks like

X(x) = a cos(
√
|λ|x) + b sin(

√
|λ|x).

We need

X(−π) = a cos(−
√
|λ|π) + b sin(−π

√
|λ|) = 0 = a cos(

√
|λ|π)− b sin(

√
|λ|π),

where we use the evenness of cosine and oddness of sine. We also need

X(π) = a cos(
√
|λ|π) + b sin(

√
|λ|π) = 0.

Adding these equations we see that we need

a cos(
√
|λ|π) = 0 =⇒ a = 0 or

√
|λ| = (2k + 1)

2
, k ∈ Z.

Subtracting these equations we see that we need

b cos(
√
|λ|π) = 0 =⇒ b = 0 or

√
|λ| = 2k

2
, k ∈ Z.

I know it looks weird but I wrote it this way to make it looks similar to the one
with the cosine. Now, the number

√
|λ| can only have one value. It cannot be two

different things at the same time. So, we have two types of solutions

Xn(x) =

{
cos
(
nx
2

)
n is odd

sin
(
nx
2

)
n is even.

Here we have √
|λn| =

n

2
, λn = −n

2

4
.

The partner functions,

Tn(t) = αn cos(
√
|λn|x) + βn sin(

√
|λn|x).
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We shall determine the coefficients using the IC. First, we write

u(x, t) =
∑
n≥1

Tn(t)Xn(x).

Next, we use the easier of the two ICs, which is

ut(x, 0) = 0.

So, we also compute

ut(x, t) =
∑
n≥1

T ′n(t)Xn(x).

When we plug in 0, we need to have

ut(x, 0) =
∑
n≥1

T ′n(0)Xn(x) = 0.

So, to get this, we need

T ′n(0) = 0∀n.

By definition of the Tn,

T ′n(0) = βn
√
|λn|.

So, to make this zero, since
√
|λn| 6= 0, we need

βn = 0∀n.

Hence, our solution looks like

u(x, t) =
∑
n≥1

αn cos(
√
|λn|t)Xn(x).

The other IC says

u(x, 0) = −f(x) + v(x).

Since cos(0) = 1, we see that we need

−f(x) + v(x) =
∑
n≥1

αnXn(x).

This means that we need

αn =
〈−f + v,Xn〉
||Xn||2

=

∫ π
−π (−f(x) + v(x))Xn(x)dx∫ π

−π |Xn(x)|2dx
.

It suffices to just leave αn like this. As we observed before, our full solution is now

U(x, t) = u(x, t) + f(x) = −5x2

2
+

5π2

2
+
∑
n≥1

αn cos(
√
|λn|t)Xn(x),

with Xn defined as above.

3.1. Exercises from [
folland
1] for the week.
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3.1.1. To be demonstrated.

(1) (4.2:5) Solve:

ut = kuxx + e−2t sin(x),

with

u(x, 0) = u(0, t) = u(π, t) = 0.

(2) (EO 23) Determine the eigenvalues and eigenfunctions of the SLP:

f ′′ + λf = 0, 0 < x < a,

f(0)− f ′(0) = 0, f(a) + 2f ′(a) = 0.

(3) (EO 24) Determine the eigenvalues and eigenfunctions of the SLP:

−e−4x d
dx

(
e4x

du

dx

)
= λu, 0 < x < 1,

u(0) = 0, u′(1) = 0.

(4) (EO 1) A function is 2 periodic with f(x) = (x + 1)2 for |x| < 1. Expand
f(x) in a Fourier series. Search for a 2 periodic solution to the equation

2y′′ − y′ − y = f(x).

(5) (4.2.6) Solve:

ut = kuxx +Re−ct, R, c > 0,

u(x, 0) = 0 = u(0, t) = u(l, t).

Physically this is heat flow in a rod which has a chemical reaction in it such
that the reaction produced inside the rod dies out over time.

(6) (4.3.5) Find the general solution of

utt = c2uxx − a2u,

u(0, t) = u(l, t) = 0,

with arbitrary initial conditions. Physically, this is a model for a string
vibrating in an elastic medium where the term −a2u represents the force
of reaction of the medium on the string.

3.1.2. To solve oneself.

(1) (EO 25) Solve the problem:

uxx + uyy = y, 0 < x < 2, 0 < y < 1

u(x, 0) = 0, u(x, 1) = 0

u(0, y) = y − y3, u(2, y) = 0.

(2) (EO 27) Solve the problem

uxx + uyy + 20u = 0, 0 < x < 1, 0 < y < 1,

u(0, y) = u(1, y) = 0

u(x, 0) = 0, u(x, 1) = x2 − x.
(3) (4.4:1) Solve the equation

uxx + uyy = 0

inside the square 0 ≤ x, y ≤ l, subject to the boundary conditions:

u(x, 0) = u(0, y) = u(l, y) = 0, u(x, l) = x(l − x).
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(4) (EO 3) Expand the function cos(x) in a sine series on the interval (0, π/2).
Use the result to compute∑

n≥1

n2

(4n2 − 1)2
.

(5) (4.2.2) Solve:
ut = kuxx, u(x, 0) = f(x),

u(0, t) = C 6= 0, ux(l, t) = 0.

(6) (4.3.1) Show that the function

bn(t) :=
1

nπc

∫ t

0

sin
nπc(t− s)

l
βn(s)ds

solves the differential equation:

b′′n(t) +
n2π2c2

l2
bn(t) = βn(t),

as well as the initial conditions bn(0) = b′n(0) = 0.
(7) (4.4.7) Solve the Dirichlet problem:

uxx + uyy = 0 in S = {(r, θ) : 0 < r0 ≤ r ≤ 1, 0 ≤ θ ≤ β},
u(r0, θ) = u(1, θ) = 0, u(r, 0) = g(r), u(r, β) = h(r).

References

[1] Gerald B. Folland, Fourier Analysis and Its Applications, Pure and Applied Undergraduate

Texts Volume 4, (1992).



FOURIER ANALYSIS & METHODS 2020.02.12

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute
for the textbook, which is warmly recommended: Fourier Analysis and Its

Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing
this? Good question...

1. Inhomogeneous or non-self adjoint boundary conditions

We wish to solve the homogeneous wave equation inside a rectangle:

�u = 0 inside a rectangle, u(x, y, 0) = f(x, y), ut(x, y, 0) = 0,

u(x, y, t) = g(x, y) for (x, y) on the boundary of the rectangle.

We name this problem ♥. Here we have an inhomogeneous boundary condition.
So, to solve the problem, we break it into two smaller problems which we tackle
one at a time: divide and conquer.

Idea: deal with time independent boundary conditions by finding
a steady state solution.

So, we begin by looking for

Φ(x, y)

to satisfy

�Φ = 0 inside the rectangle,

Φ = g on the boundary of the rectangle.

Since the physical problem doesn’t care where in space the rectangle is sitting, let
us put it so that its vertices are at (0, 0), (0, B), (A, 0), (A,B). Let us call this
problem ♥♥.

Once we have found Φ, we will look for a solution w to solve

�w = 0 inside the rectangle,

w(x, y, t) = 0 on the boundary of the rectangle,

w(x, y, 0) = f(x, y)− Φ(x, y), wt(x, y, 0) = 0.

Then, our solution to ♥ will be

u(x, y, t) = w(x, y, t) + Φ(x, y).

So, we look for Φ to solve ♥♥.

Idea: deal with each inhomogeneous boundary component one at
a time.

1
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It is the same principle: divide and conquer. So, first, let us make nice zero
boundary conditions on the sides, and just deal with the complicated boundary
conditions on the top and bottom. Therefore we look for a function φ(x, y) which
satisfies

�φ = 0,

φ(0, y) = φ(A, y) = 0,

φ(x, 0) = g(x, 0), φ(x,B) = g(x,B).

Idea: since the PDE is homogeneous and half of the BCs are good
and homogeneous, use separation of variables.

We therefore write the PDE:

−X ′′Y − Y ′′X = 0 =⇒ −Y
′′

Y
=
X ′′

X
= λ.

The BCs for X are X(0) = X(A) = 0. We have solved this problem. The solutions
are, up to constant factors

Xn(x) = sin
(nπx
A

)
, λn = −n

2π2

A2
.

The equation for the partner function is then:

−Y
′′
n

Yn
= λn =⇒ Y ′′n =

n2π2

A2
Yn.

A basis of solutions is given by real exponentials, or equivalently hyperbolic sines
and cosines. Since our region contains 0, we have been given a hint that using the
hyperbolic sines and cosines may be more simple. So, we follow that hint, with

Yn(y) = an cosh
(nπy
A

)
+ bn sinh

(nπy
A

)
.

Next we use superposition to create a super solution, which is legit because the
PDE is homogeneous:

φ(x, y) =
∑
n≥1

Xn(x)Yn(y).

To obtain the boundary conditions, we need

φ(x, 0) = g(x, 0) =
∑
n≥1

anXn(x).

Hence, the coefficients

an =
〈g(x, 0), Xn〉
||Xn||2

=

∫ A
0
g(x, 0)Xn(x)dx∫ A
0
|Xn(x)|2dx

.

For the other BC, we need

φ(x,B) = g(x,B) =
∑
n≥1

Xn(x)

(
an cosh

(
nπB

A

)
+ bn sinh

(
nπB

A

))
.

Therefore we need(
an cosh

(
nπB

A

)
+ bn sinh

(
nπB

A

))
=
〈g(x,B), Xn〉
||Xn||2

=

∫ A
0
g(x,B)Xn(x)dx∫ A
0
|Xn(x)|2dx

.
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Solving for bn we get

bn =
1

sinh(nπBA )

(
〈g(x,B), Xn〉
||Xn||2

− an cosh

(
nπB

A

))
.

Next, we proceed similarly by searching for a function to fix up the BCs on
the left and the right. Having dealt with the inhomogeneous BCs at the top and
bottom, we set the BC there equal to zero. In that way, when we sum, we shall not
mess up the function φ. So, we look for a solution to:

�ψ(x, y) = 0, ψ(x, 0) = ψ(x,B) = 0, ψ(0, y) = g(0, y), ψ(A, y) = g(A, y).

By symmetry, the solution will be given by∑
n≥1

X̃n(y)Ỹn(x),

with

X̃n(y) = sin
(nπy
B

)
,

and

Ỹn(x) = ãn cosh
(nπx
B

)
+ b̃n sinh

(nπx
B

)
.

The coefficients come from the boundary conditions:

ãn =
〈g(0, y), X̃n〉
||X̃n||2

=

∫ B
0
g(0, y)X̃n(y)dy∫ B
0
|Xn(y)|2dy

.

The other one

b̃n =
1

sinh
(
nπA
B

) ( 〈g(A, y), X̃n〉
||X̃n||2

− ãn cosh

(
nπA

B

))
.

So, we have found

ψ(x, y) =
∑
n≥1

X̃n(y)Ỹn(x).

The full solution to this part of the problem is

Φ(x, y) = φ(x, y) + ψ(x, y).

Exercise 1. Verify that this function satisfies both the PDE �Φ = 0 as well as all
of the boundary conditions.

To complete the problem, we have only to solve the homogeneous wave equa-
tion with the lovely Dirichlet boundary condition and the initial condition with Φ
subtracted. So, we are solving:

�u = 0, ut(x, y, 0) = 0, u(x, y, 0) = f(x, y)−Φ(x, y), u = 0 on the boundary.

Idea: since we have homogeneous PDE and BC, use separation of
variables and superposition.

We use separation of variables for t, x, and y. Write

u = TXY.

The PDE is

T ′′XY −X ′′TY − Y ′′TX = 0 ⇐⇒ T ′′

T
=
X ′′

X
+
Y ′′

Y
= λ.
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Since we have nice homogeneous (Dirichlet) boundary conditions, we begin with
the functions that depend on the position in the rectangle, that is X and Y .

Their equation is:

X ′′

X
+
Y ′′

Y
= λ =⇒ X ′′

X
= λ− Y ′′

Y
.

OBS! The left and right sides depend on different independent variables. Hence, by
the same reasoning that gave us λ, we get that

X ′′

X
= λ− Y ′′

Y
= µ.

Let us solve for X first.1 So, we are looking to solve:

X ′′ = µX, X(0) = X(A) = 0.

We have solved this before. The solutions are up to constant factors:

Xn(x) = sin
(nπx
A

)
µn = −n

2π2

A2
.

This gives the equation for Y ,

Y ′′

Y
= λ− µn, Y (0) = Y (B) = 0.

Let us briefly call
ν = λ− µn.

Then, this is just the same equation but with different names for things:

Y ′′ = νY, Y (0) = Y (B) = 0.

Up to constant factors, the solutions are

Ym(y) = sin
(mπy

B

)
νm = −m

2π2

B2
.

Since

νm = λ− µn =⇒ λ = λn,m = νm + µn = −m
2π2

B2
− n2π2

A2
.

Recalling the equation for the partner function, T , we have

Tn,m(t) = an,m cos(
√
|λn,m|t) + bn,m sin(

√
|λn,m|t).

Hence we write
u(x, y, t) =

∑
n,m≥1

Tn,m(t)Xn(x)Ym(y).

The initial condition

ut(x, y, 0) = 0 =⇒ bn,m = 0∀n,m.
The other condition is that

u(x, y, 0) = f(x, y)− Φ(x, y) =
∑
n,m≥1

an,mXn(x)Ym(y).

Hence we require

an,m =
〈f − Φ, XnYm〉
||XnYm||2

=

∫
[0,A]×[0,B]

(f(x, y)− Φ(x, y))Xn(x)Ym(y)dxdy∫
[0,A]×[0,B]

|Xn(x)Ym(y)|2dxdy
.

1In this case, we could solve for either X or Y first, it actually does not matter which you
choose.
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The full solution is then

u(x, y, t)− Φ(x, y).

Remark 1. The eigenvalues of the two-dimensional SLP we solved above,

λn,m = −m
2π2

B2
− n2π2

A2

are interesting to compare to the analogous one-dimensional case. In the analogous
one dimension case, where we have

µn = −n
2π2

A2
,

you can see that these are all square integer multiples of

µ1 = − π
2

A2
.

This is the mathematical reason that vibrating strings sound lovely. On the other
hand, as long as the rectangle is not a square, that is A 6= B, it is no longer true
that the λn,m are all multiples of

λ1,1 = − π
2

B2
− π2

A2
.

For this reason, vibrating rectangles can sound rather awful. You can listen to
something along these lines (okay it’s for tori not rectangles, but mathematically
basically the same) here: http: // www. toroidalsnark. net/ som. html . Further
exploration of the mathematics of music could make for an interesting bachelor’s
or master’s thesis....

2. Heat equation example on an interval with an inhomogeneous
boundary condition

We wish to solve the problem:

ut − uxx = 0, 0 < x < 4, t > 0,

u(x, 0) = v(x),

ux(4, t) = 0,

u(0, t) = 20.

Let us call this problem ♥. The boundary conditions are not zero. This will mean
that the associated SLP does not have self-adjoint BCs, which is a big problem.
We can use a similar “steady state” trick to deal with this. If the BC u(0, t) = 20
were instead u(0, t) = 0, then the BCs would be self adjoint BCs. So we want to
make it so. Since the PDE is homogeneous, the

Idea: Deal with non-self adjoint BCs which are independent of
time by finding a steady state solution.

We want a function f(x) which satisfies the equation

−f ′′(x) = 0,

and which gives us the bad BC

f(0) = 20.

http://www.toroidalsnark.net/som.html
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We have a nice homogeneous BC on the other side, so we don’t want to mess that
up, so we want

f ′(4) = 0.

Then, the function

f(x) = ax+ b.

We use the BCs to compute

f(0) = 20 =⇒ b = 20.

f ′(4) = 0 =⇒ a = 0.

Similar to before, if we add it to the solution of

ut − uxx = 0, 0 < x < 4, t > 0,

u(x, 0) = v(x),

ux(4, t) = 0,

u(0, t) = 0.

it’s going to screw up the IC. So, instead we look for the solution of

ut − uxx = 0, 0 < x < 4, t > 0,

u(x, 0) = v(x)− f(x),

ux(4, t) = 0,

u(0, t) = 0.

This is now a PDE we know how to solve, so we call this problem ♥♥. We use SV
to write u = XT (just a means to an end).2 Next, we get the equation

T ′

T
=
X ′′

X
= λ.

We solve the SLP

X ′′ = λX, X(0) = 0 = X ′(4).

The reason we know this is an SLP satisfying the hypotheses of the theorem is
because we verify that the BC is self-adjoint.

Exercise 2. Verify that the only solutions for the cases λ ≥ 0 are solutions which
are identically zero.

We only get λ < 0. Then, the solution is of the form

an cos(
√
|λn|x) + bn sin(

√
|λn|x).

The BC at 0 tells us that

an = 0.

The BC at 4 tells us that

cos(
√
|λn|4) = 0 =⇒

√
|λn|4 =

2n+ 1

2
π =⇒

√
|λn| =

2n+ 1

8
π.

2La fin justifie les moyens by M.C. Solaar is recommended listening.
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We then also get

λn = − (2n+ 1)2π2

64
.

We shall deal with the coefficients at the very end. So, we set

Xn(x) = sin(
√
|λn|x).

The partner function

T ′n
Tn

= λn =⇒ Tn(t) = αne
λnt = αne

−(2n+1)2π2t/64.

We put it all together writing

u(x, t) =
∑
n≥1

Tn(t)Xn(x).

To make the IC, we need

u(x, 0) =
∑
n≥1

Tn(0)Xn(x) = v(x)− f(x).

Since

Tn(0) = αn,

we need ∑
n≥1

αnXn(x) = v(x)− f(x).

So we want the coefficients to be the Fourier coefficients of v − f , thus

αn =
〈v − f,Xn〉
||Xn||2

=

∫ 4

0
(v(x)− f(x))Xn(x)dx∫ 4

0
|Xn(x)|2dx

.

Our full solution is

U(x, t) = u(x, t) + f(x) = 20 +
∑
n≥1

Tn(t)Xn(x).

2.1. Exercises to solve oneself: hints.

(1) (EO 25) Solve the problem:

uxx + uyy = y, 0 < x < 2, 0 < y < 1

u(x, 0) = 0, u(x, 1) = 0

u(0, y) = y − y3, u(2, y) = 0.

Hint: divide and conquer. First, find a function which is independent of x
to solve the inhomogeneous PDE. That is you want f(y) to solve:

f ′′(y) = y, f(0) = 0 = f(1).

Next solve the problem

vxx + vyy = 0,

v(x, 0) = 0 = v(x, 1),

v(0, y) = y − y3 − f(y), v(2, y) = −f(y).

Show that the solution to the original problem is given by

u(x, y) = v(x, y) + f(y).
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(2) (EO 27) Solve the problem

uxx + uyy + 20u = 0, 0 < x < 1, 0 < y < 1,

u(0, y) = u(1, y) = 0

u(x, 0) = 0, u(x, 1) = x2 − x.
Hint: divide and conquer. The PDE is homogeneous. So write u = XY .
Plug it into the PDE. Solve for X function first because it has nice Dirichlet
boundary conditions. Then solve for the partner Y function. Use the
condition u(x, 1) = x2 − x to determine the unknown coefficients.

(3) (4.4:1) Solve the equation

uxx + uyy = 0

inside the square 0 ≤ x, y ≤ l, subject to the boundary conditions:

u(x, 0) = u(0, y) = u(l, y) = 0, u(x, l) = x(l − x).

Hint: follow the same procedure as the preceding exercise.
(4) (EO 3) Expand the function cos(x) in a sine series on the interval (0, π/2).

Use the result to compute∑
n≥1

n2

(4n2 − 1)2
.

Hint: the coefficients in a sine series will be given by

βn =
4

π

∫ π/2

0

cos(x) sin(2nx)dx.

One way to make this integral easier is to expand stuff into complex expo-
nentials from which you can obtain that

cos(ax) sin(bx) =
1

2
(sin((a+ b)x)− sin((a− b)x)) .

To compute the big sum at the end, use Parseval’s equation.
(5) (4.2.2) Solve:

ut = kuxx, u(x, 0) = f(x),

u(0, t) = C 6= 0, ux(l, t) = 0.

Hint: First deal with that icky inhomogeneous boundary condition C 6= 0
by finding a steady state solution as in lecture. This is φ(x) which has
φ′′(x) = 0, φ(0) = C, φ′(l) = 0. Then, look for a solution to solve

ut = kuxx, u(x, 0) = f(x)− φ(x),

u(0, t) = 0, ux(l, t) = 0.

For this problem you can now use separation of variables, SLP theory,
Hilbert space theory, and finally compute your coefficients using the initial
data. It’s all coming together!

(6) (4.3.1) Show that the function

bn(t) :=
1

nπc

∫ t

0

sin
nπc(t− s)

l
βn(s)ds

solves the differential equation:

b′′n(t) +
n2π2c2

l2
bn(t) = βn(t),
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as well as the initial conditions bn(0) = b′n(0) = 0. Hint: Use the funda-
mental theorem of calculus to compute b′n(t). Check the initial conditions
by just substituting 0 for t. Next, compute the derivative of b′n to get b′′n
and check the equation.

(7) (4.4.7) Solve the Dirichlet problem:

uxx + uyy = 0 in S = {(r, θ) : 0 < r0 ≤ r ≤ 1, 0 ≤ θ ≤ β},
u(r0, θ) = u(1, θ) = 0, u(r, 0) = g(r), u(r, β) = h(r).

Hint: Turn the equation into polar coordinates. An annulus looks like
a rectangle in polar coordinates. Next separate variables and write u =
R(r)Θ(θ). Solve for the R function first because it has the beautiful bound-
ary conditions. This is going to become an Euler equation like we solved
for in lecture. So, check your lecture notes to see how we did that (Day
9). Once you have your R functions, they will be like Rn(r), with corre-
sponding λn, use this to find the partner Θn functions. Finally use g and
h to determine the unknown coefficients. This part is a bit like finding the
coefficients when solving the Dirichlet problem in a rectangle.

References
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Texts Volume 4, (1992).
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JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. Inhomogeneous PDE with time dependent inhomogeneity

Solve:

ut − uxx = tx, 0 < x < 4, t > 0,

u(x, 0) = v(x),

ux(4, t) = 0,

u(0, t) = 0.

Non! Sacre bleu! Tabernac!1 This is an inhomogeneous PDE and the inhomo-
geneity (tx) depends on time! A steady-state solution cannot save us. What do we
do?

Idea: Use a Fourier Series with non-constant coefficients to deal
with time-dependent inhomogeneity.

There’s a lovely way to deal with this type of inhomogeneity. We first solve the
homogeneous problem.

Exercise 1. Use separation of variables to solve the homogeneous problem:

wt − wxx = 0, 0 < x < 4, t > 0,

w(x, 0) = v(x)

wx(4, t) = 0

w(0, t) = 0.

Having done this, we obtain

λn = − (2n+ 1)2π2

64
, Xn(x) = sin(

√
|λn|x).

Tn(t) = αne
λnt.

1This is how they curse in French Canada.

1
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αn =
〈v,Xn〉
||Xn||2

=

∫ 4

0
v(x)Xn(x)dx∫ 4

0
|Xn(x)|2dx

,

and
w(x, t) =

∑
n≥1

Tn(t)Xn(x).

Now, we look for a solution to this problem:

φt − φxx = tx, 0 < x < 4, t > 0,

φ(x, 0) = 0,

φx(4, t) = 0,

φ(0, t) = 0.

Idea: look for a solution of the form∑
n≥1

cn(t)Xn(x).

So, we keep our Xn from the homogeneous problem, and we look for different cn(t)
which will now be functions of t. We want the function to satisfy

ut − uxx = tx,

so we put the series in the left side into this PDE:∑
n≥1

c′n(t)Xn(x)− cn(t)X ′′n(x) = tx.

We use the fact the X ′′n = λnXn, so we want to solve∑
n≥1

Xn(x) (c′n(t)− cn(t)λn) = tx.

Here is where we do something clever:

Idea: write out tx as a Fourier series in terms of Xn.

The t just goes along for the ride, and

tx = t
∑
n≥1

anXn(x),

where

an =
〈x,Xn〉
||Xn||2

=

∫ 4

0
xXn(x)dx∫ 4

0
|Xn|2dx

.

As usual, we do not need to compute these integrals.
So, we want: ∑

n≥1

Xn(x) (c′n(t)− cn(t)λn) = tx =
∑
n≥1

tXn(x)an.

We equate the coefficients of Xn:

(c′n(t)− λncn(t)) = tan.

This is an ODE for cn(t). We also want the IC, cn(0) = 0. The solution to the
homogeneous ODE,

f ′ − λnf = 0 =⇒ f(t) = eλnt times some constant factor.
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A particular solution to the inhomogeneous ODE is a linear function of the form:

Ant+Bn =⇒ An − λn(Ant+Bn) = ant =⇒ An =
−an
λn

, Bn =
An
λn

= −an
λ2n
.

So general solutions are of the form:

cn(t) = Cne
λnt − an

λn
t− an

λ2n
, for some constant Cn.

To obtain the initial condition that c′n(0) = 0, we see that we need

Cn =
an
λ2n
.

Thus, we have found

cn(t) =
an
λ2n
eλnt − an

λn
t− an

λ2n
.

Therefore the solution we seek is

u(x, t) =
∑
n≥1

cn(t)Xn(x),

and the full solution to the original problem is

U(x, t) = w(x, t) + u(x, t).

2. Solving problems where the space variable is in an unbounded
region

We will now develop a set of techniques which can be used for solving partial
differential equations when the space variable is in an unbounded region. It is
straightforward to generalize the definitions of L1 and L2 to the real line.

Definition 1 (The real one). The set

L1(R) = the set of equivalence classes, of functions which satisfy:

f is measurable, and

∫
R
|f(x)|dx <∞.

The function g belongs to the same equivalence class as f if g = f almost everywhere
on R with respect to the Lebesgue measure on R.

Definition 2 (The real one). The set

L2(R) = the set of equivalence classes of functions which satisfy:

f is measurable, and

∫
R
|f(x)|2dx <∞.

The function g belongs to the same equivalence class as f if g = f almost everywhere
on R with respect to the Lebesgue measure on R.

Definition 3 (The workable definition of L1(R)). It will suffice for the purposes
of this humble course to treat L1(R) as the set of functions on R which satisfy∫

R
|f(x)|dx <∞.

The L1(R) norm is then defined to be

||f ||L1 =

∫
R
|f(x)|dx.
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The set of such functions, denoted by L1(R), is a complete normed vector space but
not a Hilbert space. A complete normed vector space is also known as a Banach
space.

Definition 4 (The workable definition of L2(R)). It will suffice for the purposes
of this humble course to treat L2(R) as the set of functions on R which satisfy∫

R
|f(x)|2dx <∞.

This set of functions, denoted by L2(R), is a Hilbert space with the scalar product:

〈f, g〉 =

∫
R
f(x)g(x)dµ.

Hence, by definition, the norm on L2(R) is

||f ||L2(R) =

√∫
R
|f(x)|2dx.

A lot of things which are true for L2 on a finite interval are no longer true on
L2(R). For example, the functions

einx, sin(x), cos(x)

are all neither in L1(R) nor in L2(R). Furthermore, there is no relationship between
L1(R) and L2(R). There are functions which are in L1(R) but not in L2(R):

f(x) =


0 x ≤ 0
√
x 0 < x < 1

0 x ≥ 1

is in L1(R) but it is not in L2(R).

Exercise 2. Verify that this function is in L1(R) but not in L2(R). Compute its
L1(R) norm.

On the other hand, the function

f(x) =

{
0 x ≤ 1
1
x x > 1

is in L2(R) but not in L1(R).

Exercise 3. Verify that this function is in L2(R) but not in L1(R). Compute its
L2(R) norm.

The function

e−|x|

is in both L1(R) and in L2(R).

Exercise 4. Verify that this function is in both L1(R) and L2(R). Compute its L1

and L2 norms. Come up with your own examples of functions which are

(1) In L1(R) but not in L2(R).
(2) In L2(R) but not in L1(R).
(3) In both L1(R) and L2(R).
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So, all we can say is that

L1(R) 6⊂ L2(R), L2(R) 6⊂ L1(R), L1(R) ∩ L2(R) 6= ∅.
So, we’re in a whole new territory here. To begin we shall define the convolution.
This will be super important for solving the heat equation on the real line.

Definition 5. The convolution of f and g is a function f ∗ g : R→ C defined by

f ∗ g(x) =

∫
R
f(x− y)g(y)dy,

whenever the integral on the right exist.

Proposition 6. Assume that f and g are both in L2(R). Then

(1) |f ∗ g(x)| ≤ ||f ||||g|| for all x ∈ R
(2) f ∗ (ag + bh) = af ∗ g + bf ∗ h for all a, b ∈ C
(3) f ∗ g = g ∗ f
(4) f ∗ (g ∗ h) = (f ∗ g) ∗ h

Proof: This is useful to do because it helps to familiarize oneself with the
convolution. We first estimate

|f ∗ g(x)| =
∣∣∣∣∫

R
f(x− y)g(y)dy

∣∣∣∣ ≤ ∫
R
|f(x− y)||g(y)|dy.

The point x ∈ R is fixed and arbitrary, so we define a function

φ(y) = f(x− y).

Then

|f ∗ g(x)| ≤
∫
R
|φ(y)||g(y)|dy ≤ ||φ||||g||.

We compute

||φ||2 =

∫
R
|f(x− y)|2dy = −

∫ −∞
∞

|f(t)|2dt =

∫ ∞
−∞
|f(t)|2dt = ||f ||2.

Above, we used the substitution t = x − y so dt = −dy, and the integral got
reversed. The − goes away when we re-reverse the integral. So, in the end we see
that

|f ∗ g(x)| ≤ ||f ||||g||
as desired. The second property follows simply by the linearity of the integral itself.
For the third property, we will use substitution again:

f ∗ g(x) =

∫
R
f(x− y)g(y)dy.

We want to get g(x− z) so we define

y = x− z =⇒ x− y = z, dz = −dy.
Hence,

f ∗ g(x) = −
∫ −∞
∞

f(z)g(x− z)dz =

∫ ∞
−∞

g(x− z)f(z)dz = g ∗ f(x).

We do something rather similar in the fourth property:

f ∗ (g ∗ h)(x) =

∫
R
f(x− y)

∫
R
g(y − z)h(z)dzdy.
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For the other term we have

(f ∗ g) ∗ h(x) =

∫
R

(f ∗ g)(x− y)h(y)dy =

∫
R

∫
R
f(x− y − z)g(z)h(y)dzdy.

So, we define
t = y − z =⇒ x− y = x− t− z, dt = dy.

Then

f ∗ (g ∗ h)(x) =

∫
R

∫
R
f(x− t− z)g(t)h(z)dzdt.

Finally, we call z = y and t = z (sorry if this gives you a headache!) because they
are just names, and then we get

f ∗ (g ∗ h)(x) =

∫
R

∫
R
f(x− y − z)g(y)h(z)dzdy.

If you’re worried about the order of integration, don’t be. Since everything is in
L2, these integrals converge absolutely, so those Italian magicians, Fubini & Tonelli
allow us to do the switch-a-roo with the integrals as much as we like.

One of the useful features of convolution is that we can use it to smooth out
non-smooth functions. This is known as mollification, which comes from the verb,
to mollify, which means to make smooth.2

Proposition 7 (Mollification). If f ∈ C1(R) ∩ L2(R), f ′ ∈ L2(R), and g ∈ L2(R),
then f ∗ g ∈ C1(R). Moreover (f ∗ g)′ = f ′ ∗ g.

Proof: Everything converges beautifully so just stick that differentiation right
under the integral defining

f ∗ g(x) =

∫
R
f(x− y)g(y)dy.

Hence

(f ∗ g)′(x) =

∫
R
f ′(x− y)g(y)dy = f ′ ∗ g(x).

If you are not satisfied with this explanation, a rigorous proof can be obtained using
the Dominated Convergence Theorem, but that is a theorem which we cannot prove
in the context of this humble course.

2.0.1. An example. Let’s compute a convolution. Let f(x) = 1
1+x2 and

g(x) =

{
1 |x| < 3

0 |x| > 3
.

The function g is not differentiable at the points ±3. The function f is perfectly
smooth on R. Let’s convolve them!

f ∗ g(x) =

∫
R
f(x− y)g(y)dy =

∫
R

1

1 + (x− y)2
g(y)dy =

∫ 3

−3

1

1 + (x− y)2
dy.

2One can mollify garlic, tahini, chickpeas, soy sauce, olive oil, oregano, black pepper, lemon
juice, in suitable proportions, together with a bit of hot sauce like Cholula, Tabasco, or Sriracha,

to make hummus.
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If we dig deep into our calculus memory, we vaguely recall that

(arctan(t))′ =
1

1 + t2
.

So, this integral becomes:

− arctan(x− y)|3−3 = − arctan(x− 3) + arctan(x+ 3).

This is indeed a smooth function of x.

3. The Fourier transform

One of the reasons that the convolution is so nice is because it plays well with
the Fourier transform. So let us define this Fourier transform.

Proposition 8. Assume that f ∈ L1(R). Then

f̂(ξ) :=

∫
R
f(x)e−ixξdx

is a well-defined complex number for any ξ ∈ R.

Proof: Simply estimate∣∣∣∣∫
R
e−ixξf(x)dx

∣∣∣∣ ≤ ∫
R
|f(x)|dx <∞.

3.1. Example of computing a Fourier transform. Let us get a feel for this
by computing a Fourier transform. Consider the function f(x) = e−a|x| where
a > 0. Then it is certainly in L1(R) so we ought to be able to compute its Fourier
transform. This is by definition

f̂(ξ) =

∫
R
e−ixξe−a|x|dx =

∫ 0

−∞
e−ixξeaxdx+

∫ ∞
0

e−ixξe−axdx.

We compute these integrals by finding a primitive for the integrand:

f̂(ξ) =
ex(a−iξ)

a− iξ

∣∣∣∣0
−∞

+
ex(−a−iξ)

−a− iξ

∣∣∣∣∞
0

=
1

a− iξ
+

1

a+ iξ
=
a+ iξ + a− iξ

a2 + ξ2
=

2a

a2 + ξ2
.

3.2. Answers for this week’s exercises to be done oneself.

(1) (Eo 25, 27, 3) Please see the end of the Eö document! It has answers!
(2) (4.4:1)

u(x, y) =
8l2

π3

∑
n≥1

1

(2n− 1)3 sinh((2n− 1)π)
sin

(
(2n− 1)πx

l

)
sinh

(
(2n− 1)πy

l

)
.

(3) (4.2.2) Here we define first:

bn =
2

l

∫ l

0

f(x) sin

(
(2n− 1)πx

2l

)
dx.
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Then the answer to this one is:

u(x, t) = C +
∑
n≥1

(
bn −

4C

π(2n− 1)

)
exp

(
− (n− 1/2)2π2kt

l2

)
sin

((
n− 1

2

)
πx

l

)
.

(4) (4.3.1) And the answer is... Geez Folland where is the answer? Oh, right
this one is to “verify” etc. Well, the way I find this easiest to do is to
re-write using the angle addition formula for the sine:

bn(t) =
l

nπc

∫ t

0

sin(nπct/l) cos(−nπcs/l)βn(s)ds+
l

nπc

∫ t

0

cos(nπct/l) sin(−nπcs/l)βn(s)ds.

Then we can take out the s-independent terms to the front of the integral,
so that

bn(t) = sin(nπct/l)
l

nπc

∫ t

0

cos(−nπcs/l)βn(s)ds+cos(nπct/l)
l

nπc

∫ t

0

sin(−nπcs/l)βn(s)ds.

Now we can compute the derivatives and verify the formulas using the
product rule together with the fundamental theorem of calculus. Please
just ask if you have questions about how this works. Also, if you solved in
a different way but ended up correct, that’s just peachy too!

(5) (4.4.7) Wow, this answer is long. Let

g(r) =
∑

cn sin

(
nπ log r

log r0

)
and

h(r) =
∑

dn sin

(
nπ log r

log r0

)
,

then

u(r, θ) =
∑
n≥1

(ane
nπθ/ log r0 + bne

−nπθ/ log r0) sin

(
nπ log r

log r0

)
,

where

an + bn = cn, ane
nπβ/ log r0 + bne

−nπβ/ log r0 = dn.

Happy Weekend! ♥
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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are
inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its

Applications, by Gerald B. Folland. He was the first math teacher I had at
university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. The illustrious Fourier transform

The following is a useful and fundamental collection of facts about the Fourier
transform. It may be useful to introduce the notations

F(f)(ξ) = f̂(ξ) = f̂(ξ).

Sometimes we feel like a wide hat, sometimes a narrow hat, and sometimes we need
that big F . It is useful to be fluent with all three equivalent notations.

Theorem 1 (Properties of the Fourier transform). Assume that everything below
is well defined. Then, the Fourier transform,

F(f)(ξ) := f̂(ξ) :=

∫
R
f(x)e−ixξdx

satisfies

(1) F(f(x− a))(ξ) = e−iaf̂(ξ).

(2) F(f ′)(ξ) = iξf̂(ξ)
(3) F(xf(x))(ξ) = iF(f)′(ξ)

(4) F(f ∗ g)(ξ) = f̂(ξ)ĝ(ξ)

Proof: We just compute (we are being a bit naughty, not bothering with issues
of convergence, but all such issues are indeed rigorously verifiable, so not to worry).
First

F(f(x− a))(ξ) =

∫
R
f(x− a)e−ixξdx.

Change variables. Let t = x− a, then dt = dx, and x = t+ a so

F(f(x− a))(ξ) =

∫
R
f(t)e−i(t+a)ξdt = e−iaξ f̂(ξ).

The next one will come from integrating by parts:∫
R
f ′(x)e−ixξdx = f(x)e−ixξ

∣∣∞
−∞ −

∫
R
−iξf(x)e−ixξdx = iξf̂(ξ).

1
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The boundary terms vanish because of reasons (again it is L1 and L2 theory stuff).
Similarly we compute∫

R
xf(x)e−ixξdx = −1

i

∫
R
f(x)

d

dξ
e−ixξdx = i

d

dξ

∫
R
f(x)e−ixξdx = iF(f)′(ξ).

Finally,

F(f ∗ g)(ξ) =

∫
R
f ∗ g(x)e−ixξdx =

∫
R

∫
R
f(x− y)g(y)e−ixξdydx.

We do a little sneaky trick

=

∫
R

∫
R
f(x− y)g(y)e−ixξe−iyξeiyξdydx

=

∫
R

∫
R
f(x− y)e−i(x−y)ξg(y)e−iyξdydx.

Let z = x− y. Then dz = −dy so

=

∫
R

∫ −∞
∞

f(z)e−izξ(−dz)g(y)e−iyξdy =

∫
R

∫
R
f(z)e−izξdzg(y)e−iyξdy

= f̂(ξ)ĝ(ξ).

It shall be quite useful to know how to “undo” the Fourier transform.

Theorem 2 (Extension of Fourier transform to L2). There is a well defined unique
extension of the Fourier transform to L2(R). The Fourier transform of an element
of L2(R) is again an element of L2(R). Moreover, for any f ∈ L2(R) we have the
FIT (Fourier Inversion Theorem):

eq:fiteq:fit (1.1) f(x) =
1

2π

∫
R
f̂(ξ)eixξdξ.

The theory item FIT is a Julklapp. All you need to know is the equation (
eq:fiteq:fit
1.1).

The next theorem is also a theory item, with a short proof. The key is to start on
the right side and use the FIT.

Theorem 3 (Plancharel). For any f ∈ L2(R), f̂ ∈ L2(R). Moreover,

〈f̂ , ĝ〉 = 2π〈f, g〉,
and thus

||f̂ ||2L2 = 2π||f ||2,
for all f and g in L2(R).

Proof: Start with the right side and use the FIT on f , to write

2π〈f, g〉 = 2π

∫
R

∫
R

1

2π
eixξ f̂(ξ)g(x)dξdx =

∫
R

∫
R
eixξ f̂(ξ)g(x)dξdx.

Move the complex conjugate to engulf the eixξ,

=

∫
R

∫
R
f̂(ξ)g(x)e−ixξdξdx.

Swap the order of integration and integrate x first:

=

∫
R

∫
R
f̂(ξ)g(x)e−ixξdxdξ =

∫
R
f̂(ξ)ĝ(ξ)dξ = 〈f̂ , ĝ〉.
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We may from time to time use the following cute fact as well.

Lemma 4 (Riemann & Lebesgue). Assume f ∈ L1(R). Then,

lim
ξ→±∞

f̂(ξ) = 0.

We shall indeed need to actually prove the next one, because it’s going to be
quite important for solving the heat equation on the real line.

1.1. The big bad convolution approximation theorem. This theory item is
Theorem 7.3, regarding approximation of a function by convoluting it with a so-
called “approximate identity.” This theorem and its proof are both rather long.
The proof relies very heavily on knowing the definition of limits and how to work
with those definitions, so if you’re not comfortable with ε and δ style arguments, it
would be advisable to brush up on these.

Theorem 5. Let g ∈ L1(R) such that∫
R
g(x)dx = 1.

Define

α =

∫ 0

−∞
g(x)dx, β =

∫ ∞
0

g(x)dx.

Assume that f is piecewise continuous on R and its left and right sided limits exist
for all points of R. Assume that either f is bounded on R or that g vanishes outside
of a bounded interval. Let, for ε > 0,

gε(x) =
g(x/ε)

ε
.

Then

lim
ε→0

f ∗ gε(x) = αf(x+) + βf(x−) ∀x ∈ R.

Proof. Idea 1: Do manipulations to get a “left side” statement and a “right side”
statement.

We would like to show that

lim
ε→0

∫
R
f(x− y)gε(y)dy = αf(x+) + βf(x−)

which is equivalent to showing that

lim
ε→0

∫
R
f(x− y)gε(y)dy − αf(x+)− βf(x−) = 0.

We now insert the definitions of α and β, so we want to show that

lim
ε→0

∫
R
f(x− y)gε(y)dy −

∫ 0

−∞
f(x+)g(y)dy −

∫ ∞
0

f(x−)g(y)dy = 0.

We can prove this if we show that

♥ : lim
ε→0

∫
−∞

f(x− y)gε(y)dy −
∫ 0

−∞
f(x+)g(y)dy = 0
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and also

? : lim
ε→0

∫ ∞
0

f(x− y)gε(y)dy −
∫ ∞
0

f(x−)g(y)dy = 0.

In the textbook, Folland proves that ? holds. So, for the sake of diversity, we
prove that ♥ holds. The argument is the same for both, so proving one of them is
sufficient.

Hence, we would like to show that by choosing ε sufficiently small, we can make∫ 0

−∞
f(x− y)gε(y)dy −

∫ 0

−∞
f(x+)g(y)dy

as small as we like. To make this precise, let us assume that “as small as we like”
is quantified by a very small δ > 0. Then we show that for sufficiently small ε we
obtain ∣∣∣∣∫ 0

−∞
f(x− y)gε(y)dy −

∫ 0

−∞
f(x+)g(y)dy

∣∣∣∣ < δ.

Idea 2: Smash the two integrals together:∫ 0

−∞
(f(x− y)gε(y)− f(x+)g(y)) dy.

Well, this is a bit inconvenient, because in the first part we have gε, but in the
second part it’s just g.

Idea 3: Sneak gε into the second term. We make a small observation,∫ 0

−∞
g(y)dy =

∫ 0

−∞
g(z/ε)

dz

ε
=

∫ 0

−∞
gε(z)dz

Above, we have made the substitution z = εy, so y = z/ε, and dz/ε = dy. The
limits of integration don’t change. By this calculation,∫ 0

−∞
f(x+)g(y)dy =

∫ 0

−∞
f(x+)gε(y)dy.

(Above the integration variable was called z, but what’s in a name? The name of
the integration variable doesn’t matter!). Moreover, note that f(x+) is a constant,
so it’s just sitting there doing nothing. Hence, we have computed that∫ 0

−∞
(f(x− y)gε(y)− f(x+)g(y)) dy =

∫ 0

−∞
gε(y) (f(x− y)− f(x+)) dy.

Remember that y ≤ 0 where we’re integrating. Therefore, x− y ≥ x.
Idea 4: Use the definition of right hand limit:

lim
y↑0

f(x− y) = f(x+) =⇒ lim
y↑0

f(x− y)− f(x+) = 0.

By the definition of limit there exists y0 < 0 such that for all y ∈ (y0, 0)

|f(x− y)− f(x+)| < δ̃.

We are using δ̃ for now, to indicate that δ̃ is going to be something in terms of
δ, engineered in such a way that at the end of our argument we get that for ε
sufficiently small, ∣∣∣∣∫ 0

−∞
gε(y) (f(x− y)− f(x+)) dy

∣∣∣∣ < δ.
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To figure out this δ̃, we use our estimate on the part of the integral from y0 to 0,∣∣∣∣∫ 0

y0

(f(x− y)− f(x+))gε(y)dy

∣∣∣∣ ≤ ∫ 0

y0

|f(x− y)− f(x+)||gε(y)|dy

≤ δ̃
∫ 0

y0

|gε(y)|dy ≤ δ̃
∫
R
|gε(y)|dy = δ̃||g||.

Above, we have used the same substitution trick to see that∫
R
|gε(y)|dy =

∫
R
|g(z)|dz = ||g||,

where ||g|| is the L1(R) norm of g. By assumption, g ∈ L1(R), so this L1 norm is
finite. Moreover, because we know that∫

R
g(y)dy = 1,

we know that

||g|| =
∫
R
|g(y)|dy ≥

∣∣∣∣∫
R
g(y)dy

∣∣∣∣ = 1.

So, let

δ̃ =
δ

2||g||
.

Note that we’re not dividing by zero, by the above observation that ||g|| ≥ 1. So,
this is a perfectly decent number. Then, we have the estimate (repeating the above
estimate)∣∣∣∣∫ 0

y0

(f(x− y)− f(x+))gε(y)dy

∣∣∣∣ ≤ ∫ 0

y0

|f(x− y)− f(x+)||gε(y)|dy

≤ δ̃
∫ 0

y0

|gε(y)|dy ≤ δ̃
∫
R
|gε(y)|dy = δ̃||g|| = δ

2
.

Idea 5: To deal with the other part of the integral, from −∞ to y0, consider
the two cases given in the statement of the theorem separately. It is important to
remember that

y0 < 0.

So, we wish to estimate ∣∣∣∣∫ y0

−∞
(f(x− y)− f(x+))gε(y)dy

∣∣∣∣ .
First, let us assume that f is bounded, which means that there exists M > 0 such
that |f(x)| ≤M holds for all x ∈ R. Hence

|f(x− y)− f(x+)| ≤ |f(x− y)|+ |f(x+)| ≤ 2M.

So, we have the estimate∣∣∣∣∫ y0

−∞
(f(x− y)− f(x+))gε(y)dy

∣∣∣∣ ≤ ∫ y0

−∞
|f(x−y)−f(x+)||gε(y)|dy ≤ 2M

∫ y0

−∞
|gε(y)|dy.

We shall do a substitution now, letting z = y/ε. Then, as we have computed before,∫ y0

−∞
|gε(y)|dy =

∫ y0/ε

−∞
|g(z)|dz.
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Here the limits of integration do change, because y0 < 0. Specifically y0 6= 0, which
is why the top limit changes. We’re integrating between −∞ and y0/ε. We know
that y0 < 0. So, when we divide it by a really small, but still positive number, like
ε, then y0/ε→ −∞ as ε→ 0. Moreover, we know that∫ 0

−∞
|g(y)|dy <∞.

What this really means is that

lim
R→−∞

∫ 0

R

|g(y)|dy =

∫ 0

−∞
|g(y)|dy <∞.

Hence,

lim
R→−∞

∫ 0

−∞
|g(y)|dy −

∫ 0

R

|g(y)|dy = 0.

Of course, we know what happens when we subtract the integral, which shows that

lim
R→−∞

∫ R

−∞
|g(y)|dy = 0.

Since
lim
ε→0

y0/ε = −∞,

this shows that

lim
ε→0

∫ y0/ε

−∞
|g(y)|dy = 0.

Hence, by definition of limit there exists ε0 > 0 such that for all ε ∈ (0, ε0),∫ y0/ε

−∞
|g(y)|dy < δ

4(M + 1)
.

Then, combining this with our estimates, above, which we repeat here,∣∣∣∣∫ y0

−∞
(f(x− y)− f(x+))gε(y)dy

∣∣∣∣ ≤ ∫ y0

−∞
|f(x−y)−f(x+)||gε(y)|dy ≤ 2M

∫ y0

−∞
|gε(y)|dy

< 2M
δ

4(M + 1)
<
δ

2
.

Therefore, we have the estimate that for all ε ∈ (0, ε0),∣∣∣∣∫ 0

−∞
gε(y) (f(x− y)− f(x+)) dy

∣∣∣∣
≤
∫ 0

−∞
|gε(y)||f(x−y)−f(x+)|dy ≤

∫ y0

−∞
|f(x−y)−f(x+)||gε(y)|dy+

∫ 0

y0

|f(x−y)−f(x+)||gε(y)|dy

<
δ

2
+
δ

2
= δ.

Finally, we consider the other case in the theorem, which is that g vanishes
outside a bounded interval. We retain the first part of our estimate, that is∫ 0

y0

|f(x− y)− f(x+)||gε(y)|dy < δ

2
.

Next, we again observe that

lim
ε↓0

y0
ε

= −∞.
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By assumption, we know that there exists some R > 0 such that

g(x) = 0∀x ∈ R with |x| > R.

Hence, we may choose ε sufficient small so that
y0
ε
< −R.

Specifically, let

ε0 =
1

−Ry0
> 0.

Then for all ε ∈ (0, ε0) we compute that
y0
ε
< −R.

Hence for all y ∈ (−∞, y0/ε) we have g(y) = 0. Thus, we compute as before using
the substitution z = y/ε,∫ y0

−∞
|f(x− y)− f(x+)||gε(y)|dy =

∫ y0/ε

−∞
|f(x− εz)− f(x+)||g(z)|dz = 0,

because g(z) = 0∀z ∈ (−∞, y0/ε). Thus, we have the total estimate that for all
ε ∈ (0, ε0), ∣∣∣∣∫ 0

−∞
gε(y) (f(x− y)− f(x+)) dy

∣∣∣∣
≤
∫ 0

−∞
|gε(y)||f(x−y)−f(x+)|dy ≤

∫ y0

−∞
|f(x−y)−f(x+)||gε(y)|dy+

∫ 0

y0

|f(x−y)−f(x+)||gε(y)|dy

< 0 +
δ

2
≤ δ.

�

1.2. Exercises for the week to be demonstrated. On Monday in the large
group we shall have:

(1) (7.2.13.b) Use Plancharel’s theorem to compute:∫
R

t2

(t2 + a2)(t2 + b2)
dt =

π

a+ b
.

(2) (Eö 12) Let

f(t) =

∫ 1

0

√
wew

2

cos(wt)dw.

Compute ∫
R
|f ′(t)|2dt.

(3) (7.4.1.a,b) Compute the Fourier sine and cosine transforms of e−kx. These
are defined, respectively, to be

Fs[f ](ξ) =

∫ ∞
0

f(x) sin(ξx)dx, Fc[f ](ξ) =

∫ ∞
0

f(x) cos(ξx)dx.

On Wednesday or Friday depending on your group we shall have:

(1) (Eö 6.a, b) Compute the Fourier transforms of:

t

(t2 + a2)2
,

1

(t2 + a2)2
.
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(2) (Eö 7) A function has Fourier transform

f̂(ξ) =
ξ

1 + ξ4
.

Compute ∫
R
tf(t)dt, f ′(0).

(3) (7.3.2) Use the Fourier transform to derive the solution of the inhomoge-
neous heat equation ut = kuxx+G(x, t) with initial condition u(x, 0) = f(x)
(assume f ∈ L2(R):

u(x, t) = f ∗Kt(x) +

∫
R

∫ t

0

G(y, s)Kt−s(x− y)dsdy.

Here

Kt(x) =
1√

4πkt
e−x

2/4kt.

1.3. Exercises for the week to be done oneself.

(1) (Eö 9) Compute (with help of Fourier transform)∫
R

sin(x)

x(x2 + 1)
dx.

(2) (Eö 67) Compute the Fourier transform of the characteristic function for
the interval (a, b) both directly and by using the known case for the interval
(−a, a).

(3) (7.2.8) Given a > 0 let f(x) = e−xxa−1 for x > 0, f(x) = 0 for x ≤ 0.

Show that f̂(ξ) = Γ(a)(1 + iξ)−a where Γ is the Gamma function.
(4) (7.2.12) For a > 0 let

fa(x) =
a

π(x2 + a2)
, ga(x) =

sin(ax)

πx
.

Use the Fourier transform to show that: fa∗fb = fa+b and ga∗gb = gmin(a,b).
(5) (Eö 6.d,e) Compute the Fourier transform of:

e−a|t| sin(bt), (a, b > 0),
t

t2 + 2t+ 5
.

(6) (Eö 15) Find a solution to the equation

u(t) +

∫ t

−∞
eτ−tu(τ)dτ = e−2|t|.

(7) (Eö 11) For the function

f(t) =

∫ 2

0

√
w

1 + w
eiwtdw,

compute ∫
R
f(t) cos(t)dt,

∫
R
|f(t)|2dt.
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JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. Applications of the Fourier transform

We will use the Fourier transform to solve both the homogeneous heat equation as
well as the inhomogeneous heat equation. To do this, we briefly recall an important
calculation. We would like to compute∫

R
e−x

2

dx.

There is a beautiful trick for doing this calculation. Here is where the idea origi-
nates. If this integral were ∫

R
xe−x

2

dx

we would know how to compute it. So we would like to be integrating against xdx
not just dx. When do we have something like xdx? We have something of this form
when we are working in polar coordinates in R2, because there we have rdrdθ. So,
we could compute the integral∫

R2

e−r
2

rdrdθ = 2π

∫ ∞
0

e−r
2

rdr = 2π
e−r

2

−2

∣∣∣∣∣
∞

0

= π.

On the other hand∫
R2

e−r
2

rdrdθ =

∫
R2

e−x
2−y2dxdy =

∫
R
e−x

2

dx

∫
R
e−y

2

dy =

(∫
R
e−x

2

dx

)2

.

Thus ∫
R
e−x

2

dx =
√
π.

1.1. Homogeneous heat equation. We wish to solve:{
ut(x, t)− uxx(x, t) = 0, x ∈ R, t > 0

u(x, 0) = v(x),

where our initial data v is assumed to be bounded, continuous, and also in L2(R).

Idea: Fourier transform the PDE with respect to the x variable,
because x ∈ R, whereas t > 0, but the Fourier transform integrates
over all of R, thus x is the wise choice.

1
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We obtain
ût(ξ, t)− ûxx(ξ, t) = 0.

Now, we use the theorem which gave us the properties of the Fourier transform. It

says that if we take the Fourier transform of a derivative, f̂ ′(ξ) = iξf̂(ξ). Using
this twice,

ûxx(ξ, t) = −ξ2û(ξ, t).

Now, those of you who are picky about switching limits may not like this, but it is
in fact rigorously valid:

∂tû(ξ, t) + ξ2û(ξ, t) = 0.

Hence
∂tû(ξ, t) = −ξ2û(ξ, t).

This is a first order homogeneous ODE for u in the t variable. We can solve it!!!
We do that and get

û(ξ, t) = e−ξ
2tc(ξ).

The constant can depend on ξ but not on t. To figure out what the constant should
be, we use the IC:

û(ξ, 0) = v̂(ξ) =⇒ c(ξ) = v̂(ξ).

Thus, we have found

û(ξ, t) = e−ξ
2tv̂(ξ).

Now, we use another property of the Fourier transform which says

f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ).

So, if we can find a function whose Fourier transform is e−ξ
2t, then we can express

u as a convolution of that function and v. So, we are looking to find

g(x, t) such that ĝ(x, t) = e−ξ
2t.

We use the FIT:

g(x, t) =
1

2π

∫
R
eixξe−ξ

2tdξ.

We can use some complex analysis to compute this integral. To do this, we shall
complete the square in the exponent:

−ξ2t+ ixξ = −
(
ξ
√
t− ix

2
√
t

)2

− x2

4t
.

Therefore we are computing∫
R

exp

(
−
(
ξ
√
t− ix

2
√
t

)2

− x2

4t

)
dξ.

Using a contour integral, we can in fact ignore the imaginary part. To see this,
first note that we are integrating with respect to ξ, so we can for the moment just
consider: ∫ ∞

−∞
exp

(
−
(
ξt− ix

2
√
t

)2
)
dξ.

We draw a box. The box has vertices in the complex plane at the points ±R and
±R+ ix

2
√
t
. The integrand above is holomorphic for all ξ inside this box. Therefore

the integral around the boundary of the box is zero. When ξ = ±R, the integrand
is very small, thus the integrals on the vertical sides of the box tend to zero. Hence
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the integrals along the two horizontal sides of the box are also adding up to zero,
which shows that∫ ∞

−∞
exp

(
−
(
ξt− ix

2
√
t

)2
)
dξ =

∫ ∞
−∞

exp(−ξ2t2)dξ.

So, we compute (using a change of variables to y = ξ
√
t so t−1/2dy = dξ)∫

R
e−ξ

2tdξ =
1√
t

∫
R
e−y

2

dy =

√
π√
t
.

Hence, ∫
R

exp

(
−
(
ξ
√
t− ix

2
√
t

)2

− x2

4t

)
dξ =

√
π√
t
e−

x2

4t .

Recalling the factor of 1/(2π) we have

g(x, t) =
1

2π

√
π√
t
e−

x2

4t =
1

2
√
πt
e−

x2

4t .

Hence the solution is

u(x, t) = g ∗ v(x) =

∫
R

1

2
√
πt
e−(x−y)

2/(4t)v(y)dy.

Exercise 1. Verify that for all x ∈ R and t > 0 our solution satisfies the homoge-
neous heat equation.

Question 1. Why is our solution equal to v when t = 0?

If we naively set t = 0, we obtain an expression that does not make sense. So,
how do we know that this expression indeed gives us our initial data at t = 0? We
use the big bad convolution approximation theorem! Consider the function

ϕ(x) =
e−x

2/4

2
√
π
.

This function satisfies ∫
R
ϕ(x)dx =

1√
π

∫
R
e−z

2

dz = 1,

using the change of variables z = x
2 . This function satisfies the hypotheses of the

theorem (the so-called g function). We have assumed that v is bounded. Therefore
the convolution approximation theorem says that

lim
ε↓0

ϕε ? v(x) = v(x) ∀x ∈ R.

Let’s re-name ε to
√
t, so that

lim√
t↓0
ϕ√t ? v(x) = v(x).

Let’s write out the

ϕ√t ? v(x) =

∫
R

e
− (x−y)2

(2
√

t)2

2
√
π
√
t
v(y)dy.

The theorem says

lim√
t↓0

∫
R

e
− (x−y)2

(2
√

t)2

2
√
π
√
t
v(y)dy = lim

t↓0

∫
R

e−(x−y)
2/(4t)

2
√
πt

v(y)dy = lim
t↓0

u(x, t) = v(x) ∀x ∈ R.
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We therefore understand

u(x, 0) := lim
t↓0

u(x, t) = v(x)∀x ∈ R.

With some abstract uniqueness theory, beyond the scope of this humble course, we
could also prove that our solution u(x, t) is the unique solution to the heat equation
which has initial data equal to v(x) and which is in L2 for all t > 0.

1.2. Inhomogeneous heat equation. If you have an inhomogeneous IVP for the
heat equation, here are two ways to deal with that:

(1) If the inhomogeneity is time independent, look for a steady state solution to
solve the inhomogeneous equation. Then, solve the homogeneous equation,
but change your initial data. If f is your steady state solution and v was
your initial data (before f came along), solve the IVP for the homogeneous
heat equation with IC v − f rather than just v.

(2) If the inhomogeneity is time dependent, you can try to solve by Fourier
transforming the whole PDE.

Since we know how to do the first type of example, let us consider the second
type of example. We want to solve an inhomogeneous heat equation on R:

ut − uxx = G(x, t), u(x, 0) = v(x) is continuous, bounded, and in L2.

Let’s try the Fourier transform method:

∂tû(ξ, t) + ξ2û(ξ, t) = Ĝ(ξ, t).

This is a first order ODE. If you are a CHEMIST, then you did the special extra
part of the course and actually learned how to solve this ODE in t. Pretty cool.
To see how this works, treat ξ like a constant, and write

f ′(t) + ξ2f(t) = Ĝ(ξ, t).

The mµthod says to first compute

e
∫
ξ2dt = eξ

2t.

Next compute ∫
eξ

2tĜ(ξ, t)dt.

Then, the solution is∫
eξ

2tĜ(ξ, t)dt+ C(ξ)

eξ2t
= e−ξ

2t

∫
eξ

2sĜ(ξ, s)ds+ C(ξ)e−ξ
2t.

We would like the initial condition to be satisfied, so when t = 0 we should obtain
that this is equal to the Fourier transform of the initial data,

v̂(ξ).

We are free to choose any primitive function of e−ξ
2sĜ(ξ, s). It is very convenient

to choose the one which vanishes when t = 0, namely∫ t

0

e−ξ
2sĜ(ξ, s)ds.
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Then to obtain the initial condition, we just let C(ξ) = v̂(ξ). Thus, our Fourier
transformed solution is

e−ξ
2t

∫ t

0

e−ξ
2sĜ(ξ, s)ds+ v̂(ξ)e−ξ

2t.

We need to figure out from whence this Fourier transform came (equivalently,
invert the Fourier transform). This is a linear process, so we can deal with each
piece separately and then add them. Well, the second part we did last time. We
saw that the Fourier transform of

1

2
√
πt

∫
R
e−

(x−y)2

4t v(y)dy

is

v̂(ξ)e−ξ
2t.

Similarly, let’s look at the first part. It is

e−ξ
2t

∫ t

0

eξ
2sĜ(ξ, s)ds =

∫ t

0

e−ξ
2(t−s)Ĝ(ξ, s)ds.

By the same calculations, the Fourier transform of

1

2
√
π(t− s)

∫
R
e−

(x−y)2

4(t−s) G(y, s)dy = e−ξ
2(t−s)Ĝ(ξ, s).

Yet again playing switch-a-roo with limits1,

F

(∫ t

0

1

2
√
π(t− s)

∫
R
e−

(x−y)2

4(t−s) G(y, s)dyds

)
(ξ) =

∫ t

0

e−ξ
2(t−s)Ĝ(ξ, s)ds.

Therefore, our full solution is∫ t

0

1

2
√
π(t− s)

∫
R
e−

(x−y)2

4(t−s) G(y, s)dyds+

∫
R

1

2
√
πt
e−

(x−y)2

4t v(y)dy.

This solution satisfies our initial data because

lim
t↓0

∫ t

0

1

2
√
π(t− s)

∫
R
e−

(x−y)2

4(t−s) G(y, s)dyds = 0,

and just as in the homogeneous heat equation, we have by the convolution approx-
imation theorem that

lim
t↓0

∫
R

1

2
√
πt
e−

(x−y)2

4t v(y)dy = v(x) ∀x ∈ R.

1.3. Computing tricky integrals (sometimes you can compute integrals
that computers cannot!) The following is a very useful observation:

f̂(0) =

∫
R
f(x)dx.

So, if you have the integral of a function, this is equal to the value of its Fourier
transform at ξ = 0. So, if you can look up the Fourier transform of the function,
like in Beta or Folland, then to compute the integral, no need for fancy contour
integrals, simply pop ξ = 0 into the Fourier transform.

1Trust me!



6 JULIE ROWLETT

Here is an example:

compute:

∫
R

1

x2 + 9
dx.

We see this is # 10 in Folland’s TABLE 2. On the right side, we get the Fourier
transform (with a = 3) is given by

π

3
e−3|ξ|.

So, this integral is the Fourier transform with ξ = 0, hence the value of the integral
is

π

3
.

That was pretty easy right? For something more complicated, you could have say∫
R
f(x)g(x)dx,

with some icky functions f and g (see extra övning # 9). Now, you can use that
the Fourier transform of a product is

(2π)−1(f̂ ∗ ĝ)(ξ).

Hence, what you have above is∫
R
f(x)g(x)dx =

∫
R
e−i(0)xf(x)g(x)dx = (2π)−1(f̂ ∗ ĝ)(0).

So, if the Fourier transforms of these functions are somewhat better than the func-
tions f and g, then the stuff on the right could be nicely computable and give you
the integral on the left. Try # 9 to see how this works. (If you get stuck, Team
Fourier is here to help! Just ask us!)

As another example, there is extra exercise number 10. It says you know the
Fourier transform of f(t) is 1

|w|3+1 . We are then asked to compute∫
R
|f ∗ f ′|2dt.

By the Plancharel theorem,∫
R
|f ∗ f ′|2dt =

1

2π

∫
R
|f̂ ∗ f ′|2dt.

Now we use the theorem on the properties of the Fourier transform which says

f̂ ∗ f ′(ξ) = f̂(ξ)f̂ ′(ξ).

Now we use that same theorem to say that

f̂ ′(ξ) = iξf̂(ξ).

So, the stuff on the right is

1

2π

∫
R
|f̂(ξ)iξf̂(ξ)|2dξ.

We are given what the Fourier transform is, so we put it in there:

1

2π

∫
R

ξ2

(|ξ|3 + 1)4
dξ.
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Now this isn’t so terrible. It’s an even function so this is

1

π

∫ ∞
0

ξ2

(ξ3 + 1)4
dξ.

It just so happens that the derivative of

1

(ξ3 + 1)3
is
−9ξ2

(ξ3 + 1)4
,

so
1

π

∫
R

ξ2

(ξ3 + 1)4
dξ =

−1

9π

1

(ξ3 + 1)3

∣∣∣∣∞
0

=
1

9π
.

1.4. Exercises for the week to be done oneself: hints.

(1) (Eö 9) Compute (with help of Fourier transform)∫
R

sin(x)

x(x2 + 1)
dx.

Hint: There are disguised zeros and ones hiding all over the place in
mathematics. The above is equal to∫

R

sin(x)

x(x2 + 1)
e−i(0)xdx = F

(
sinx

x

1

x2 + 1

)
(0).

So, we now look at Table 2 in Folland, especially item number 8. It says
that the Fourier transform of a product is a convolution of the Fourier
transforms. So, we apply this to say

F
(

sinx

x

1

x2 + 1

)
(0) =

1

2π
F
(

sinx

x

)
∗ F

(
1

x2 + 1

)
(0).

Now we use items 10 and 13 from the same table, together with the def-
inition of the convolution, to substitute for the Fourier transforms on the
right side:

1

2π

∫
R
πχ1(0− y)πe−|y|dy.

Recalling what χ1 means:

=
π

2

∫ 1

−1
e−|y|dy.

I leave it to you do compute the integral!
(2) (Eö 67) Compute the Fourier transform of the characteristic function for

the interval (a, b) both directly and by using the known case for the interval
(−a, a).

Hint: Well, doing it directly we are computing∫ b

a

e−ixξdx =

{
b− a ξ = 0
i
ξ

(
e−biξ − e−aiξ

)
ξ 6= 0

To do it the other way, it’s convenient to introduce some notations:

m :=
a+ b

2
, ` :=

b− a
2

.
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Then our interval is [m− `,m+ `]. So we are computing∫ m+`

m−`
e−ixξdx.

To make this more familiar let’s do a change of variables so that the integral
goes from −` to `, so we let t = x−m, then dt = dx, so we are computing∫ `

−`
e−i(t+m)ξdt = e−imξ

∫ `

−`
e−itξdt = e−imξχ̂[−`,`](ξ).

So now for the Fourier transform of the characteristic function of the inter-
val, that is the function χ[−`,`] we can use the item 12 in Table 2 of Folland.
With a little algebraic manipulations, one can show that these both roads
lead to the same answer.

(3) (7.2.8) Given a > 0 let f(x) = e−xxa−1 for x > 0, f(x) = 0 for x ≤ 0.

Show that f̂(ξ) = Γ(a)(1 + iξ)−a where Γ is the Gamma function.
Hint: one is computing∫ ∞

0

e−xe−ixξxa−1dx =

∫ ∞
0

e−x(1+iξ)xa−1dx.

On the other hand,

Γ(a) =

∫ ∞
0

ta−1e−tdt.

Try doing a substitution to relate these integrals...
(4) (7.2.12) For a > 0 let

fa(x) =
a

π(x2 + a2)
, ga(x) =

sin(ax)

πx
.

Use the Fourier transform to show that: fa∗fb = fa+b and ga∗gb = gmin(a,b).
Hint: The idea is basically repeated use of the items in Folland’s Table

2, and using the FIT. First, compute the Fourier transform of fa ∗ fb which

is f̂a(ξ)f̂b(ξ), so you can write this stuff down. You will get something like
e−|x|.... Next, use the FIT to return to fa ∗ fb. Note that one way to write
the FIT is

f(x) =
1

2π
̂̂
f(−x).

Do something similar for the second one...
(5) (Eö 6.d,e) Compute the Fourier transform of:

e−a|t| sin(bt), (a, b > 0),
t

t2 + 2t+ 5
.

Hint: I might deal with the first one by splitting up the sine into its com-
plex exponentials, using definition of Fourier transform, and just directly
integrating. As for the second one, note that t2 + 2t + 5 = (t + 1)2 + 4.
Do a substitution in the definition of the Fourier transform, let x = t + 1.
Then use item 10 on Folland’s Table 2.

(6) (Eö 15) Find a solution to the equation

u(t) +

∫ t

−∞
eτ−tu(τ)dτ = e−2|t|.
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Hint: This is a tricky one! First turn the integral into a convolution. How
to do that? Try using Θ(τ)e−|τ |. Write out the convolution of that function
together with u(τ). Next, Fourier transform both sides of the equation. So
you will get

û(ξ) + ̂(Θ(τ)e−|τ |)(ξ)û(ξ) = ê−2|t|(ξ).

Compute the Fourier transforms of everything except u. Solve the equation
for û(ξ). Then use the FIT. When you use the FIT, if you do it using
contour integrals and the residue, you will need to think about the cases
x > 0 and x < 0 separately. For x > 0 the up-rainbow will work. For x < 0
the down-rainbow will work.

(7) (Eö 11) For the function

f(t) =

∫ 2

0

√
w

1 + w
eiwtdw,

compute ∫
R
f(t) cos(t)dt,

∫
R
|f(t)|2dt.

Hint: This is tricky also. Let me define a new function for us:

φ(w) := χ[0,2](w)

√
2

1 + w
.

Then
f(t) = φ̂(−t).

Oh no she didn’t. Yeah. So, for the first one, note that this integral is,
expanding the cosine as a sum of complex exponentials∫

R
f(t) cos(t)dt =

1

2

(
f̂(1) + f̂(−1)

)
.

Play around with the FIT and the fact that f(t) = φ̂(−t) to figure out the
right side. Next, note that∫

R
|f(t)|2dt =

∫
R
|φ̂(−t)|2dt = 2π

∫
R
|φ(t)|2dt.

The integral of |φ|2 is hopefully not that terrible...

References
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JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. The Sampling Theorem

This theorem is all about the interaction between Fourier series and Fourier
coefficients and how to work with both simultaneously. It is one of the theory
items, so its proof is important.

Theorem 1. Let f ∈ L2(R). We take the definition of the Fourier transform of f
to be ∫

R
e−ixξf(x)dx,

and we then assume that there is L > 0 so that f̂(ξ) = 0 ∀ξ ∈ R with |ξ| > L.
Then:

f(t) =
∑
n∈Z

f
(nπ
L

) sin(nπ − tL)

nπ − tL
.

Proof:

Idea: Since the Fourier transform f̂ has compact support, we can
expand it as a Fourier series.

We therefore have

f̂(x) =

∞∑
−∞

cne
inπx/L, cn =

1

2L

∫ L

−L
e−inπx/Lf̂(x)dx.

Idea: Use the FIT to express f in terms of its Fourier transform.

We therefore have

f(t) =
1

2π

∫
R
eixtf̂(x)dx =

1

2π

∫ L

−L
eixtf̂(x)dx.

On the left we have used the fact that f̂ is supported in the interval [−L,L], thus
the integrand is zero outside of this interval, so we can throw that part of the
integral away.

Idea: Substitute the Fourier expansion of f̂ into the integral.
1
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So, we have

f(t) =
1

2π

∫ L

−L
eixt

∞∑
−∞

cne
inπx/Ldx.

From here until the end of the proof, we will essentially just be computing. The
coefficients

cn =
1

2L

∫ L

−L
e−inπx/Lf̂(x)dx =

1

2L

∫
R
eix(−nπ/L)f̂(x)dx =

2π

2L
f

(
−nπ
L

)
.

In the second equality we have used the fact that f̂(x) = 0 for |x| > L, so by
including that part we don’t change the integral. In the third equality we have
used the FIT!!! So, we now substitute this into our formula above for

f(t) =
1

2π

∫ L

−L
eixt

∞∑
−∞

π

L
f

(
−nπ
L

)
einπx/Ldx

This is approaching the form we wish to have in the theorem, but the argument of
the function f has a pesky negative sign. That can be remedied by switching the
order of summation, which does not change the sum, so

f(t) =
1

2L

∫ L

−L
eixt

∞∑
−∞

f
(nπ
L

)
e−inπx/Ldx.

We may also interchange the summation with the integral1

f(t) =
1

2L

∞∑
−∞

f
(nπ
L

)∫ L

−L
ex(it−inπ/L)dx.

We then compute∫ L

−L
ex(it−inπ/L)dx =

eL(it−inπ/L)

i(t− nπ/L)
− e−L(it−inπ/L)

i(t− nπ/L)
=

2i

i(t− nπ/L)
sin(Lt− nπ).

Substituting,

f(t) =
∞∑
−∞

f
(nπ
L

) sin(Lt− nπ)

Lt− nπ
.

Of course my dyslexia has ended up with things being backwards, but it is not a
problem because sine is odd so

sin(Lt− nπ) = − sin(nπ − Lt),

so
sin(Lt− nπ)

Lt− nπ
=
− sin(nπ − Lt)

Lt− nπ
=

sin(nπ − Lt
nπ − Lt

.

1None of this makes sense pointwise; we are working over L2. The key property which allows

interchange of limits, integrals, sums, derivatives, etc is absolute convergence. This is the case

here because elements of L2 have
∫
|f |2 < ∞. That is precisely the type of absolute convergence

required.
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2. Fourier sine and cosine transforms and applications to PDEs on
half-spaces

Today we shall investigate some transforms related to the Fourier transform.
The first two can be used to solve PDEs on half lines, if the boundary condition is
suitable.

2.1. Motivation: heat equation on a semi-infinite rod with an insulated
end. We have found ourselves in possession of a giant rod which is insulated at
the one end and goes out to infinity at the other. It has an initial temperature
distribution given by a function f(x) which is bounded, continuous and an element
of L2. We therefore wish to solve the problem:

ut − uxx = 0, ux(0, t) = 0, u(x, 0) = f(x), x ∈ [0,∞).

To solve such a problem we will use a Fourier cosine transform together with the
Fourier cosine transform inverse theorem.

2.2. Fourier sine and cosine transforms and their inverse formulas.

Definition 2. Let f be in L1 or L2 on (0,∞). The Fourier cosine transform,

Fc(f)(ξ) :=

∫ ∞
0

f(x) cos(ξx)dx.

The Fourier sine transform,

Fs(f)(ξ) :=

∫ ∞
0

f(x) sin(ξx)dx.

As with the Fourier transform, the Fourier sine and cosine transforms also have
inversion formula.

Theorem 3. Assume that f ∈ L2[0,∞). Then we have the Fourier cosine inversion
formula

f(x) =
2

π

∫ ∞
0

Fc(f)(ξ) cos(xξ)dξ.

We also have the Fourier sine inversion formula

f(x) =
2

π

∫ ∞
0

sin(xξ)Fs(f)(ξ)dξ.

Proof: First, let us extend f evenly to R, denoting this extension by fe, so that
fe(−x) = fe(x). We compute the standard Fourier transform:

f̂e(ξ) =

∫
R
fe(x)e−ixξdx =

∫
R
fe(x)(cos(xξ)− i sin(xξ))dx = 2

∫ ∞
0

f(x) cos(xξ)dx.

The term with the sine has dropped out because fe(x) sin(xξ) is an odd function of
x. The term with the cosine gets doubled because fe(x) cos(xξ) is an even function.
So, all together we have computed:

f̂e(ξ) = 2

∫ ∞
0

f(x) cos(xξ)dx = 2Fc(f)(ξ).

Since the cosine is an even function,

f̂e(ξ) = f̂e(−ξ).
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So, we also have that Fc(f) is an even function. The inversion formula (FIT) says
that

fe(x) =
1

2π

∫
R
eixξ f̂e(ξ)dξ =

1

π

∫
R
eixξFc(f)(ξ)dξ

=
1

π

∫
R

(cos(xξ) + i sin(xξ))Fc(f)(ξ)dξ =
2

π

∫ ∞
0

eixξFc(f)(ξ)dξ.

This is the cosine-FIT! Above we have used the fact that Fc(f) is an even function.
Hence its product with the cosine is also an even function, so that part of the
integral gets a factor of two when we integrate only over the positive real line. The
product of an even function like Fc(f) with an odd function, like the sine, is odd,
so that integral vanishes.

On the other hand, we may also define the odd extension, fo which satisfies
fo(−x) = −fo(x) (for x 6= 0). The value of f at zero is not really important at this
moment.2 We compute the standard Fourier transform of the odd extension:

f̂o(ξ) =

∫
R
fo(x)e−ixξdx =

∫
R
fo(x)(cos(xξ)−i sin(xξ))dx = −2i

∫ ∞
0

f(x) sin(xξ)dx

= −2iFs(f)(ξ).

Above, we have used the fact that fo is odd, and therefore so is its product with
the cosine. On the other hand, the product with the sine is an even function, which

explains the factor of 2. Since the sine itself is odd, we have that f̂o is an odd
function and similarly Fs(f)(ξ) is also an odd function. We apply the FIT:

fo(x) =
1

2π

∫
R
eixξ f̂o(ξ)dξ = − i

π

∫
R

(cos(xξ) + i sin(xξ))Fs(f)(ξ)dξ

=
1

π

∫
R

sin(xξ)Fs(f)(ξ)dξ =
2

π

∫ ∞
0

sin(xξ)Fs(f)(ξ)dξ).

This is the sine-FIT! Above we have used the fact that Fs(f) is an odd function,
and therefore so is its product with the cosine. On the other hand the product of
two odd functions is an even function, so that is the reason for the factor of 2.

2.3. Solving the heat equation on a semi-infinite rod with insulated end.
We wish to solve the problem:

ut − uxx = 0, ux(0, t) = 0, u(x, 0) = f(x), x ∈ [0,∞).

Assume that by some method, we have obtained a solution u(x, t) defined on
[0,∞)x × [0,∞)t. To see if we may use a Fourier sine or cosine transform method,
let us see what happens when we extend our solution evenly or oddly. The even
extension would satisfy, by the cosine-FIT:

ue(x, t) =
2

π

∫ ∞
0

Fc(u)(ξ) cos(xξ)dξ.

The odd extension would satisfy, by the sine-FIT

uo(x, t) =
2

π

∫ ∞
0

sin(xξ)Fs(f)(ξ)dξ.

2This is because we are working in L2 which ignores sets of measure zero, and a single point
is a set of measure zero.
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OBS! The extension matches up with our original function on the positive real line
(that is how an extension works!) We need the derivative with respect to x to vanish
at x = 0. Let’s just differentiate these expressions. Note that the x dependence is
only in the sine or cosine term so we have:

∂xue(x, t) = − 2

π

∫ ∞
0

Fc(u)(ξ)ξ sin(xξ)dξ =⇒ ∂xue(0, t) = 0.

On the other hand

∂xuo(x, t) =
2

π

∫ ∞
0

ξ cos(xξ)Fs(u)(ξ)dξ =⇒ ∂xuo(0, t) =
2

π

∫ ∞
0

ξFs(u)(ξ)dξ =???

The even extension automatically gives us the desired boundary condition whereas
the odd extension leads to something complicated looking, which we have no reason
to know is zero.

This indicates that we have a decent chance of solving the problem by:

(1) Extending the initial data evenly to the real line.
(2) Solving the problem using the Fourier transform on the real line.
(3) Verifying that the solution satisfies all the conditions: the PDE, the IC,

and the BC.

We do this. Extend f evenly, and write the extension as fe. Then the solution
to the homogeneous heat equation on the real line with initial data fe is

ue(x, t) =
1

2
√
πt

∫
R
fe(y)e−

(x−y)2

4t dy.

We split up the integral:∫ 0

−∞
fe(y)e−(x−y)

2/(4t)dy +

∫ ∞
0

fe(y)e−(x−y)
2/(4t)dy

= −
∫ 0

∞
fe(z)e

−(z+x)2/(4t)dz +

∫ ∞
0

fe(y)e−(x−y)
2/(4t)dy.

Above we made the substitution that z = −y in the first integral. Due to the
evenness of fe, nothing happens when we change y = −z. Reversing the limits of
integration we obtain

−
∫ 0

∞
fe(z)e

−(z+x)2/(4t)dz =

∫ ∞
0

fe(z)e
−(z+x)2/(4t)dz =

∫ ∞
0

fe(y)e−(x+y)
2/(4t)dy.

So, all together we have

ue(x, t) =
1

2
√
πt

∫ ∞
0

f(y)

(
e−

(x−y)2

4t + e−
(x+y)2

4t

)
dy.

Is this an even function? Let us verify:

e−
(x−y)2

4t + e−
(x+y)2

4t = e−
(−x−y)2

4t + e−
(−x+y)2

4t .

AWESOME! Our solution to the heat equation in this way is EVEN. Therefore, it
is the same on the left and right sides. So, we can simply let

u(x, t) = ue(x, t) =
1

2
√
πt

∫ ∞
0

f(y)

(
e−

(x−y)2

4t + e−
(x+y)2

4t

)
dy.

The way we have built it, it satisfies the IC, BC, and the PDE!
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Exercise 1. Solve:

ut − uxx = 0, u(0, t) = 0, u(x, 0) = φ(x), x ∈ [0,∞).

Above, we assume that φ is bounded, continuous, and in L2. Hint: extend φ oddly
this time, and use the Fourier sine inverse theorem.

2.4. Discrete and fast Fourier transform. We have seen that computing the
Fourier transform is not the easiest thing in the world. The example with the
Gaussian involving all those tricks: completing the square, complex analysis and
contour integral is a nice and easy case. However, in the real world you may come
across functions and not know how to compute the Fourier transform by hand, nor
be able to find it in BETA. It could be lurking in one of our giant handbooks of
calculations (Abramowitz & Stegun, Gradshteyn & Rhizik, to name a few). Or it
could simply never have been computed analytically. In this case you may compute
something called the discrete Fourier transform.

We start with a function, f(t), and think of analyzing f(t) as time analysis,

whereas analyzing f̂(ξ) as frequency analysis. We shall consider a finite dimensional
Hilbert space:

CN =

{
(sn)N−1n=0 , sn ∈ C, 〈(sn), (tn)〉 :=

N−1∑
n=0

sntn

}
.

Now let

ek(n) :=
e2πikn/N√

N
.

Proposition 4. Let

ek := (ek(n))N−1n=0 .

Then

{ek}N−1k=0

are an ONB of CN .

Proof: We simply compute. It is so cute and discrete!

〈ek, ej〉 =
1

N

N−1∑
n=0

e2πikn/Ne−2πijn/N =
1

N

N−1∑
n=0

e2πi(k−j)n/N .

If j = k the terms are all 1, and so the total is N which divided by N gives 1.
Otherwise, we may without loss of generality assume that k > j (swap names if not
the case). Then we are staring at a geometric series! We know how to sum it

N−1∑
n=0

e2πi(k−j)n/N =
1− e2πi(k−j)N/N

1− e2πi(k−j)/N
= 0.

Here it is super important that k−j is a number between 1 and N−1. We know this
because 0 ≤ j < k ≤ N − 1. Hence when we subtract j from k, we get something
between 1 and N − 1. So we are not dividing by zero!
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Now we shall fix T small and N large and look at f(t) just on the interval
[0, (N − 1)T ]. Let

f(tn) := f(nT ), tn = nT.

Basically, we’re going to identify f with an element of CN , namely

(f(tn))N−1n=0 .

Definition 5. Let

wk :=
2πk

NT
.

The discrete Fourier transform of f at wk is defined to be

F (wk) := 〈(f(tn)), ek〉 =

N−1∑
n=0

f(tn)e−2πikn/N√
N

.

This can also be written as
N−1∑
n=0

f(tn)e−iwktn

√
N

.

Example 1. One of the fun facts about the discrete Fourier transform is that we
can Fourier transform functions which are neither in L2 nor in L1. For example,
let’s compute the discrete Fourier transform of

f(x) = x, T =
1

10
, N = 5.

So, we identify f with the vector

(0, 0.1, 0.2, 0.3, 0.4).

Then,

F (wk) :=

4∑
n=0

ne−2πikn/5

10
√

5
.

So, we identify the Fourier transform of f with the vector(
4∑

n=0

n

10
√

5
,

4∑
n=0

ne−2πin/5

10
√

5
,

4∑
n=0

ne−4πin/5

10
√

5
,

4∑
n=0

ne−6πin/5

10
√

5
,

4∑
n=0

ne−8πin/5

10
√

5

)
.

Proposition 6. We have the inversion formula

f(tn) =

N−1∑
k=0

F (wk)en(k) = 〈(F (wk)), en〉.

Proof: We simply compute. By definition

〈(F (wk)), en〉 =

N−1∑
k=0

F (wk)en(k).

Now, we insert the definition of F (wk) which gives us another sum, so we use a
different index there. Hence we have

N−1∑
k=0

N−1∑
m=0

f(tm)e−iwktm

√
N

e2πikn/N√
N

=
1

N

∑∑
f(tm)e−2πikm/Ne2πikn/N

=
1

N

∑∑
f(tm)e2πik(n−m)/N =

1

N

N−1∑
m=0

f(tm)

N−1∑
k=0

e2πik(n−m)/N
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=

N−1∑
m=0

f(tm)

N−1∑
k=0

e−2πikm/N√
N

e−2πikn/N√
N

=

N−1∑
m=0

f(tm)〈em, en〉.

By the proposition we just proved before,

〈em, en〉 = δn,m =

{
0 n 6= m

1 n = m.

So, the only term which survives is when m = n, and so we get

f(tn).

Example 2. Now, let’s see if the inversion formula actually works for our exam-
ple... First, we should have

4∑
k=0

F (wk)e0(k) =

4∑
k=0

4∑
n=0

ne−2πikn/5

10
√

5

1√
5

=
1

50

4∑
n=0

n

4∑
k=0

e−2πikn/5 =
1

50

4∑
n=1

1− e−2πin

1− e−2πin/5
= 0 = f(t0).

Let’s try another value:

4∑
k=0

F (wk)e1(k) =

4∑
k=0

4∑
m=0

me−2πikm/5

10
√

5

e2πik/5√
5

=
1

50

4∑
n=1

n

4∑
k=0

e−2πik(n−1)/5.

For n = 2, 3, 4, the sum over k gives

1− e−2πi(n−1)

1− e−2πi(n−1)/5
= 0.

For n = 1, the sum over k gives 5. Thus, the only term that survives is the term
with n = 1, for which we obtain

1

50
(1)(5) =

1

10
= f(t1).

So, it is indeed working as it should. This is rather tedious, however.

Now, we can see this as matrix multiplication. In the discrete Fourier transform,
we sampled f at the finitely many points t0, . . . , tN−1. We therefore identify f with
a vector 

f(t0)
f(t1)

...
f(tN−1)

 .
Similarly, the Fourier transform can be identified with the vector:

F (w0)
F (w1)
. . .

F (wN−1)

 .
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This vector is the product of the matrix[
ē0 ē1 . . . ēN−1

]
whose columns are

ēn =
1√
N



e0

e−2πin/N

e−2πi(2)n/N

. . . e−2πikn/N

. . .
e−2πin(N−1)/N


together with the vector 

f(t0)
f(t1)
. . .

f(tN−1)


That is 

F (w0)
F (w1)
. . .

F (wN−1)

 =
[
ē0 ē1 . . . ēN−1

] 
f(t0)
f(t1)
. . .

f(tN−1)


This entails a LOT of calculations. We can speed it up by being clever. Many

calculations are repeated in fact. Assume that N = 2X for some giant power X.
The idea is to split up into even and odd terms. We do this:

F (wk) =
1√
N

N
2 −1∑
j=0

f(t2j)e
−2πik(2j)/N +

N
2 −1∑
j=0

f(t2j+1)e−2πik(2j+1)/N

 .
We introduce the slightly cumbersome notation:

ekN (n) = e−2πikn/N .

Then,

ekN (2j) = e−2πik(2j)/N = e−2πikj/(N/2) = ekN/2(j).

Now we only need an N
2 ×

N
2 matrix! You see, writing this way,

F (wk) =
1√
N

N
2 −1∑
j=0

f(t2j)e
k
N/2(j) + ekN (1)

N
2 −1∑
j=0

f(t2j+1)ekN/2(j)

 .
We can repeat this many times because N is a power of 2. We just keep chopping
in half. If we do this as many times as possible, we will need to do on the order of

N

2
log2(N)

computations. This is in comparison to the original method which had an N ×N
matrix and was thus on the order of N2 computations. For example, if N = 210,
then comparing N2 = 220 to N

2 log2N = 29 ∗ 10, we see that

210 ∗ 5

220
=

x

100
=⇒ 100 ∗ 210 ∗ 5 = 220x =⇒ 22 ∗ 53 ∗ 2102−20 = x,

so
532−8 = x ≈ 0.488.
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This means the amount of work we are doing by using the FFT is less than 0.5%
of the work done using the standard DFT. In other words, we save over 99.5% by
doing the FFT. That’s why it’s called FAST.

2.5. Answers to the exercises to be done oneself.

(1) (Eö 9) Compute (with help of Fourier transform)∫
R

sin(x)

x(x2 + 1)
dx.

(This is in the back of the EÖ document!)
(2) (Eö 67) Compute the Fourier transform of the characteristic function for

the interval (a, b) both directly and by using the known case for the interval

(−a, a). (This is in the back of the EÖ document!)
(3) (7.2.8) Given a > 0 let f(x) = e−xxa−1 for x > 0, f(x) = 0 for x ≤ 0.

Show that f̂(ξ) = Γ(a)(1 + iξ)−a where Γ is the Gamma function.
Well, there are not really answers to make sense of here. My hint was to

do a substitution of variables:

f̂(ξ) =

∫ ∞
0

e−ixξ−xxa−1dx.

On the other hand

Γ(a) =

∫ ∞
0

e−tta−1dt.

So let’s try making

x(1 + iξ) = t =⇒ dx(1 + iξ) = dt =⇒ dt

1 + iξ
= dx.

Our integral becomes

f̂(ξ) =

∫ (1+iξ)∞

0

e−t
(

t

1 + iξ

)a−1
dt

1 + iξ

= (1 + iξ)−a
∫ (1+iξ)∞

0

e−tta−1dt.

We integrate along the line from 0 to (1 + iξ)R = R + iRξ. For ξ > 0
that is the first diagonal bit. Next, integrate from R + iRξ to R. The
integrate back along the real axis from R to zero. Our integrand is e−zza−1.
Inside the triangle it’s holomorphic. So by complex analysis the integral
around the triangle is zero. Since |e−z| = e−x if z = x + iy for x, y ∈ R,
along the right side of the triangle the integral is super small, tending
to zero. That says the the integral along this funny diagonal line and
the integral going from R to 0 are tending to be equal. More precisely

limR→∞
∫ R(1+iξ)

0
f(z)dz +

∫ 0

R
f(z)dz = 0. Hence since flipping the integral

changes its sign limR→∞
∫ R(1+iξ)

0
f(z)dz =

∫∞
0
f(z)dz. So

f̂(ξ) = (1 + iξ)−a
∫ (1+iξ)∞

0

e−tta−1dt = (1 + iξ)−a
∫ ∞
0

e−tta−1dt.

This is (1 + iξ)−aΓ(a).



FOURIER ANALYSIS & METHODS 2020.02.21 11

(4) (7.2.12) For a > 0 let

fa(x) =
a

π(x2 + a2)
, ga(x) =

sin(ax)

πx
.

Use the Fourier transform to show that: fa∗fb = fa+b and ga∗gb = gmin(a,b).
So we transform:

f̂a ∗ fb(ξ) = f̂a(ξ)f̂b(ξ) = e−a|ξ|−b|ξ| = e−(a+b)|ξ.

Now we use the FIT to say:

fa ∗ fb(x) =
1

2π

∫
R
e−(a+b)|ξ|eixξdξ.

OBS! The integral on the right side this is the Fourier transform of e−(a+b)|ξ|

at the point −x rather than x. So we use our beloved Table 2 (item 11) to
say that the Fourier transform of this function at the point −x is

2(a+ b)(x2 + (a+ b)2)−1,

so substituting

fa ∗ fb(x) =
1

2π
2(a+ b)(x2 + (a+ b)2)−1 =

(a+ b)

π(x2 + (a+ b)2)
= fa+b(x).

We do the same trick to solve the g exercise, yo.

ĝa ∗ gb(ξ) = ĝa(ξ)ĝb(ξ) = χa(ξ)χb(ξ) = χmin(a,b)(ξ).

The last step follows from the the definition of the characteristic function.
So, we use the FIT again to say:

ga ∗ gb(x) =
1

2π

∫
R
eixξχmin(a,b)(ξ)dξ.

Same trick: integral on the right is the Fourier transform of χmin(a,b) at the
point −x (rather than x). So we use our favorite Table 2 to say that

ga ∗ gb(x) =
1

2π
x−12 sin(min(a, b)x) =

sin(min(a, b)x)

πx
= gmin(a,b)(x).

(5) (Eö 6.d,e) Compute the Fourier transform of:

e−a|t| sin(bt), (a, b > 0),
t

t2 + 2t+ 5
.

(This is in the back of the EÖ document!)
(6) (Eö 15) Find a solution to the equation

u(t) +

∫ t

−∞
eτ−tu(τ)dτ = e−2|t|.

(This is in the back of the EÖ document!)
(7) (Eö 11) For the function

f(t) =

∫ 2

0

√
w

1 + w
eiwtdw,

compute ∫
R
f(t) cos(t)dt,

∫
R
|f(t)|2dt.

(This is in the back of the EÖ document!)
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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. Dirichlet problem in a quadrant

Consider the problem

uxx + uyy = 0, x, y > 0, u(x, 0) = f(x), u(0, y) = g(y).

To deal with these inhomogeneities let us instead solve two nicer problems:

(1) wxx + wyy = 0, x, y > 0, w(x, 0) = f(x), w(0, y) = 0.
(2) vxx + vyy = 0, x, y > 0, v(x, 0) = 0, v(0, y) = g(y).

The full solution will then be obtained by setting

u(x, y) = w(x, y) + v(x, y).

Exercise 1. Verify that if w and v solve the problems above, then indeed u solves
the original problem.

We would like to use Fourier methods, but the problems we have above x, y > 0.
The Fourier transform is defined on the whole plane. So, we may wish to use an
even or odd extension.

Idea: To solve a problem like wxx+wyy = 0, x, y > 0, w(x, 0) =
f(x), w(0, y) = 0, look at the boundary condition. The solution
should vanish at x = 0. Now think about sine and cosine. Which
of these vanishes at x = 0? The sine. That is an odd function. So
this gives us the clue to extend oddly.

We define therefore

fo(x) :=

{
f(x) x > 0

−f(−x) x < 0
.

Now, we take the Fourier transform of the PDE in the x variable. We obtain:

−ξ2ŵ(ξ, y) + ∂yyŵ(ξ, y) = 0 =⇒ ŵ(ξ, y) = A(ξ)e−|ξ|y +B(ξ)e|ξ|y.

The functions A and B can depend on ξ but not on y. We would like to use
Fourier methods which requires staying within L2. Hence we do not want the
second solution because y > 0 so it is very much not in L2. Thus, we keep the first

1
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solution. The boundary condition at y = 0 acts like an initial condition, at least
from x’s perspective:

ŵ(ξ, 0) = A(ξ) = f̂o(ξ) =⇒ ŵ(ξ, y) = f̂o(ξ)e
−|ξ|y.

We look at table 2 of Folland to find a function whose Fourier transform is e−|ξ|y.
OBS! The transform is occurring in the x variable, from whose perspective y is a
constant. Thus, the item on the table is a slight modification of 10, in particular
the function

y

π
(x2 + y2)−1 has Fourier transform in the x variable e−y|ξ|.

Thus, we have found

ŵ(ξ, y) = f̂o(ξ)
̂y

π
(x2 + y2)−1(ξ).

The Fourier transform sends convolutions to products, which tells us that

w(x, y) =

∫ ∞
−∞

fo(z)
y

π((x− z)2 + y2)
dz =

∫ 0

−∞
fo(z)

y

π((x− z)2 + y2)
dz+

∫ ∞
0

f(z)
y

π((x− z)2 + y2)
dz

We do a substitution in the first integral, with t = −z

=

∫ 0

−∞
fo(z)

y

π((x− z)2 + y2)
dz = −

∫ 0

∞
fo(−t)

y

π((x+ t)2 + y2)
dt

=

∫ 0

∞
f(t)

y

π((x+ t)2 + y2)
dt = −

∫ ∞
0

f(t)
y

π((x+ t)2 + y2
dt.

Re-naming the variable of integration z, we get

w(x, y) =

∫ ∞
0

f(z)

[
y

π((x− z)2 + y2)
− y

π((x+ z)2 + y2)

]
dz.

The other problem is basically identical, we simply Fourier transform in the y
variable. Thus the solution to the second problem is

v(x, y) =

∫ ∞
0

g(z)

[
x

π((y − z)2 + x2)
− x

π((y + z)2 + x2)

]
dz.

We obtain the full solution by adding:

u(x, y) = w(x, y) + v(x, y).

2. The Laplace transform

We shall now enter Chapter 8, and learn about another useful transform, known
as the Laplace transform.

Definition 1. Assume that

lap0lap0 (2.1) f(t) = 0 ∀t < 0,

and that there exists a,C > 0 such that

lapalapa (2.2) |f(t)| ≤ Ceat ∀t ≥ 0.

Then for we define for z ∈ C with <(z) > a the Laplace transform of f at the point
z to be

Lf(z) = f̂(−iz) =

∫ ∞
0

f(t)e−ztdt.
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We may also use the notation

f̃(z) = Lf(z).

Let us verify that the Laplace transform is well defined. To do so, we estimate

|Lf(z)| ≤
∫ ∞
0

|f(t)e−zt|dt ≤
∫ ∞
0

Ceat|e−zt|dt =

∫ ∞
0

eate−<(z)tdt

=
et(a−<(z))

a−<(z)

∣∣∣∣∞
0

=
1

<(z)− a
.

Above we have used the fact that∣∣ecomplex number
∣∣ = ereal part.

Due to this beautiful convergence, Lf(z) is holomorphic in the half plane <(z) > a.
This is because we may differentiate under the integral sign due to the absolute
convergence of the integral. The assumption that f(t) = 0 for all negative t is
not actually necessary, we could just make it so. For this purpose we define the
heavyside function, commonly denoted by

Θ(t) :=

{
1 t ≥ 0

0 t < 0
.

If we have some f defined on R which satisfies (
lapalapa
2.2) but is not (

lap0lap0
2.1), we can apply

the Laplace transform to Θf . Another thing which can happen is that we have a
function which is only defined on [0,∞). In that case, we can just extend it to be
identically zero on (−∞, 0).

Let’s familiarize ourselves with the Laplace transform by demonstrating some of
its fundamental properties.

Proposition 2 (Properties of L). Assume f and g satisfy (
lapalapa
2.2) and (

lap0lap0
2.1), then

(1) Lf(x+ iy)→ 0 as |y| → ∞ for all x > a.
(2) Lf(x+ iy)→ 0 as x→∞ for all y.
(3) L(Θ(t− a)f(t− a))(z) = e−azLf(z).
(4) L(ectf(t))(z) = Lf(z − c).
(5) L(f(at)) = a−1Lf(a−1z).
(6) *** If f is continuous and piecewise C1 on [0,∞), and f ′ satisfies (

lapalapa
2.2)

and (
lap0lap0
2.1), then

L(f ′)(z) = zLf(z)− f(0).

(7) L(
∫ t
0
f(s)ds)(z) = z−1Lf(z).

(8) L(tf(t))(z) = −(Lf)′(z).
(9) L(f ∗ g)(z) = Lf(z)Lg(z).

(10) If t−1f(t) satisfies (
lap0lap0
2.1) and (

lapalapa
2.2), then

L(t−1f(t))(z) =

∫ ∞
z

Lf(w)dw.

The integral is any contour in the w-plane which starts at z along which
=w stays bounded and <w →∞.

Proof: There’s a bunch of stars next to #6 because it’s the reason the Laplace
transform is useful for solving PDEs and ODEs. It’s quite similar to how the
Fourier transform takes in derivatives and spits out multiplication. Intuitively, this



4 JULIE ROWLETT

fact about L should jive with the similar fact about F because well, the Laplace
transform is just the Fourier transform taken at a complex point.

(1) The first statement

Lf(z) =

∫ ∞
0

e−(x+iy)tf(t)dt =

∫ ∞
0

e−xtf(t)e−iytdt = ĝ(y),

for the function

g(t) = e−xtf(t).

The Riemann-Lebesgue Lemma says that ĝ(y)→ 0 when |y| → ∞.
(2) The second statement is more satisfying because we just compute and esti-

mate directly. We did this estimate above already, where we got

|Lf(z)| ≤ 1

<(z)− a
→∞ when <(z) = x→∞.

(3) The third statement is also a direct computation:

L(Θ(t− a)f(t− a))(z) =

∫ ∞
0

Θ(t− a)f(t− a)e−ztdt =

∫ ∞
−a

Θ(s)f(s)e−z(s+a)ds.

Above we did the substitution s = t − a so ds = dt. Since f and the Heavyside
function are zero for negative s, and the Heavyside function is 1 for positive s, this
is

e−za
∫ ∞
0

f(s)e−zsds = e−zaLf(z).

(4) Similarly, we directly compute

L(ectf)(z) =

∫ ∞
0

ecte−ztf(t)dt =

∫ ∞
0

e−(z−c)tf(t)dt = Lf(z − c).

(5) Again no surprise, we compute

L(f(at))(z) =

∫ ∞
0

e−ztf(at)dt =

∫ ∞
0

e−zs/af(s)
ds

a
= a−1Lf(z/a).

Here we used the substitution s = at so a−1ds = dt.
(6) Now we are finally getting to the important one:

L(f ′)(z) =

∫ ∞
0

e−ztf ′(t)dt = e−ztf(t)
∣∣∞
0

+

∫ ∞
0

ze−ztf(t)dt.

We have used integration by parts above. By (
lapalapa
2.2) and since <(z) > a, the limit as

t→∞ is zero, and so we get

L(f ′)(z) = −f(0) + zLf(z).

Awesome.
(7) Next we define

F (t) =

∫ t

0

f(s)ds.

Then, we use the preceding fact:

L(F ′)(z) = zLF (z)− F (0) = zLF (z).

Since F ′ = f we get

z−1L(f)(z) = L(

∫ t

0

f(s)ds)(z).
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(8) Next, we compute:

L(tf(t))(z) =

∫ ∞
0

te−ztf(t)dt =

∫ ∞
0

d

dz

(
−e−zt

)
f(t)dt

=
d

dz

(
−
∫ ∞
0

e−ztf(t)dt

)
= −(Lf)′(z).

Yes, we have used the absolute convergence of the integral to swap limits. It’s legit
yo.

(9) Nearing the finish line, we compute

L(f ∗ g)(z) = F(f ∗ g)(−iz) = f̂(−iz)ĝ(−iz) = Lf(z)Lg(z).

(10) Finally, note that by (
lapalapa
2.2), if t−1f(t) satisfies this, then at the point t = 0

apparently the function f vanishes, so that the function t−1f(t) is well defined. So,
don’t panic about this point!!! We next define the holomorphic function

F (z) =

∫ ∞
z

f̃(w)dw.

Since f̃(w) → 0 when <(w) → ∞ and =(w) stays bounded, the fundamental
theorem of calculus says that

F ′(z) = −f̃(z).

On the other hand,

d

dz

∫ ∞
0

t−1f(t)e−ztdt =

∫ ∞
0

−f(t)e−ztdt = −f̃(z).

Hence,

F (z) =

∫ ∞
0

t−1f(t)e−ztdt+ c,

for some constant c. Since

lim
<z→∞

F (z) = 0 = lim
<(z)→∞

∫ ∞
0

t−1f(t)e−ztdt =⇒ c = 0.

2.1. Application to solving ODEs. We see that

L(f ′)(z) = zLf(z)− f(0).

Let’s do it again:

L(f ′′)(z) = zL(f ′)(z)−f ′(0) = z (zLf(z)− f(0))−f ′(0) = z2Lf(z)−zf(0)−f ′(0).

In general:

Proposition 3. Assume that everything is defined, then

L(f (k))(z) = zkLf(z)−
k∑
j=1

f (k−j)(0)zj−1.



6 JULIE ROWLETT

Proof: Well clearly we should do a proof by induction! Check the base case
first:

L(f ′)(z) = zLf(z)− f(0).

Here k = 1 and the sum has only one term with j = k = 1. It works. Now we
assume the above formula holds and we show it for k + 1. We compute

L(f (k+1))(z) = L((f (k))′)(z) = zL(f (k))(z)− f (k)(0).

By induction this is

z

zkLf(z)−
k∑
j=1

f (k−j)(0)zj−1

− f (k)(0).

This is

zk+1Lf(z)−
k∑
j=1

f (k−j)(0)zj − f (k)(0).

Let us change our sum: let j + 1 = l. Then our sum is

k+1∑
l=2

fk−(l−1)(0)zl−1 =

k+1∑
l=2

f (k+1−l)(0)zl−1.

Observe that
f (k)(0) = fk+1−1(0)z1−1.

Hence

−
k∑
j=1

f (k−j)(0)zj − f (k)(0) = −
k+1∑
l=1

f (k+1−l)(0)zl−1.

So, we have computed

L(f (k+1))(z) = zk+1Lf(z)−
k+1∑
l=1

f (k+1−l)(0)zl−1.

That is the formula for k + 1, which is what we needed to obtain.

For this reason one can use L to solve linear constant coefficient ODEs which
can be non-homogeneous! Let us see how this works... A linear, constant coefficient
ODE of order n looks like:

n∑
k=0

cku
(k)(t) = f(t).

In order for the solution to be unique, there must be specified initial conditions on
u, that is

u(0), u′(0), . . . u(n−1)(0).

We are not requiring f(t) to be the zero function, so the ODE could be inhomoge-
neous. Notoriously difficult to solve right? NOT ANYMORE! We hit both sides of
the ODE with L:

n∑
k=0

ckL(u(k))(z) = f̃(z).

Let’s write out the left side using our proposition. First we have

c0ũ(z).
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Then we have

c1 (zũ(z)− u(0)) .

By our proposition, we computed that for k ≥ 1,

L(cku
(k))(z) = ck

zkũ(z)−
k∑
j=1

u(k−j)(0)zj−1

 .

Therefore the left side of the ODE becomes

c0ũ(z) +

n∑
k=1

ck

zkũ(z)−
k∑
j=1

u(k−j)(0)zj−1


=

n∑
k=0

ckz
kũ(z)−

n∑
k=1

ck

k∑
j=1

u(k−j)(0)zj−1.

We therefore define two polynomials

P (z) :=

n∑
k=0

ckz
k,

Q(z) := −
n∑
k=1

ck

k∑
j=1

u(k−j)(0)zj−1.

Our ODE has been LAPLACE-TRANSFORMED into

P (z)ũ(z) +Q(z) = f̃(z).

We can solve this for ũ(z):

ũ(z) =
f̃(z)−Q(z)

P (z)
.

Hence to get our solution u(t) we just need to invert the Laplace transform of the
right side, that is our solution will be

u(t) = L−1

(
f̃(z)−Q(z)

P (z)

)
.

2.2. Exercises for the week. These exercises will be demonstrated for you.

(1) (Eö 55)
(2) (7.4.4) Solve the heat equation ut = kuxx on the half line x > 0 with

boundary conditions u(x, 0) = f(x) and initial condition u(0, t) = 0. Do
the same for the inhomogeneous heat equation ut = kuxx + G(x, t) with
the same initial and boundary conditions.

(3) (7.4.6) Solve Laplace’s equation uxx + uyy = 0 in the semi-infinite strip
x > 0, 0 < y < 1 with the boundary conditions ux(0, y) = 0, uy(x, 0) = 0,
u(x, 1) = e−x. Express the answer as a Fourier integral.

(4) (8.4.2) Find the temperature in a semi-infinite rod (the half-line x > 0) if
its initial temperature is zero, and the end x = 0 is held at temperature 1
for 0 < t < 1 and temperature 0 thereafter.

(5) (Eö 14)
(6) (Eö 45)
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2.2.1. Exercises for the week to be done oneself.

(1) (7.3.1) Use the Fourier transform to find a solution of the ordinary differ-
ential equation u′′−u+ 2g(x) = 0 where g ∈ L1(R). The solution obtained
in this way is the one that vanishes at ±∞.

(2) (7.4.7) Solve Laplace’s equation uxx + uyy = 0 in the semi-infinite strip
x > 0, 0 < y < 1 with the boundary conditions u(0, y) = 0, u(x, 0) = 0,
u(x, 1) = e−x. Express the answer as a Fourier integral.

(3) (Eö 47)
(4) (8.4.1) Solve:

ut = kuxx − au, x > 0, u(x, 0) = 0, u(0, t) = f(t).

(5) (8.4.3) Consider heat flow in a semi-infinite rod when heat is supplied to
the end at a constant rate c:

ut = kuxx for x > 0, u(x, 0) = 0, ux(0, t) = −c.
With the aid of the computation:

L
(

1√
πt
e−a

2/(4t)

)
(z) =

e−a
√
z

√
z
,

show that

u(x, t) = c

√
k

π

∫ t

0

s−1/2e−x
2/(4ks)ds.

By substituting

σ =
x√
4ks

and then integrating by parts, show that

u(x, t) = c

√
4kt

π
e−x

2/(4kt) − cx erfc

(
x√
4kt

)
.

(6) (Eö 12)
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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. Application of the Laplace transform to solving PDEs

Let us consider the telegraph equation,

uxx = αutt + βut + γu.

This is homogeneous, and generalizes both the heat equation (α = γ = 0, and
β = 1) as well as the wave equation (β = γ = 0, and α = 1). According to those
who know more physics than I, this corresponds to an electromagnetic signal on a
cable.

We wish to solve the problem on a half line with the following boundary and
initial conditions:

u(0, t) = f(t), u(x, 0) = ut(x, 0) = 0.

Tip 1. If we have a half-line problem with boundary condition at x = 0 that is a
function of t try using the Laplace transform in the t variable.

We follow the tip and hit the whole PDE with the Laplace transform in the t
variable. This gives

ũxx(x, z) = αL(utt)(x, z) + βL(ut)(x, z) + γũ(x, z).

We use the properties of the Laplace transform and the initial conditions which say

u(x, 0) = 0, ut(x, 0) = 0,

so
ũxx(x, z) = αz2ũ(x, z) + βzũ(x, z) + γũ(x, z).

This is simply
ũxx(x, z) =

(
αz2 + βz + γ

)
ũ(x, z).

It’s a second order, linear, constant coefficient, homogeneous ODE for the x vari-
able. Let

q =
√
αz2 + βz + γ.

Our solution to the ODE is of the form

ũ(x, z) = a(z)eqx + b(z)e−qx.

We have that lovely BC at x = 0: u(0, t) = f(t). Hence,

ũ(0, z) = f̃(z) =⇒ a(z) + b(z) = f̃(z).
1
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Note that here we are extending f to (−∞, 0) to be identically equal to zero so that
we may Laplace transform it. Assume that <(q) > 0. (If this weren’t the case, just
swap q and −q). To be able to invert the Laplace transform and get the solution
to our PDE, we will not want ũ(x, z)→∞ when x→∞. Hence, we throw out the
eqx solution and just use

ũ(x, z) = b(z)e−qx.

Therefore, b(z) = f̃(z). So, our Laplace-transformed solution is

ũ(x, z) = f̃(z)e−qx.

By the properties of the Laplace transform, if we can find g(x, t) such that

g̃(x, z) = e−qx,

then the solution to this PDE will be

solnsoln (1.1) u(x, t) = f ∗g(x, t) =

∫
R
f(t−s)Θ(t−s)g(x, s)Θ(s)ds =

∫ t

0

f(t−s)g(x, s)ds.

The reason for those heavyside functions is that f(∗) = 0 for ∗ < 0 and g(x, ∗) = 0
for ∗ < 0. To guarantee that this holds, we multiply f(t − s) by Θ(t − s) and
multiply g(x, s) by Θ(s).

Now, recalling the definition of q, we are looking for

g(x, t) with g̃(x, z) = e−x
√
αz2+βz+γ .

To find such a g, we would like to invert the Laplace transform.

1.1. Inverting the Laplace transform. The Laplace transform is closely related
to the Fourier transform, and it is this fact, together with the FIT, that will guide
our way to the LIT (Laplace Inverse Theorem).

f̃(z) =

∫ ∞
0

f(t)e−ztdt =

∫ ∞
0

f(t)e−<(z)t−i=(z)tdt.

For this reason, let’s define

g(t) = e−<(z)tf(t),

so we also have

f(t) = e<(z)tg(t).

Then

Lf(z) = ĝ(=(z)) =

∫
R
f(t)e−<(z)e−i=(z)tdt,

because f(t) = 0 for all t < 0. Let’s apply the FIT to the function, g:

g(t) =
1

2π

∫
R
ĝ(ξ)eiξtdξ =

1

2π

∫
R
Lf(<(z) + iξ)eiξtdξ.

To make this look less imposing, let us write y = ξ. So, we have

g(t) =
1

2π

∫ ∞
−∞

f̃(<(z) + iy)eiytdy.

Since f(t) = e<(z)tg(t), we have

f(t) = e<(z)t 1

2π

∫ ∞
−∞

f̃(<(z) + iy)eiytdy =
1

2π

∫ ∞
−∞

f̃(<(z) + iy)e<(z)t+iytdy.
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We would like to understand this as a complex integral. If we parametrize the
vertical path for w ∈ C with <(w) = <(z) by w = <(z) + iy, then dw = idy. We
do not have an i. Hence, what we are computing is

f(t) =
1

2πi

∫
Γz

f̃(w)ewtdw,

where Γz is the upward vertical path along the line <(w) = <(z). This is the LIT:
Laplace inversion formula:

f(t) =
1

2πi

∫
Γz

f̃(w)ewtdw.

By definition of the Laplace transform, this should hold for z ∈ C with <(z) > a
where a comes from the growth estimate on f , that is |f(t)| ≤ Ceat for all t ≥ 0
for constants a and C. If we naively look at this equation, we see that the left side
is independent of z. So, the right side ought to be as well. It is.

Theorem 1 (LIT). Assume that f is Laplace-transformable. Denote by f̃ its
Laplace transform. Then for b > a,

f(t) =
1

2πi

∫ b+i∞

b−i∞
f̃(z)eztdz.

Conversely, assume that F (z) is analytic in <(z) > a. For b > a, R > 0, and
t ∈ R, let

fR,b(t) =
1

2πi

∫ b+iR

b−iR
F (z)eztdz.

Assume that for some α > 1/2 and C > 0 we have

|F (z)| ≤ C(1 + |z|)−α, ∀z ∈ C with <(z) > a,

and assume that for some b > a, fR,b(t) converges pointwise as R→∞ to f(t) for
a Laplace transformable f . Then

lim
R→∞

fR,b(t) = f(t) ∀b > a,

and

F (z) = Lf(z).

Proof: Let us draw and define a contour, with our amazing tikz skillz yo.
By assumption the function F is analytic inside the box, and ezt is an entire

function. Therefore ∫
ΓR

F (z)eztdz = 0.

So, we wish to show that the limit as R → ∞ of the top and bottom integrals is
zero. To obtain this, we either wave our hands like Folland or actually estimate:∫ c±iR

b±iR
|F (z)||ezt|dz ≤ |c− b|ect max

b≤x≤c

C

(1 + |x± iR|)α
.

Above we used the fact that between b ± iR and c ± iR, |ezt| ≤ ect together with
the estimate assumed on F . Next, we note that

|x± iR| =
√
x2 +R2 ≥ R.
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b− iR

b+ iR c+ iR

c− iR
Figure 1. The contour over which we integral. Call the contour ΓR. As one can
see, we assume that c > b.box

Therefore we estimate from above by

|c− b|ect C

(1 +R)α
→ 0 as R→∞.

Therefore, if for some b > a,

lim
R→∞

fR,b(t) = f(t),

this means that

lim
R→∞

∫ b+iR

b−iR
F (z)eztdz −

∫ c+iR

c−iR
F (z)eztdz = 0.

To see this, observe that ∫
ΓR

F (z)eztdz = 0 ∀R.

Moreover, the top and bottom integrals go to zero as R → ∞. Hence the sum of
the left and right integrals also tends to zero as R→∞. So,

lim
R→∞

∫ b+iR

b−iR
F (z)eztdz = lim

R→∞

∫ c+iR

c−iR
F (z)eztdz =⇒ lim

R→∞
fR,b(t) = f(t) = lim

R→∞
fR,c(t).
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Now, let us parametrize the complex integral. We use γ(s) = b+ is so γ̇(s) = ids.
Hence∫ b+iR

b−iR
F (z)eztdz =

∫ R

−R
F (b+ is)e(b+is)tids = iebt

∫ R

−R
F (b+ is)eistds.

Moreover, we have assumed that

lim
R→∞

fR,b(t) = lim
R→∞

iebt

2πi

∫ R

−R
F (b+ is)eistds = f(t)

so

lim
R→∞

∫ R

−R
F (b+ is)eistds = 2πe−btf(t).

Let us define here

gR,b(s) =

{
F (b+ is) |s| ≤ R
0 |s| > R

.

Then ∫ R

−R
F (b+ is)eistds =

∫
R
gR,b(s)e

istds = ĝR,b(−t).

Moreover,

lim
R→∞

̂gR,b(−t) = 2πe−btf(t).

Similarly

lim
R→∞

ĝR,b(t) = 2πebtf(−t).

On the other hand,

lim
R→∞

gR,b(s) = F (b+ is).

By the FIT,

F (b+ it) =
1

2π

∫
R

2πebsf(−s)eitsds.

It is more natural to do a change of variables, letting σ = −s, so dσ = −ds, and
we get

F (b+ it) =

∫ σ=−∞

σ=∞
e−bσf(σ)e−itσ(−dσ) =

∫ ∞
−∞

e−σ(b+it)f(σ)dσ

=

∫ ∞
0

e−σ(b+it)f(σ)dσ = Lf(b+ it).

Here we use the fact that f satisfies the growth estimate needed to be Laplace
transformable.
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1.2. Computing an inverse Laplace transform to solve the heat equation.
For the case in which our telegraph equation is the heat equation, we have α = γ =
0, and β = 1. Consequently, the square rooted polynomial in z we had named q is
of the simple form:

q =
√
z.

Our Laplace-transformed solution is:

f̃(z)e−
√
zx.

Since the Laplace transform turns convolutions into multiplication, we would like
to find g(x, t) so that

g̃(x, z) = e−
√
zx.

Then, the solution will be given as in (
solnsoln
1.1).

We are therefore looking for g(x, t) so that

g̃(x, z) = e−
√
zx.

If we try to apply the LIT directly, we should compute∫ b+i∞

b−i∞
e−x
√
zeztdz.

Do you know how to integrate that? I do not. It is pretty scary looking. For
starters, there is the

√
z. This really needs to be understood using the complex

logarithm which is, as the name suggests, complex.

Tip 2. Always be careful with log(z) in C. It is not entire. It is a log. Logs come
from trees which have branches. Complex logs always have branches and branch
cuts. You have been warned.

So, since trying to compute the inverse Laplace transform directly seems impos-
sible, let us try to make a reasonable guess at a function whose Laplace transform
might be what we need to solve the heat equation. To solve the heat equation on
R we used

e−x
2/(4t)(4πt)−1/2.

So, since the Laplace and Fourier transforms are closely related, and we are solving
the heat equation on [0,∞), which is an unbounded interval, this is a good candi-
date. We shall compute its Laplace transform and see what we get. If we are super
lucky, it will just give us the function we want. If we are less lucky, but still pretty
lucky, the process of computing the Laplace transform together with the properties
of the Laplace transform will show us how to get g(x, t) whose Laplace transform

is g̃(x, z) = e−
√
zx.

Let us therefore define:

? =

∫ ∞
0

e−tze−x
2/(4t)(4πt)−1/2dt.

We are computing the Laplace transform of Θ(t)h(x, t) where

h(x, t) = e−x
2/(4t)(4πt)−1/2.

Now, we see that

? =

∫ ∞
0

(4πt)−1/2 exp

(
−(
√
tz)2 −

(
x

2
√
t

)2
)
dt.
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We do the completing the square trick in the exponent:

? =

∫ ∞
0

(4πt)−1/2 exp

(
−
(√

tz − x

2
√
t

)2

− x
√
z

)
dt

= e−x
√
z

∫ ∞
0

1

2
√
πt

exp

(
−
(√

tz − x

2
√
t

)2
)
.

To compute this we need to use a very very clever trick. First, let us clean up our
integral just a little bit to remove that pesky

√
t which is getting divided. We let

s =
√
t. Then

ds =
dt

2
√
t

So,

? =
e−x
√
z

√
π

∫ ∞
0

e−(s
√
z−x/(2s))2ds.

Theorem 2 (Cauchy & Schlömilch transform).∫ ∞
0

af((as− b/s)2)ds =

∫ ∞
0

f(y2)dy.

Proof: The proof is so clever.1

We do a substitution in the integral. Let t = b
as . Then

dt = − b

as2
ds =⇒ −as

2

b
dt = ds.

We see that

t2 =
b2

a2s2
=⇒ a2s2

b2
= t−2 =⇒ as2

b
=

b

at2
.

Next, when s→ 0 and s > 0 we see that t→∞. On the other hand, when s→∞,
t→ 0. We also see that

as =
t

b
, − b

s
= −ta.

So, let us call

♥ =

∫ ∞
0

af((as− b/s)2)ds =

∫ 0

∞
af((t/b− ta)2)

(
− b

at2

)
dt

=

∫ ∞
0

f((t/b− at)2)
b

t2
dt.

Note that

(t/b− at)2 = (−(at− t/b))2 = (at− t/b)2.

Hence we have computed

♥ =

∫ ∞
0

f((at− t/b)2)
b

t2
dt.

1I don’t know if Cauchy and Schlömilch actually had anything to do with this formula. Oscar

Schlömilch was elected a foreign member of the Royal Swedish Academy of Sciences in 1862. He

was a German mathematician who lived from April 13, 1823 until February 7, 1901. Augustin-
Louis Cauchy was a French mathematician who lived August 21, 1789 until May 23, 1857. Did

they ever meet? Why is this named after them?
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Therefore

2♥ =

∫ ∞
0

af((as− b/s)2)ds+

∫ ∞
0

f((at− t/b)2)
b

t2
dt

= a

∫ ∞
0

f((as− b/s)2)ds+ b

∫ ∞
0

f((as− b/s)2)
ds

s2
.

As a consequence,

♥ =
1

2

∫ ∞
0

f((as− b/s)2)

(
a+

b

s2

)
ds.

Now we let

y = as− b

s
=⇒ dy =

(
a+

b

s2

)
ds.

We note that when s → 0, y → −∞, and on the flip side, when s → ∞, y → ∞.
Therefore

♥ =
1

2

∫ ∞
−∞

f(y2)dy =

∫ ∞
0

f(y2)dy,

since f(y2) is an even function.

We will use the Cauchy & Schlömilch transform with

a =
√
z, b =

x

2
, f(s) = e−s

2

.

Then, it says that∫ ∞
0

√
z exp(−(as− b/s)2)ds =

∫ ∞
0

√
z exp

(
−
(
s
√
z − x

2s

)2
)
ds

=

∫ ∞
0

e−y
2

dy =

√
π

2
.

Now we were computing

? =
e−x
√
z

√
π

∫ ∞
0

e−(s
√
z−x/(2s))2ds =

e−x
√
z

√
πz

∫ ∞
0

√
ze−(s

√
z−x/(2s))2ds

=
e−x
√
z

2
√
z
.

So, we have computed

L (Θ(t)h(x, t)) (z) =
e−x
√
z

2
√
z
.

This is almost what we wanted, except for the 2
√
z in the denominator. Here we

use the properties of the Laplace transform. Consider the function:∫ ∞
z

e−x
√
w

2
√
w
dw = −e

−x
√
w

x

∣∣∣∣∣
∞

w=z

=
e−x
√
z

x
.

By the properties of the Laplace transform

L(t−1f(t))(z) =

∫ ∞
z

f̃(w)dw.
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So,

L(t−1Θ(t)h(x, t))(z) =

∫ ∞
z

e−x
√
w

2
√
w
dw =

e−x
√
z

x
.

because we computed

L (Θ(t)h(x, t)) (z) =
e−x
√
z

2
√
z
.

We can simply multiply both sides by x to get

L(t−1xΘ(t)h(x, t))(z) = e−x
√
z

as desired. Let us summarize this phenomenal calculation as a theorem for future
reference.

Theorem 3. The Laplace transform of

g(x, s) :=
x

s
Θ(s)h(x, s), h(x, s) =

1√
4πs

e−
x2

4s , Θ(s) =

{
0 x < 0

1 x ≥ 0

in the variable s is
L(g)(x, z) = e−x

√
z.

Therefore going back to our problem, the solution

u(x, t) = (f(s) ∗ (s−1xΘ(s)h(x, s))(t) =

∫
R
f(t− s)g(x, s)ds

=

∫ t

0

f(t− s)
2
√
πs3/2

xe−
x2

4s ds.

This is because f is zero for negative times.

Remark 1. One of the things I love about this class is that you begin to approach
actual research mathematics. I think that must be exciting for you, because calculus
(envariabelanalys) is like 300 years old. Cauchy’s complex analysis is also a few
hundred years old. That’s not very close to actual current year 2019 math! Here is
an example of how the Cauchy-Schlömilch transform is super awesome (and look,
this paper is only 9 years old which is super young by research terms):

https: // arxiv. org/ abs/ 1004. 2445

1.2.1. Hints to: exercises for the week to be done oneself.

(1) (7.3.1) Use the Fourier transform to find a solution of the ordinary differ-
ential equation

u′′ − u+ 2g(x) = 0, g ∈ L1(R).

Hint: Hit the whole equation with the Fourier transform in the x variable.
So you are getting

−ξ2û(ξ)− û(ξ) = −2ĝ(ξ).

Solving for û(ξ) we get

û(ξ) = 2
ĝ(ξ)

1 + ξ2
.

From here, we see we got a product. The Fourier transform of a convolution
results in a product. So, find a function whose Fourier transform is 1

1+ξ2 .

Then, you can express the solution as the convolution of 2g with this!

https://arxiv.org/abs/1004.2445
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(2) (7.4.7) We are tasked with solving the following problem:

uxx + uyy = 0, x > 0, 0 < y < 1, u(0, y) = 0, u(x, 0) = 0, u(x, 1) = e−x.

Hint: Extend the boundary data u(x, 1) = e−x, since you want to have 0
at x = 0, oddly. Then hit the PDE with the Fourier transform in the x
variable. This will result in an ODE for y:

−ξ2û(ξ, y) + ûyy(ξ, y) = 0 =⇒ û(ξ, y) = A(ξ)e−|ξ|y +B(ξe|ξ|y.

Discard the solution which grows exponentially. Use the boundary con-
dition at y = 1 to determine the coefficient function. Invert the Fourier
transform. Come to consultation time if you are still stuck!

(3) (Eö 47) We wish to find a solution to

uxx + uyy = 0, x ∈ R, 0 < y < a,

with

u(x, 0) = 0, u(x, a) = f(x).

Hint: Fourier transform the PDE in the x variable. This will result in an
ODE for y. The solution will turn out to involve hyperbolic trig functions.
To obtain the inequality use Plancharel’s theorem. Also, you can be relieved
that it is just fine to leave the solution as a Fourier integral!

(4) (8.4.1) Solve:

ut = kuxx − au, x > 0, u(x, 0) = 0, u(0, t) = f(t).

Hint: Let’s hit the PDE with the Laplace transform in the t variable and
see what happens. It is a little bit different this time:

zLu(x, z) = kLu(x, z)xx − aLu(x, z).

So we re-arrange and have

(z + a)Lu(x, z) = kLu(x, z)xx =⇒ z + a

k
Lu(x, z) = Lu(x, z)xx.

This is similar, and our solution is of the form

A(z)e−x
√

(z+a)/k +B(z)ex
√

(z+a)/k.

We want this to be bounded for z large, so we strike the second solution.
The initial condition says we want

A(z) = Lf(z).

So our Laplace-transformed solution is:

Lf(z)e−x
√

(z+a)/k.

This is a product. We can express our solution as a convolution if we find
something whose Laplace transform is that exponential term. Let’s write
the exponential a little differently:

e
− x√

k

√
z−−a

.

We see that item 3 on table 3 with c = −a shows that

L(e−atf(t))(z) = Lf(z −−a).
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So if we find a function whose Laplace transform is e
− x√

k

√
z

then we will
be done. We see that item 27 on table 3 gives us just that:

L(t−3/2e−b
2/(4t))(z) = 2b−1

√
πe−b

√
z.

(We already have one thing called a running around, so I changed the name
here to b). Consequently

L(e−att−3/2e−b
2/(4t))(z) = 2b−1

√
πe−b

√
z+a.

Now just figure out what you need b to equal to make this work. Your
solution will be a convolution of f and the correct thing to make the right

side equal to e
− x√

k

√
z−−a

.
(5) (8.4.3) Consider heat flow in a semi-infinite rod when heat is supplied to

the end at a constant rate c:

ut = kuxx for x > 0, u(x, 0) = 0, ux(0, t) = −c.

With the aid of the computation:

L
(

1√
πt
e−a

2/(4t)

)
(z) =

e−a
√
z

√
z
,

show that

u(x, t) = c

√
k

π

∫ t

0

s−1/2e−x
2/(4ks)ds.

Hint: Let’s hit the PDE with the Laplace transform in the t variable.
We get

L(ut)(x, z) = kL(uxx)(x, z).

By the properties of the Laplace transform, and the IC,

L(ut)(x, z) = zL(u)(x, z)− u(x, 0) = zL(u)(x, z).

So we have the equation:

z

k
Lu(x, z) = Lu(x, z)xx.

This is an ODE now for the Laplace transform of our solution. The solution
is of the form:

Lu(x, z) = A(z)e−x
√
z/k +B(z)ex

√
z/k.

We want this to be bounded for large z so we strike the second solution. The
boundary condition we have is that ux(0, t) = −c, so when we transform
this, we want

Lux(0, z) = −L(c)(z).

We can Laplace transform the constant function:∫ ∞
0

ce−tzdt =
c

z
.

On the other hand, taking the derivative of A(z)e−
√
z/kx with respect to x

and then setting x = 0 we get:

−
√
z

k
A(z) =⇒ −

√
z

k
A(z) = − c

z
.
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So, we want

A(z) =
c
√
k

z3/2
.

Thus our Laplace transformed solution is:

Lu(x, z) =
c
√
k

z3/2
e−x
√
z/k = c

√
k

1

z

(
e−x
√
z/k

√
z

)
.

From here on out we can follow Folland’s hint and use Table 3 which says
that the Laplace transform of

L(

∫ t

0

f(s)ds)(z) = z−1L(f)(z).

So, we have

L

(∫ t

0

1√
πs
e−a

2/(4s)ds

)
(z) =

e−a
√
z

z
√
z
.

Now just deal with the constant factors and choose a correctly...
(6) (Eö 12) We define

f(t) =

∫ 1

0

√
wew

2

cos(wt)dw.

We are supposed to then somehow compute∫
R
|f ′(t)|2dt.

Hint: This definition of f looks remarkably like a Fourier transform of
something... The right side is an L2 norm, so we have the Parseval (is that
the right name?) formula which says that∫

R
|f ′(t)|2dt =

1

2π

∫
R
|f̂ ′(t)|2dt.

Then we look to Table 2 of Folland which says that

f̂ ′(ξ) = iξf̂(ξ).

So we just need to compute

1

2π

∫
R
ξ2|f̂(ξ)|2dξ.

To solve this, the function f requires further inspection... it is very close to
being a Fourier transform. Let us make it so. Begin by extending evenly
(the presence of cosine hints at this...)

f(t) =
1

2

∫
R
χ[−1,1](w)

√
|w|ew

2

cos(wt)dw =
1

2

∫
R
χ[−1,1](w)

√
|w|ew

2

e−iwtdw.

The reason for the last step is that the function (without the cosine) is
even. So if we throw in e−iwt = cos(−wt)+ i sin(−wt) = cos(wt)− i sin(wt)
the integral with the sine will be zero since sine is odd and the rest of the
integrand is zero. So we recognize

f(t) = F
(

1

2
χ[−1,1](w)

√
|w|ew

2

)
(t).
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By the FIT

1

2
χ[−1,1](w)

√
|w|ew

2

=
1

2π

∫
R
f(t)eiwtdt =

1

2π
f̂(−w) =

1

2π
f̂(w).

This is because f is even and so it’s Fourier transform is also even. So, we
see that

πχ[−1,1](w)
√
|w|ew

2

= f̂(w).

Hence, we just need to compute

1

2

∫
R
w2
(
χ[−1,1](w)

√
|w|ew

2
)2

dw =
1

2

∫ 1

−1

|w|w2e2w2

dw

=

∫ 1

0

w3e2w2

dw.

Write the integrand as (w2)(we2w2

). Integrate by parts. It should end
nicely.
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JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. Geometric settings in which we can solve PDEs

We are on the home stretch! So far, the geometric settings we can handle are:

(1) finite intervals and rectangles, using Fourier series and SLP techniques;
(2) the entire real line, using Fourier transform;
(3) with nice boundary conditions, a half line using even or odd extensions;
(4) with a time-dependent boundary condition, a half line using Laplace trans-

form;
(5) combining techniques to deal with half-spaces and quadrants.

2. Fun with drums and Bessel functions

Why do drums sound the way they do? This is actually a question that even
today we do not completely understand. You’ll soon understand why...

We shall solve the initial value problem for a vibrating drum. We begin by
mathematicizing the drumhead as a circular membrane. Since it is a drumhead,
the boundary is attached to the rest of the drum, so the boundary does not vibrate,
it remains fixed. We think of the drumhead as being instantaneously still at the
moment when we hit it. Consequently, the height on the drum at a point z = (x, y)
and time t satisfies:

utt−uxx−uyy = 0, x2+y2 ≤ L2,


u(x, y, t) = 0 (x, y) on the boundary

ut(x, y, 0) = 0

u(x, y, 0) = f(x, y)

.

To solve this problem, we see that it is pretty decent and homogeneous, and it is
also occurring in a bounded region of the plane. So we see if we can use separation
of variables. For this we first separate the time and space variables. So our equation
is

T ′′(t)S(x, y)− Sxx(x, y)T − Syy(x, y)T = 0.

We divide everything by TS, move things around, and get

T ′′

T
=
Sxx + Syy

S
.

1
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Since each side depends on a different variable, we have the equation

Sxx + Syy
S

= λ =
T ′′

T
.

Which side to solve first? We have the nice homogeneous boundary condition for
the space variables, so we should solve for the space variables first. Consequently
we seek a solution to:

Sxx + Syy = λS.

Expressing the boundary using x and y it is:

x2 + y2 = L2.

This is not something of the form “variable equals value.” It is more complicated.
The reason is because the natural coordinate system for a disk is not the square
Cartesian coordinates. The natural coordinate system is the polar coordinate sys-
tem.

Exercise 1. Show that the differential operator

∂xx + ∂yy

in polar coordinates (r, θ) becomes

∂rr + r−1∂r + r−2∂θθ.

Hint: use the chain rule!

In terms of polar coordinates the boundary is at r = L. This is the type of
expression we usually have for a boundary. The function S should vanish at r = L.
Moreover, we are on a disk. So, the function S at θ and θ+2kπ should be the same
for all k ∈ Z. Let us separate variables, writing S = R(r)Θ(θ). Then our equation
becomes

R′′Θ + r−1R′Θ + r−2Θ′′ = λRΘ, R(L) = 0, Θ(θ + 2kπ) = Θ(θ).

Let’s get the different variables cordoned off to different sides of the equation. So,
we first divide by RΘ:

R′′

R
+ r−1

R′

R
+ r−2

Θ′′

Θ
= λ.

Multiply everything by r2 to liberate the term with Θ from any r dependence:

r2
R′′

R
+ r

R′

R
+

Θ′′

Θ
= r2λ ⇐⇒ r2

R′′

R
+ r

R′

R
− r2λ = −Θ′′

Θ
.

Each side depends on a different variable, so they are both constant. Since we have
the lovely periodicity condition for Θ, and its equation is more simple, let us look
for its solution first. We have

−Θ′′

Θ
= constant = µ, Θ(θ + 2kπ) = Θ(θ).

So, we are looking for a 2π periodic function which has Θ′′ equal to a constant
times Θ. The only functions which have this are sines and cosines! Equivalently,
we may use complex exponentials. So, we may choose to use

{sin(nx), cos(nx)}n∈N0
, or {einx}n∈Z.

Either of these will do the job. The numbers

µ = µn = −n2.
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So, now let us take the value of µn and use it to find the partner function Rn. It
satisfies

r2
R′′n
Rn

+ r
R′n
Rn
− r2λ = −Θ′′n

Θn
= −− n2 = n2.

Re-arranging the equation, we get

eq:almostbeq:almostb (2.1) r2R′′n + rR′n − r2λ− n2Rn = 0.

This is quite close to Bessel’s equation.

Definition 1. The differential equation

x2u′′(x) + xu′(x) + (x2 − α2)u(x) = 0, α ∈ C

is Bessel’s equation. The differential equation

u2u′′(x) + xu′(x)− (x2 + α2)u(x) = 0,

is the modified Bessel equation.

So, let’s try to relate our equation (
eq:almostbeq:almostb
2.1). The main differences are: λ factor

attached to r2 term and different signs. Let us consider first the case in which
λ < 0. Then −λ > 0. So, let us write

Rn(r) = Fn(x), x = r
√
|λ| =⇒ R′n(r) = F ′n(x)

√
|λ|.

So we also have

rR′n(r) =
x√
|λ|
R′n(r) =

x√
|λ|
F ′n(x)

√
|λ| = xF ′n(x).

Similarly we get

r2R′′n(r) = x2F ′′n (x).

Moreover, since λ < 0,

−r2λ = x2.

So for the function Fn the differential equation (
eq:almostbeq:almostb
2.1) is

x2F ′′n (x) + xF ′n(x) + x2Fn(x)− n2Fn(x).

This is

x2F ′′n (x) + xF ′n(x) + (x2 − n2)Fn(x) = 0.

This is Bessel’s equation! The solution in this case is given by the function

Fn(x) = Jn(x) =⇒ Rn(r) = Jn(r
√
|λ|).

What should
√
|λ| be? This comes from the boundary condition. We need

Rn(L) = 0 =⇒ Jn(L
√
|λ|) = 0 =⇒ L

√
|λ| is a number where Jn vanishes.

Theorem 2. The Bessel function Jn has infinitely many zeros along the real axis.
We may therefore write {zn,m}m≥1 to indicate the mth positive zero of the Bessel
function Jn.

Consequently, we require

L
√
|λ| = zn,m for some m ≥ 1.

This shows that (recalling λ < 0 in this case)

λ = λn,m = −
z2n,m
L2

.
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Exercise 2. Consider the case λ > 0. Do a similar change of variables to (
eq:almostbeq:almostb
2.1) to

show that in this case we obtain the modified Bessel equation:

x2F ′′n (x) + xF ′n(x)− (x2 + n2)Fn(x) = 0.

Check the literature to see that the solutions are the modified Bessel functions, In
and Kn. Verify in the literature that the functions Kn(x) → ∞ when x → 0. So,
these do not yield physically viable solutions to the wave equation because there is
no reason for our drum to go off to infinity at the center point. Verify that the
functions In(x) do not have any positive real zeros, so there is no way to obtain the
boundary condition Rn(L) = 0. Hence, these too can be discarded.

So, with the exercise, we are able to conclude that only the case λ < 0 yields
physically viable solutions. Equipped with this knowledge, we may return to our
equation for the time dependent function.

T ′′n,m
Tn,m

= λn,m = −
z2n,m
L2

=⇒ Tn,m(t) = an,m cos(zn,mt/L) + bn,m sin(zn,mt/L).

The coefficients shall be determined by our initial conditions. Using superposition
to create a super solution we have

u(t, r, θ) =
∑
n,m≥1

(an,m cos(zn,mt/L) + bn,m sin(zn,mt/L)) Jn(zm,nr/L)(cos(nθ)+sin(nθ)).

The time derivative should vanish when t = 0, which means that the coefficients

bn,m = 0 ∀n,m.

The other condition is

u(0, r, θ) =
∑
n,m≥1

an,mJn(zm,nr/L)(cos(nθ) + sin(nθ)) = f(r, θ).

So, we would like to have a sort of Fourier expansion in terms of these Bessel
functions and sines and cosines. We will have a theorem which says that indeed
this is true. Thus

an,m =
〈f, Jn(zm,nr/L)(cos(nθ) + sin(nθ))〉
||Jn(zm,nr/L)(cos(nθ) + sin(nθ))||2

.

Here since we are doing things on a disk and using polar coordinates, our scalar
products are:

〈f, Jn(zm,nr/L)(cos(nθ)+sin(nθ))〉 =

∫ L

0

∫ 2π

0

f(r, θ)Jn(zm,nr/L)(cos(nθ) + sin(nθ))rdrdθ,

and

||Jn(zm,nr/L)(cos(nθ)+sin(nθ))||2 =

∫ L

0

∫ 2π

0

|Jn(zm,nr/L)(cos(nθ)+sin(nθ))|2rdrdθ.

2.1. What are Bessel functions? So, what exactly are these Bessel functions?
We shall see that they are a bit like the redneck cousins of the sine and cosine
functions. Let us write Bessel’s equation in this way:

x2f ′′ + xf ′ + (x2 − ν2)f = 0.
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Assume that f has a series expansion (we will later see that this assumption luckily
works out - if it didn’t - we’d just have to keep trying other methods). Then we
write

f(x) =
∑
j≥0

ajx
j+b.

Stick it into the ODE:

x2
∑
j≥0

aj(j+ b)(j+ b− 1)xj+b−2 + x
∑
j≥0

aj(j+ b)xj+b−1 + (x2− ν2)
∑
j≥0

ajx
j+b = 0.

Pull the factors of x inside the sum:∑
j≥0

aj(j + b)(j + b− 1)xj+b +
∑
j≥0

aj(j + b)xj+b +
∑
j≥0

ajx
j+b+2 − ν2ajxj+b = 0.

Begin with j = 0. To make the sum vanish, it will certainly suffice to make all the
individual terms in the sum vanish. So we would like to have

a0
(
b(b− 1) + b− ν2

)
xb = 0.

This will be true if
a0 = 0 or b2 − ν2 = 0 =⇒ b = ±ν.

Next look at j = 1. We need

a1
(
(1 + b)(1 + b− 1) + (1 + b)− ν2

)
xb+1 = 0.

Let’s simplify what’s in the parentheses, so we need

a1
(
(1 + b)2 − ν2

)
= 0.

So, here are our options:

(1) Let b = ν, set a1 = 0, and be free to choose a0 OR
(2) Let (1 + b) = ν, set a0 = 0, and be free to choose a1.

If we think about it, the second option is rather like doing the first one for ν − 1
instead of ν. So, the two options are basically equivalent, but the first one is a bit
more simple, so that is what we choose to do. We set b = ν, a1 = 0, and we shall
choose a0 6= 0 later.

What happens with the higher terms? Once j ≥ 2 the term with ajx
j+b+2 gets

involved. Let’s group the terms in the series in a nice way:∑
j≥0

xj+baj
(
(j + b)(j + b− 1) + (j + b)− ν2

)
+ ajx

j+b+2 = 0.

This is ∑
j≥0

xj+baj
(
(j + b)2 − ν2

)
+ ajx

j+b+2 = 0.

We figured out how to make the terms with the powers xb and xb+1 vanish. For
the higher powers, the coefficient of

xj+b+2 is aj+2

(
(j + 2 + b)2 − ν2

)
+ aj .

Therefore, we need

aj+2

(
(j + 2 + b)2 − ν2

)
= −aj =⇒ aj+2 = − aj

(j + 2 + b)2 − ν2)
.

Recalling that we picked b = ν, this means

aj+2 = − aj
(j + 2 + ν)2 − ν2

,
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so we are not dividing by zero which is a good thing. Equivalently, for j ≥ 2, we
have

aj = − aj−2
(j + ν)2 − ν2

= − aj−2
j2 + 2νj

= − aj−2
j(j + 2ν)

.

We therefore see that since we picked a1 = 0, all of the odd terms are zero.
On the other hand, for the even terms, we can figure out what these are using
induction. I claim that

a2k =
(−1)ka0

22kk!(1 + ν)(2 + ν) . . . (k + ν)
.

To begin we check the base case which has k = 1:

a2 = − a0
2(2 + 2ν)

= − a0
4(1 + ν)

=
(−1)1a0

22(1)1!(1 + ν)
.

So the formula is correct. We next assume that it holds for k and verify using what
we computed above that it works for k + 1. We have for j = 2k + 2,

a2k+2 = − a2k
(2k + 2)(2k + 2 + 2ν)

.

We insert the expression for a2k by the induction assumption that the formula holds
for k:

a2k+2 = − (−1)ka0
(2k + 2)(2k + 2 + 2ν)22kk!(1 + ν)(2 + ν) . . . (k + ν)

.

We note that

(2k + 2)(2k + 2 + 2ν) = 4(k + 1)(k + 1 + ν) = 22(k + 1)(k + 1 + ν).

So

a2k+2 = − (−1)ka0
22(k+1)(k + 1)k!(1 + ν)(2 + ν) . . . (k + ν)(k + 1 + ν)

.

Finally we note that

(k + 1)k! = (k + 1)!.

So,

a2k+2 = − (−1)ka0
22(k+1)(k + 1)!(1 + ν)(2 + ν) . . . (k + ν)(k + 1 + ν)

.

This is the formula for k + 1, so it is indeed correct. Before we proceed, we recall
one of the many special functions,

Γ(s) :=

∫ ∞
0

ts−1e−tdt, s ∈ C, <(s) > 1.

Exercise 3. Use integration by parts to show that

sΓ(s) = Γ(s+ 1).

Next, show that Γ(1) = 1. Use induction to show that Γ(n+ 1) = n! for n ≥ 1.
Since Γ(1) = 1, this is the reason we define

0! := 1.

Moreover, viewing Γ as an extension of the factorial function to real numbers, we
can compute silly expressions like

π! = Γ(π + 1), e! = Γ(e+ 1), i! = Γ(i+ 1).
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Use the so-called functional equation sΓ(s) = Γ(s + 1) to show that Γ extends to
a meromorphic function whose only poles occur at the points 0 and the negative
integers.

So, motivated by the form of the coefficients, the tradition is to choose

a0 =
1

2νΓ(ν + 1)
.

Therefore coefficient

a2k =
(−1)k

22k+νk!(1 + ν)(2 + ν) . . . (k + ν)Γ(ν + 1)
=

(−1)k

22k+νk!Γ(k + ν + 1)
.

This is because

(ν + 1)Γ(ν + 1) = Γ(ν + 2).

Next

(ν + 2)Γ(ν + 2) = Γ(ν + 3).

We continue all the way to

(ν + k)Γ(ν + k) = Γ(ν + k + 1).

We have therefore arrived at the definition of the Bessel function of order ν,

Jν(x) :=
∑
k≥0

(−1)k
(
x
2

)2k+ν
k!Γ(k + ν + 1)

.

For the special case ν = n ∈ N, the Bessel function is defined for good reason via

J−n(x) = (−1)nJn(x).

The Weber Bessel function is defined for ν 6∈ N to be

Yν(x) =
cos(νπ)Jν(x)− J−ν(x)

sin(νπ)
.

The second linearly independent solution to Bessel’s equation is then defined for
n ∈ N to be

Yn(x) := lim
ν→n

Yν(x),

and this is well defined. If you are curious about Bessel functions, there are books
by Olver, Watson, and Lebedev to name a few. What is most important about Yn
is that it blows up when x→ 0. That’s okay. Since Jn(x)→ 0 as x→ 0, for n ≥ 1,
this shows that Yn and Jn are certainly linearly independent! Hence they indeed
form a basis of solutions to the Bessel equation.

2.1.1. Solutions to: exercises for the week to be done oneself.

(1) (7.3.1) Use the Fourier transform to find a solution of the ordinary differ-
ential equation

u′′ − u+ 2g(x) = 0, g ∈ L1(R).

Answer: u(x) = g ∗ e−|x| = e−x
∫ x
−∞ eyg(y)dy + ex

∫∞
x
e−yg(y)dy.

(2) (7.4.7) We are tasked with solving the following problem:

uxx + uyy = 0, x > 0, 0 < y < 1, u(0, y) = 0, u(x, 0) = 0, u(x, 1) = e−x.

Answer: u(x, y) = 2
π

∫∞
0

ξ sin(ξx) sinh(ξy)
(1+ξ2) sinh(ξ) dξ.
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(3) (Eö 47) We wish to find a solution to

uxx + uyy = 0, x ∈ R, 0 < y < a,

with

u(x, 0) = 0, u(x, a) = f(x).

Answer: The solution is

1

2π

∫
R
f̂(ξ)

sinh(ξy)

sinh(ξa)
eixξdx.

To obtain the inequality, one can use Plancharel’s theorem which says that∫
R
|u(x, y)|2dx =

1

2π

∫
R
|û(ξ, y)|2dξ =

1

2π

∫
R
|f̂(ξ)|2

∣∣∣∣ sinh(ξy)

sinh(ξa)

∣∣∣∣2 dξ ≤ 1

2π

∫
R
|f̂(ξ)|2dξ =

∫
R
|f(x)|2dx.

We used that y ≤ a to obtain that the ratio of hyperbolic sines is ≤ 1, and
in the last step we used Plancharel again.

(4) (8.4.1) u(x, t) = x√
4πk

∫ t
0
f(t− s)e−ass−3/2e−s2/(4ks)ds.

(5) (8.4.3) Consider heat flow in a semi-infinite rod when heat is supplied to
the end at a constant rate c:

ut = kuxx for x > 0, u(x, 0) = 0, ux(0, t) = −c.

With the aid of the computation:

L
(

1√
πt
e−a

2/(4t)

)
(z) =

e−a
√
z

√
z
,

show that

u(x, t) = c

√
k

π

∫ t

0

s−1/2e−x
2/(4ks)ds.

Answer: We hit the PDE with the Laplace transform in the t variable.
We get

L(ut)(x, z) = kL(uxx)(x, z).

By the properties of the Laplace transform, and the IC,

L(ut)(x, z) = zL(u)(x, z)− u(x, 0) = zL(u)(x, z).

So we have the equation:

z

k
Lu(x, z) = Lu(x, z)xx.

This is an ODE now for the Laplace transform of our solution. The solution
is of the form:

Lu(x, z) = A(z)e−x
√
z/k +B(z)ex

√
z/k.

We want this to be bounded for large z so we strike the second solution. The
boundary condition we have is that ux(0, t) = −c, so when we transform
this, we want

Lux(0, z) = −L(c)(z).

We can Laplace transform the constant function:∫ ∞
0

ce−tzdt =
c

z
.
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On the other hand, taking the derivative of A(z)e−
√
z/kx with respect to x

and then setting x = 0 we get:

−
√
z

k
A(z) =⇒ −

√
z

k
A(z) = − c

z
.

So, we want

A(z) =
c
√
k

z3/2
.

Thus our Laplace transformed solution is:

Lu(x, z) =
c
√
k

z3/2
e−x
√
z/k = c

√
k

1

z

(
e−x
√
z/k

√
z

)
.

From here on out we can follow Folland’s hint and use Table 3 which says
that the Laplace transform of

L(

∫ t

0

f(s)ds)(z) = z−1L(f)(z).

So, we have

L

(∫ t

0

1√
πs
e−a

2/(4s)ds

)
(z) =

e−a
√
z

z
√
z
.

To get the correct right side, we choose

a =
x√
k
.

To get the constant factor of c
√
k as well, we multiply both sides of the

equation by c
√
k. So, we have

L

(
c
√
k

∫ t

0

1√
πs
e−x

2/(4
√
ks)ds

)
(z) = c

√
ke−x

√
z/k.

Hence, the solution to the problem before it was hit with the Laplace trans-
form is

c
√
k

∫ t

0

1√
πs
e−x

2/(4
√
ks)ds.

(6) (Eö 12) We define

f(t) =

∫ 1

0

√
wew

2

cos(wt)dw.

We are supposed to then somehow compute∫
R
|f ′(t)|2dt.

Hint: This definition of f looks remarkably like a Fourier transform of
something... The right side is an L2 norm, so we have the Parseval (is that
the right name?) formula which says that∫

R
|f ′(t)|2dt =

1

2π

∫
R
|f̂ ′(t)|2dt.

Then we look to Table 2 of Folland which says that

f̂ ′(ξ) = iξf̂(ξ).
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So we just need to compute

1

2π

∫
R
ξ2|f̂(ξ)|2dξ.

To solve this, the function f requires further inspection... it is very close to
being a Fourier transform. Let us make it so. Begin by extending evenly
(the presence of cosine hints at this...)

f(t) =
1

2

∫
R
χ[−1,1](w)

√
|w|ew

2

cos(wt)dw =
1

2

∫
R
χ[−1,1](w)

√
|w|ew

2

e−iwtdw.

The reason for the last step is that the function (without the cosine) is
even. So if we throw in e−iwt = cos(−wt)+ i sin(−wt) = cos(wt)− i sin(wt)
the integral with the sine will be zero since sine is odd and the rest of the
integrand is zero. So we recognize

f(t) = F
(

1

2
χ[−1,1](w)

√
|w|ew

2

)
(t).

By the FIT

1

2
χ[−1,1](w)

√
|w|ew

2

=
1

2π

∫
R
f(t)eiwtdt =

1

2π
f̂(−w) =

1

2π
f̂(w).

This is because f is even and so it’s Fourier transform is also even. So, we
see that

πχ[−1,1](w)
√
|w|ew

2

= f̂(w).

Hence, we just need to compute

1

2

∫
R
w2
(
χ[−1,1](w)

√
|w|ew

2
)2
dw =

1

2

∫ 1

−1
|w|w2e2w

2

dw

=

∫ 1

0

w3e2w
2

dw.

Write the integrand as (w2)(we2w
2

). Integrate by parts. It should end
nicely.

References
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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2019.03.04

There are several interesting facts about Bessel functions. Entire books have
been written on these special functions.

1.1. Fun facts about Bessel functions.

Theorem 1 (Recurrence Formulas). For all x and ν

(x−νJν(x))′ = −x−νJν+1(x)

(xνJν(x))′ = xνJν−1(x)

xJ ′ν(x)− νJν(x) = −xJν+1(x)

xJ ′ν(x) + νJν(x) = xJν−1(x)

xJν−1(x) + xJν+1(x) = 2νJν(x)

Jν−1(x)− Jν+1(x) = 2J ′ν(x)

Proof: Can you guess what we do? That’s right - use the definition!!!! First,

x−νJν(x) =
∑
n≥0

(−1)n x2n

22n+ν

n!Γ(n+ ν + 1)
.

Take the derivative of the sum termwise. This is totally legitimate because this
series converges locally uniformly in C. So, we compute∑

n≥1

(−1)n2nx
2n−1

22n+ν

n!Γ(n+ ν + 1)
=
∑
m≥0

(−1)m+12(m+ 1) x2m+1

22m+2+ν

(m+ 1)!Γ(m+ 2 + ν)
.

Above we re-indexed the sum by defining n = m+ 1. Next we do some simplifying
around

= −
∑
m≥0

(−1)m x2m+1

22m+1+ν

m!Γ(m+ 2 + ν)
= −x−ν

∑
m≥0

(−1)mx2m+1+ν

22m+1+ν

m!Γ(m+ 2 + ν)
= −x−νJν+1(x).

Next we compute similarly the derivative of xνJν is∑
n≥0

(−1)n(2n+ 2ν)x
2n+2ν−1

22n+ν

n!Γ(n+ ν + 1)
.

1
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We factor out a 2 to get ∑
n≥0

(−1)n(n+ ν)x
2n+2ν−1

22n+ν−1

n!Γ(n+ ν + 1)
.

Note that

Γ(n+ ν + 1) = (n+ ν)Γ(n+ ν) =⇒ (n+ ν)

Γ(n+ ν + 1)
=

1

Γ(n+ ν)
.

So, above we have ∑
n≥0

(−1)n x
2n+2ν−1

22n+ν−1

n!Γ(n+ ν)
= xνJν−1(x).

To do the third one it is basically expanding out the first one:

(x−νJν(x))′ = −νx−ν−1Jν + x−νJ ′ν = −x−νJν+1.

Multiply through by xν+1 to get

−νJν + xJ ′ν = −xJν+1.

We do similarly in the second formula:

νxν−1Jν + xνJ ′ν = xνJν−1.

Multiply by x−ν+1 to get

νJν + xJ ′ν = xJν−1.

Next, to get the fifth formula, subtract the third formula from the fourth. Finally,
to get the sixth formula, add the third formula to the fourth.

We shall prove two lovely facts about the Bessel functions. The following fact is
a theory item!

1.2. The generating function for the Bessel functions. This is a lovely, follow
your nose and use the definitions type of proof.

Theorem 2. For all x and for all z 6= 0, the Bessel functions, Jn satisfy

∞∑
n=−∞

Jn(x)zn = e
x
2 (z− 1

z ).

Proof. We begin by writing out the familiar Taylor series expansion for the expo-
nential functions

exz/2 =
∑
j≥0

(
xz
2

)j
j!

,

and

e−x/(2z) =
∑
k≥0

(−x
2z

)k
k!

.
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These converge beautifully, absolutely and uniformly for z in compact subsets of
C \ {0}. So, since we presume that z 6= 0, we can multiply these series and fool
around with them to try to make the Bessel functions pop out... Thus, we write

bessel1bessel1 (1.1) exz/2e−x/(2z) =
∑
j≥0

(
xz
2

)j
j!

∑
k≥0

(−x
2z

)k
k!

=
∑
j,k≥0

(−1)k
(x

2

)j+k zj−k
j!k!

.

Here is where the one and only clever idea enters into this proof, but it’s rather
straightforward to come up with it. We would like a sum with n = −∞ to ∞.
So we look around into the above expression on the right, hunting for something
which ranges from −∞ to ∞. The only part which does this is j − k, because each
of j and k range over 0 to ∞. Thus, we keep k as it is, and we let n = j − k.
Then j + k = n + 2k, and j = n + k. However, now, we have j! = (n + k)!, but
this is problematic if n + k < 0. There were no negative factorials in our original
expression! So, to remedy this, we use the equivalent definition via the Gamma
function,

j! = Γ(j + 1), k! = Γ(k + 1).

Moreover, we observe that in (
bessel1bessel1
1.1), j! and k! are for j and k non-negative. We also

observe that
1

Γ(m)
= 0, m ∈ Z, m ≤ 0.

Hence, we can write

exz/2e−x/(2z) =

∞∑
n=−∞

∞∑
k=0

(−1)k
(x

2

)n+2k zn

Γ(n+ k + 1)k!
.

This is because for all the terms with n + k + 1 ≤ 0, which would correspond to
(n+k)! with n+k < 0, those terms ought not to be there, but indeed, the 1

Γ(n+k+1)

causes those terms to vanish!
Now, by definition,

Jn(x) =

∞∑
k=0

(−1)k
(
x
2

)n+2k

k!Γ(k + n+ 1)
.

Hence, we have indeed see that

exz/2e−x/(2z) =

∞∑
n=−∞

Jn(x)zn.

�

1.3. Integral representation of the Bessel functions. Let z = eiθ for θ ∈ R.
Then the theorem on the generating function for the Bessel functions says∑

n∈Z
Jn(x)zn = e

xz
2 −

x
2z .

So, we use the fact that
1

eiθ
= e−iθ,

together with this formula to see that∑
n∈Z

Jn(x)einθ = e
x
2 (eiθ−e−iθ).
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By Euler’s formula,∑
n∈Z

Jn(x)einθ = eix sin θ = cos(x sin θ) + i sin(x sin θ).

Therefore, the left side is the Fourier expansion of the function on the right. OMG!!!
Hence, the Bessel functions are actually Fourier coefficients of this function! So,

Jn(x) =
1

2π

∫ π

−π
eix sin θe−inθdθ =

1

2π

∫ π

−π
cos(x sin θ − nθ) + i sin(x sin θ − nθ)dθ.

Note that

sin(x sin(−θ)− n(−θ)) = sin(−x sin θ − n(−θ)) = − sin(x sin θ − nθ).
So the sine part is odd and integrates to zero. We therefore have

Jn(x) =
1

2π

∫ π

−π
cos(x sin θ − nθ)dθ.

This formula can be super useful. For example, we see that the Bessel functions
have yet another property similar to their straight-laced Swedish ancestors, the sine
and cosine. They satisfy |Jn(θ)| ≤ 1∀x.

1.4. Applications to solving PDEs in circular type regions. We shall now
see how to generalize our Bessel function techniques to solve problems on pieces of
circular sectors. Consider a circular sector of radius ρ and opening angle α. In the
eyes of polar coordinates, this is a rectangle, [0, ρ] × [0, α]. That is, this set in R2

is in polar coordinates

{(r, θ) ∈ R2 : 0 ≤ r ≤ ρ, and 0 ≤ θ ≤ α}.
This is much the same as how we describe a rectangle using rectangular coordinates,
(x, y).

To solve both the heat equation and the wave equation in a circular sector, we
can use the same SLP and Fourier series style techniques we used on rectangles.
The homogeneous heat equation is:

∂tu+ ∆u = 0, ∆ = −∂xx − ∂yy.
The homogeneous wave equation is:

utt + ∆u = 0.

If we have neat and tidy (self-adjoint) boundary conditions, we can use separation
of variables. Writing our function as T (t)S(x, y), we obtain the equations:

heat T ′S + T∆S = 0 which, dividing by the product TS becomes

∆S

S
= −T

′

T
= constant.

wave T ′′S + T∆S = 0 which, dividing by the product TS becomes

∆S

S
= −T

′′

T
= constant.

So we see that in both cases we need to solve an equation of the form

∆S = λS, λ is a constant.

After we solve this, we can then continue with solving both the heat equation and
the wave equation.
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ρ

α

Figure 1. A circular sector of opening angle α and radius ρ.

1.5. Dirichlet boundary condition on a circular sector. Let’s assume that
we have the Dirichlet boundary condition on the boundary of the circular sector.
So, we are looking for a function S which is zero on the boundary.

The boundary condition in polar coordinates is:

r = ρ, θ = 0, θ = α.

So, it makes a lot more sense to use these coordinates. To proceed, we need to
write the operator using polar coordinates also! We have previously computed in
an exercise that in polar coordinates, the operator is:

∆ = −∂rr − r−1∂r − r−2∂θθ.

Let us try to solve ∆S = λS in the circular sector using separation of variables.
So, we have

R(r) and Θ(θ).

The first one only depends on the r coordinate, whereas the second one only depends
on the θ coordinate. Now, our PDE is:

−R′′(r)Θ(θ)− r−1R′(r)Θ(θ)− r−2Θ′′(θ)R(r) = λR(r)Θ(θ).

First, we multiply everything by r2, then we divide it all by ΘR to get

−r2R′′ − rR′

R
− Θ′′

Θ
= λ =⇒ −r2R′′ − rR′

R
− λr2 =

Θ′′

Θ
.

Since the two sides depend on different variables, they are both constant. It turns
out that the Θ side is much easier to deal with, so we look at solving it:

Θ′′

Θ
= µ, Θ(0) = Θ(α) = 0.

We have solved such an equation a few times before. There are no non-zero solutions
for µ > 0. For µ < 0 solutions are, up to constant factors,

Θm(θ) = sin

(
mπθ

α

)
, µm = −m

2π2

α2
.

As a consequence, we get the equation for R,

−r2R′′ − rR′

R
− λr2 = µm.

We multiply this equation by R, obtaining

−r2R′′ − rR′ − λr2R = µmR.

This is equivalent to

r2R′′ + rR′ + (λr2 + µm)R = 0.
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We make a small clever change of variables. Let

x =
√
λr, f(x) := R(r), r =

x√
λ
.

Then by the chain rule

R′(r) =
√
λf ′(x), R′′(r) = λf ′′(x).

So, the equation becomes(
x2

λ

)
λf ′′(x) +

x√
λ

√
λf ′(x) + (x2 + µm)f(x) = 0.

This simplifies, recalling that µm = −m2π2/α2,

besseleqbesseleq (1.2) x2f ′′(x) + xf ′(x) + (x2 −m2π2/α2)f(x) = 0.

This is the definition of Bessel’s equation of order mπ
α . Consequently, a solution to

this equation is

Jmπ/α(x) = Jmπ/α(
√
λr).

To satisfy the boundary condition, we would like

Jmπ/α(
√
λρ) = 0.

So,
√
λρ should be a point at which this Bessel function vanishes. We have a useful

fact about these zeros.

Theorem 3. The Bessel function Jmπ/α has infinitely many positive zeros which
can be indexed as

{zm,k}k≥1,

where zm,k is the kth positive zero.

Consequently, we shall have

Jmπ/α(zm,kr/ρ), λm,k =
z2
m,k

ρ2
.

We therefore have the collection of functions

Sm,k(θ, r) = sin(mπθ/α)Jmπ/α

(
zm,kr

ρ

)
.

Now we may obtain the time part of the solution.

heat Let us look for a solution to the homogeneous heat equation which satisfies

u(r, θ, 0) = f(r, θ).

Then, the partner functions T shall be given by:

∆S

S
= −T

′

T
= λm,k =⇒ Tm,k(t) = Am,ke

−λm,kt.

By superposition our full solution is therefore

u(r, θ, t) =
∑
m,k

Am,ke
−λm,ktSm,k(r, θ).
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wave Let us look for a solution to the homogeneous wave equation which satisfies

w(r, θ, 0) = g(r, θ), wt(r, θ, 0) = 0.

∆S

S
= −T

′′

T
= λm,k =⇒ Tm,k(t) = am,k cos(zm,kt/ρ) + bm,k sin(zm,kt/ρ).

By superposition our full solution is therefore

w(r, θ, t) =
∑
m,k

(am,k cos(zm,kt/ρ) + bm,k sin(zm,kt/ρ))Sm,k(r, θ).

To determine the coefficients, we shall use the following theorem.

Theorem 4. The set of functions

sin(mπθ/α)Jmπ/α

(
zm,kr

ρ

)
, k ≥ 0, m ≥ 1

are an orthogonal basis for L2 on the sector of radius ρ and opening angle α. Above,
zm,k is the kth positive zero of Jmπ/α.

Consequently, for the heat equation we demand

u(r, θ, 0) =
∑
m,k

Am,kSm,k(r, θ) = f(r, θ),

which shows us that the coefficients should be

Am,k =
〈f, Sm,k〉
||Sm,k||2

,

where

〈f, Sm,k〉 =

∫ α

0

∫ ρ

0

f(r, θ)Sm,k(r, θ)rdrdθ,

and

||Sm,k||2 =

∫ α

0

∫ ρ

0

|Sm,k(r, θ)|2rdrdθ.

For the wave equation we demand

w(r, θ, 0) =
∑
m,k

am,kSm,k(r, θ) = g(r, θ) =⇒ am,k =
〈g, Sm,k〉
||Sm,k||2

.

The second condition tells us what the other coefficients should be:

wt(r, θ, 0) =
∑
m,k

zm,k/ρbm,kSm,k(r, θ) = 0 =⇒ bm,k = 0∀m, k.

1.6. Bessel functions for Neumann boundary condition. This theorem is
another type of “adult spectral theorem.”

Theorem 5. Assume that ν ≥ 0 and ρ > 0. Assume that c ≥ −ν. Let

{zk}k≥1

be the positive zeros of cJν(x) + xJ ′ν(x), and let

ψk(x) = Jν(zkx/ρ).

If c > −ν then {ψk}k≥1 is an orthogonal basis for L2
w on the interval (0, b) for the

weight function w(x) = x. If c > −ν, then {ψk}k≥0 is an orthogonal basis for L2
w

on the interval (0, b) for the weight function w(x) = x, with ψ0(x) = xν .



8 JULIE ROWLETT

Let us see how to apply this theorem when we are solving the heat (and wave)
equations with the Neumann boundary condition. We follow the same procedure
as for the heat equation. Let us name the sector

Σ.

ut + ∆u = 0, inside Σ,

u(r, θ, 0) = v(r, θ) inside Σ

the outward pointing normal derivative of u = 0 on the boundary of Σ.

We do the same procedure as before. We arrive at the equation for the Θ part:

Θ′′ = µΘ, Θ′(0) = Θ′(α) = 0.

You can do the exercise to show that the only solutions are for µ < 0, and to satisfy
the boundary conditions, up to constant multiples

Θm(θ) = cos(mπ/α), µm = −m
2π2

α2
, m ≥ 0.

Then, we again arrive at the Bessel equation of order mπ/α for the function R. So,
we get that

Rm(r) = Jνm(
√
λr), νm = mπ/α.

The boundary condition for Rm is that

R′m(ρ) = 0.

So, this means we need √
λJ ′νm(

√
λρ) = 0.

In other words,
√
λ needs to be a solution of the equation

xJ ′νm(ρx) = 0.

If zk is a solution to
xJ ′νm(x) = 0,

then
zkJ

′
νm(zk) = 0 =⇒ zk

ρ
J ′νm(zkρ/ρ) = 0.

So, to satisfy the boundary condition, we need
√
λ =

zk
ρ

=⇒
√
λJ ′νm(

√
λρ) = 0.

Really, zk also depends on m, so that is why we write zm,k to mean the kth positive
solution of the equation

xJ ′νm(x) = 0.

Our function
Rm,k(r) = Jνm(zm,kr/ρ).

This also shows that

λm,k =
z2
m,k

ρ2
.

Now, we recall the equation for the partner function, T ,

T ′m,k(t) = −λm,kTm,k(t).

So, up to constant factors,
Tm,k(t) = e−λm,kt.
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To apply the theorem, we note that

νm = mπ/α > 0∀m ∈ N.

Therefore taking c = 0 in the theorem, c ≥ −νm for all m. The theorem then tells
us that the set

{Rm,k(r)}k≥1 = {Jνm(zm,kr/ρ)}k≥1

is an orthogonal basis for L2(0, ρ) with respect to integrating against rdr. We also
know that the Θm(θ) functions are an orthogonal basis for L2(0, α) with respect to
integrating against dθ. Consequently, the entire collection

Sm,k(r, θ) = Θm(θ)Rm,k(r)

is an orthogonal basis for L2(Σ). This is because integrating on L2(Σ) in polar
coordinates is integrating∫

Σ

v(r, θ)rdrdθ =

∫ ρ

0

∫ α

0

v(r, θ)rdrdθ.

So, the theorem says that we can expand the initial data in a Fourier series with
respect to the orthogonal basis functions Sm,k. We therefore write the solution

u(r, θ, t) =
∑
m,k

v̂m,kTm,k(t)Sm,k(r, θ),

where

v̂m,k =

∫
Σ
v(r, θ)Sm,k(r)rdrdθ

||Sm,k||2

=

∫ r
0

∫ θ
0

sin(mπθ/α)Jmπ/α(zm,kr/ρ)v(r, θ)rdrdθ∫ r
0

∫ θ
0

sin(mπθ/α)2Jmπ/α(zm,kr/ρ)2rdrdθ
.

1.7. Exercises to be demonstrated.

(1) Eö 28
(2) (5.5.2) A circular cylinder of radius ρ is at the constant temperature A.

At time t = 0 it is tightly wrapped in a sheath of the same material of
thickness δ, thus forming a cylinder of radius ρ+ δ. The sheath is initially
at temperature B, and its outside surface is maintained at temperature B.
If the ends of the new, enlarged cylinder are insulated, find the temperature
inside at subsequent times.

(3) Eö 30
(4) Eö 52
(5) Eö 53
(6) (5.5.4) A cylindrical uranium rod of radius 1 generates heat within itself at

a constant rate a (think radioactive material). Its ends are insulated and
its circular surface is immersed in a cooling bath at temperature zero. Thus

ut = urr + r−1ur + r−2uθθ + a, u(1, t) = 0.

First find the steady state temperature v(r) in the rod. Then find the
temperature in the rod if its initial temperature is zero.
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1.8. Exercises to be done oneself.

(1) (5.2.4) Demonstrate the identity:∫ x

0

sJ0(s)ds = xJ1(x),

∫ x

0

J1(s)ds = 1− J0(x).

(2) (5.5.1) A cylinder of radius b is initially at the constant temperature A.
Find the temperatures in it at subsequent times if its ends are insulated
and its circular surface obeys Newton’s law of cooling, ur + cu = 0, (c > 0).

(3) (5.5.5) Solve the problem

urr + r−1ur + r−2uθθ + uzz = 0 in D = {(r, θ, z) : 0 ≤ r ≤ b, 0 ≤ z ≤ l}
u(r, θ, 0) = 0, u(r, θ, l) = g(r, θ), u(b, θ, z) = 0.

(4) (5.5.6) Find the steady-state temperature in the cylinder 0 ≤ r ≤ 1, 0 ≤ z ≤
1 when the circular surface is insulated, the bottom is kept at temperature
0, and the top is kept at temperature f(r).

(5) Eö 29
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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. Solving PDEs with the help of SLPs

We have seen how the process of solving PDEs like the heat and wave equation
often leads to a set of functions which comprise an orthogonal basis for L2 or
a weighted L2 space. These basis functions generally come from separation of
variables. When we solve the “space” part of the PDE, we very often end up
solving a type of SLP. The easiest examples are:

f ′′ = λf, f(a) = 0 = f(b), for f defined on the interval, [a, b]

f ′′ = λf, f ′(a) = 0 = f ′(b), for f defined on the interval, [a, b]

f ′′ = λf, f(a) = 0 = f ′(b), for f defined on the interval, [a, b]

f ′′ = λf, f ′(a) = 0 = f(b), for f defined on the interval, [a, b].

A more challenging example comes from solving the heat and wave equations on a
circular sector. There, when we did separation of variables, we got the nice type
of SLP above for the angular variable (θ), and we got a more complicated SLP for
the radial variable. This turned into a Bessel equation. We used the initial data to
determine the coefficients in our series expansion, by writing the initial data as a
Fourier-Bessel type series.

2. The French polynomials

In other geometric settings, this same process will lead to other special functions.
In the last part of this course, based on chapter 6 in Folland, we will look at the
French polynomials,

(1) Legendre polynomials
(2) Hermite polynomials
(3) Laguerre polynomials

We can imagine that now we may be solving PDEs in more exotic geometric settings,
like French Polynesia. Hence, more exotic functions will play the role of the SLP
part of the problem. Three such types of functions are the aforementioned French
polynomials.

2.1. Legendre polynomials. These French polynomials arise from using spherical
coordinates to solve the wave and heat equations on a three-dimensional sphere.

1
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2.2. Hermite polynomials. These French polynomials arise from using parabolic
coordinates to solve the wave and heat equations in a parabolic shaped region.

2.3. Laguerre polynomials. These French polynomials arise from the quantum
mechanics of the hydrogem atom.

2.4. Orthogonal polynomials general theory. For the purpose of this course,
it is most important that you learn how to use the French polynomials. Depending
on how much time we have, we may go into the details of the origins of the French
polynomials, but these details are rather complicated and will not be examined. So,
we prioritize that which shall be examined. The following proposition is therefore
useful.

Proposition 1. Assume that {pn}n∈N is a sequence of polynomials such that pn is
of degree n for each n. Assume that p0 6= 0. Then for each k ∈ N, any polynomial
of degree k is a linear combination of {pj}kj=0.

Proof: The proof is by induction. If q0 is a polynomial of degree 0, then we
may simply write

q0 =
q0
p0
p0.

This is okay because p0 is degree zero, so it is a constant, and p0 6= 0, so the
coefficient q0/p0 is also a constant. Assume that we have verified the proposition
for all 0, 1, . . . k. We wish to show that it holds for k+ 1. So, let q be a polynomial
of degree k + 1. This means that

q(x) = axk+1 + l.o.t. l.o.t. means lower order terms

has

a 6= 0.

Moreover, since pk+1 is of degree k + 1 (not of a lower degree), it is of the form

pk+1 = bxk+1 + l.o.t., b 6= 0.

So, let us consider

q(x)− a

b
pk+1(x) = p(x) which is degree k.

By induction, p is a linear combination of p0, . . . , pk. Therefore

q(x) =
a

b
pk+1 +

k∑
j=0

cjpj ,

for some constants {cj}kj=0.

Proposition 2. Let {pk}∞k=0 be a set of polynomials such that each pk is of degree
k, and p0 6= 0. Moreover, assume that they are L2 orthogonal on a finite bounded
interval [a, b]. Then these polynomials comprise an orthogonal basis of L2 on the
interval [a, b].
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Proof: Assume that some f ∈ L2 on the interval is orthogonal to all of these
polynomials. Therefore by the preceding proposition, f is orthogonal to all poly-
nomials. To see this, note that if p is a polynomial of degree n, then there exist
numbers c0, . . . , cn such that

p =

n∑
j=0

cjpj =⇒ 〈f, p〉 =

n∑
j=0

cj〈f, pj〉 = 0.

We shall use the fact that continuous functions are dense in L2. Therefore given
ε > 0, there exists a continuous function, g, such that

||f − g|| < ε

2(||f ||+ 1)
.

Next, we use the Stone-Weierstrass Theorem which says that all continuous func-
tions on bounded intervals can be approximated by polynomials. Therefore, there
exists a polynomial p such that

||g − p|| < ε

2(||f ||+ 1)
.

Finally, we compute

||f ||2 = 〈f, f〉 = 〈f − g + g − p+ p, f〉 = 〈f − g, f〉+ 〈g − p, f〉+ 〈p, f〉

= 〈f − g, f〉+ 〈g − p, f〉.
By the Cauchy-Schwarz inequality,

||f ||2 ≤ ||f − g||||f ||+ ||g − p||||f || < ||f ||ε
2(||f ||+ 1)

+
||f ||ε

2(||f ||+ 1)
< ε.

Since ε > 0 is arbitrary, this shows that ||f || = 0. Hence by the three equiva-
lent conditions to be an orthogonal basis, we have that the polynomials are an
orthogonal basis of L2 on the interval.

2.5. Best approximations. We recall a slight variation of the best approximation
theorem:

Theorem 3. Let {φn}n∈N be an orthonormal set set in a Hilbert space, H. If
f ∈ H,

||f −
∑
n∈N
〈f, φn〉φn|| ≤ ||f −

∑
n∈N

cnφn||, ∀{cn}n∈N ∈ `2,

and = holds ⇐⇒ cn = 〈f, φn〉 holds ∀n ∈ N. More generally, let {φn}Nn=0 be an
orthogonal, non-zero set in a Hilbert space H. Then,

||f −
N∑
n=0

〈f, φn〉
||φn||2

φn|| ≤ ||f −
N∑
n=0

cnφn||, ∀{cn}Nn=0 ∈ CN+1.

Equality holds if and only if

cn =
〈f, φn〉
||φn||2

, n = 0, . . . , N.
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How to prove it? The only difference is the last part, but we can use the proof
of the first part. Define ψn = 0 for n > N . Next define

ψn =
φn
||φn||

, n = 0, . . . , N.

Repeat the argument in the proof of the best approximation theorem using {ψn}n∈N
instead of φn.

||f −
∑
n∈N

cnψn||2 = ||f −
∑
n∈N

f̂nψn +
∑
n∈N

f̂nψn −
∑
n∈N

cnψn||2

= ||f−
∑
n∈N

f̂nψn||2+||
∑
n∈N

f̂nψn−
∑
n∈N

cnψn||2+2<〈f−
∑
n∈N

f̂nψn,
∑
n∈N

f̂nψn−
∑
n∈N

cnψn〉.

The scalar product

〈f−
∑
n∈N

f̂nψn,
∑
n∈N

f̂nψn−
∑
n∈N

cnψn〉 = 〈f,
∑
n∈N

(f̂n−cn)Ψn〉−
∑
n∈N

f̂n〈ψn,
∑
m∈N

(f̂m−cm)Ψn〉.

By the orthogonality and definition of Ψn, and the definition of f̂n,

=
∑
n∈N

f̂n(f̂n − cn)−
∑
n∈N

f̂n
∑
m∈N

(f̂m − cm)〈ψn, ψm〉

=
∑
n∈N

f̂n(f̂n − cn)−
∑
n∈N

f̂n(f̂n − cn) = 0.

Therefore

||f −
∑
n∈N

cnψn||2 = ||f −
∑
n∈N

f̂nψn||2 + ||
∑
n∈N

f̂nψn −
∑
n∈N

cnψn||2

= ||f −
N∑
n=0

f̂nψn||2 +

N∑
n=0

|f̂n − cn|2 ≤ ||f −
N∑
n=0

f̂nψn||2,

with equality if and only if cn = f̂n for all n. Since

N∑
n=0

f̂nψn =

N∑
n=0

〈f, φn〉
||φn||2

φn,

this completes the proof.

2.5.1. Applications: best approximation problems. This shows us that if we have a
finite orthogonal set of non-zero vectors in a Hilbert space, then for any element of
that Hilbert space, the best approximation of f in terms of those vectors is given
by

N∑
n=0

〈f, φn〉
||φn||2

φn.

Here is the setup of questions which can be solved using this theory. Either:
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(1) You are given functions defined on an interval which are L2 orthogonal
on that interval (possibly with respect to a weight function which is also
specified). Either you recognize that they orthogonal because you’ve seen
them before (like sines, cosines, from problems you have solved previously)
or you compute that they are L2 orthogonal on the interval. Then, you
are asked to find the numbers c0, c1, . . . cN so that the L2 norm, or the

weighted L2 norm of f −
∑N
k=0 ckφk is minimized, where the function f is

also specified.
(2) You are asked to find the polyonomial of at most degree N such that the L2

norm (or weighted L2 norm) of f −p where p is a polynomial is minimized.

In the first case, you compute

ck =
〈f, φk〉
||φk||2

.

In the second case you need to build up a set of orthogonal or orthonormal polyno-
mials. Then, you let φk be defined to be the polynomial of degree k you have built.
Proceed the same as in the first case, and your answer shall be

N∑
k=0

ckφk.

If you don’t like the thought of building up a set of orthogonal polynomials, if
you are lucky, then it may be possible to suitably modify some of the French
polynomials to be orthogonal on the interval under investigation, with respect to the
(possibly weighted) L2 norm. So, we shall proceed to study the French polynomials.
Depending on how much time we have, we may also be able to get into their “origin
stories.”

2.6. The Legendre polynomials. The Legendre polynomials, are defined to be

Pn(x) =
1

2nn!

dn

dxn
(
(x2 − 1)n

)
.

OMG like why on earth are they defined in such a bizarre way, right? What
did you expect, they are French polynomials! Of course they are not defined in
some simple way, mais non, they must be all fancy and shrouded in mystery and
intrigue. Actually though, the reason comes from the PDE in which they arise as
solving one part of the separation of variables for the heat and wave equations in
three dimensions using spherical coordinates. First, let us do a small calculation
involving these polynomials:

(x2 − 1)n =

n∑
k=0

(
n

k

)
(−1)n−k(x2)k =

n∑
k=0

(
n

k

)
(−1)n−kx2k.

Therefore, if we differentiate n times, only the terms with k ≥ n/2 survive. Differ-
entiating a term x2k once we get 2kx2k−1. Differentiating n times gives

dn

dxn
(x2k) = x2k−n

n−1∏
j=0

(2k − j).

If we want to be really persnickety, we prove this by induction. For n = 1, we get
that

(x2k)′ = 2kx2k−1.
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Which is correct. If we assume the formula is true for n, then differentiating n+ 1
times using the formula for n we get

(2k − n)x2k−(n+1)
n−1∏
j=0

(2k − j) = x2k−(n+1)
n∏
j=0

(2k − j).

See, it is correct. As a result,

Pn(x) =
1

2nn!

n∑
k≥n/2

(−1)n−k
(
n

k

)
x2k−n

n−1∏
j=0

(2k − j).

So, we see that this is indeed a polynomial of degree n.
Next time we will prove the following theorem about the Legendre polynomials.

Theorem 4. The Legendre polynomials are orthogonal in L2(−1, 1) and

||Pn||2 =
2

2n+ 1
.

Here, we shall simply use this theorem to do an example.

Exercise 1. Find the polynomial p(x) of at most degree four which minimizes the
following integral ∫ 1

−1
|p(x)− ex|2dx.

Based on our theoretical knowledge, the ‘best approximation’ can be created
using the Legendre polynomials. Let

f(x) := ex.

Then, the ‘best approximation’ in terms of the Legendre polynomials is

p(x) =

4∑
n=0

cnPn(x),

where Pn(x) is the Legendre polynomial of degree n, and

cn :=
〈f, Pn〉
||Pn||2

=

∫ 1

−1 e
xPn(x)dx

2
2n+1

.

The beautiful fact is that we do not need to compute these integrals.

2.7. Hints for the exercises to be done oneself.

(1) (5.5.1) A cylinder of radius b is initially at the constant temperature A.
Find the temperatures in it at subsequent times if its ends are insulated
and its circular surface obeys Newton’s law of cooling, ur + cu = 0, (c >
0). Hint: Since the ends are insulated the problem is reduced to a disk.
Moreover, since the initial condition is radially symmetric, the solution
will also continue to be radially symmetric for all later times. Thus, you
just need u(r, t) a function depending on the radius and the time. Write
u(r, t) = R(r)T (t) and put into the heat equation remembering to use polar
coordinates for the PDE. Solve for R first. Use the boundary condition.
There will be J0s and the λks will come from an equation that you need
J0(λkr) to satisfy (BC!). Then solve for the time part, and finally get the
coefficients using the initial condition.



FOURIER ANALYSIS & METHODS 2020.03.03 7

(2) (5.5.5) Solve the problem

urr + r−1ur + r−2uθθ + uzz = 0 in D = {(r, θ, z) : 0 ≤ r ≤ b, 0 ≤ z ≤ l}

u(r, θ, 0) = 0, u(r, θ, l) = g(r, θ), u(b, θ, z) = 0.

Hint: There is only one inhomogeneous part of the equation, and that is the
boundary condition when z = l. Otherwise, observe that since we are in a
cylinder, the function must be 2π periodic in the theta variable. So, let us
separate variables writing u = R(r)Θ(θ)Z(z). Put this into the PDE. First
solve for the theta dependent function. I am guessing you will get either
einθ for n ∈ Z or sin(nθ) and cos(nθ), and these are equivalent to each
other... Next, I would solve for the R function. This has the zero boundary
condition: R(b) = 0. So, I am guessing you will get Jn(zn,kr/b) where zn,k
is the kth positive zero of the Bessel function Jn for n ∈ N. Last but not
least, use these to solve for your Z function. Since the PDE is homogeneous,
smash them all together into a super-solution using superposition. Use the
condition u(r, θ, l) = g(r, θ) to specify what the constants in your solution
need to be.

(3) (5.2.4) Demonstrate the identity:∫ x

0

sJ0(s)ds = xJ1(x),

∫ x

0

J1(s)ds = 1− J0(x).

Hint: Use the recurrence formulas. Integrating by parts is a reasonable
idea as well.

(4) (5.5.6) Find the steady-state temperature in the cylinder 0 ≤ r ≤ 1, 0 ≤ z ≤
1 when the circular surface is insulated, the bottom is kept at temperature 0,
and the top is kept at temperature f(r). Hint: This is a radially symmetric
problem, so you’ll have the variables r, z. No thetas. No t because you’re
asked to find the ‘steady-state temperature’ so, this is the temperature
that is independent of time. Use separation of variables, writing u(r, z) =
R(r)Z(z). The boundary condition for R will be that R′(1) = 0, because
no heat is lost outside the circular surface. The boundary condition for
Z is weird. So, solve for R first. The operator ∂xx + ∂yy + ∂zz in these
coordinates is

∆ = ∂rr + r−1∂r + r−2∂θθ + ∂zz.

Since it is steady state, you’re solving ∆RZ = 0. Solve for R first. Then
use it to solve for Z. This will involve expanding f(r) in a series...

(5) Eö 29 Hint: Oh geez. Look at that boundary condition. It depends on time.
Well, let’s not panic. This is a new trick. Look at the function (t+ 1). You
want that sitting at x = 0, but you want to kill it at x = 1. How to achieve
this using t and x?

(t+ 1)(1− x).

This takes care of the boundary condition at x = 0, the boundary condition
at x = 1, and the initial condition at t = 0. Does it screw up the PDE?
Well,

(∂t − 2∂xx)(t+ 1)(1− x) = 1− x.
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So now you’ve got an inhomogeneous PDE. Use the series technique. First,
find the basis

Xn with Xn(0) = Xn(1) = 0, X ′′n = λnXn.

Find the lambdas. Next write

v(x, t) =
∑
n≥1

Tn(t)Xn(x).

Expand −(1− x) in an Xn Fourier series, like

−(1− x) =
∑
n≥1

bnXn(x).

Stick v into the PDE. Set it equal to the series for −(1 − x). Use the
differential equation satisfied by Xn. Equate the coefficients of Xn on the
left and right. This will give an ODE for Tn. Use as initial condition
Tn(0) = 0. Your full solution will be

(t+ 1)(1− x) + v(x, t).

Check that it satisfies everything required. If you’re stuck, go back to the
first exercise demonstrated on Monday’s big group session for inspiration!
Also, it might make you feel better to know that I first tried doing some
Laplace transform business with this, and it became horrible. Realized that
it was so complicated, there must be a better way. Indeed there is.

(6) Eö 35 (sorry forgot this one before) Hint: Since you’re in a cylinder, use
polar coordinates for x and y, but keep z just as it is. The PDE is therefore

(∂rr + r−1∂r + r−2∂θθ + ∂zz)u = 0.

The function should vanish at z = 0 and z = L. It’s got a strange boundary
condition at r = R. It might be good to change this R into a ρ in case
you’d like to use separation of variables. Try to solve the problem using
separation of variables. Solve for Z first. Since the boundary data doesn’t
depend on θ but only depends on z, the solution is independent of θ. So
you’re just going to have Z and R. You’ll get the coefficients from the
boundary data, which might look weird, but should read

u = sin
(πz
L

)
− sin

(πz
L

)
cos
(πz
L

)
.
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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. The Legendre polynomials and applications

Theorem 1. The Legendre polynomials are orthogonal in L2(−1, 1), and

||Pn||2 =
2

2n+ 1
.

Proof: We first prove the orthogonality. Assume that n > m. Then, since they
have this constant stuff out front, we compute

2nn!2mm!〈Pn, Pm〉 =

∫ 1

−1

dn

dxn
(x2 − 1)n

dm

dxm
(x2 − 1)mdx.

Let us integrate by parts once:

=
dn−1

dxn−1
(x2 − 1)n

dm

dxm
(x2 − 1)m

∣∣∣∣1
−1
−
∫ 1

−1

dn−1

dxn−1
(x2 − 1)n

dm+1

dxm+1
(x2 − 1)m.

Consider the boundary term:

dn−1

dxn−1
(x2 − 1)n =

dn−1

dxn−1
(x− 1)n(x+ 1)n.

This vanishes at x = ±1, because the polynomial vanishes to order n whereas we
only differentiate n− 1 times. So, we have shown that

2nn!2mm!〈Pn, Pm〉 = −
∫ 1

−1

dn−1

dxn−1
(x2 − 1)n

dm+1

dxm+1
(x2 − 1)m.

We repeat this n− 1 more times. We note that for all j < n,

dj

dxj
(x2 − 1)n vanishes at x = ±1.

For this reason, all of the boundary terms from integrating by parts vanish. So, we
just get

(−1)n
∫ 1

−1
(x2 − 1)n

dm+n

dxm+n
(x2 − 1)mdx = (−1)n

∫ 1

−1
(x2 − 1)n

dn

dxn
dm

dxm
(x2 − 1)mdx

Remember that n > m. We computed that dm

dxm (x2−1)m is a polynomial of degree
m. So, if we differentiate it more than m times we get zero. So, we’re integrating
zero! Hence it is zero.

1
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For the second part, we need to compute:

(x2 − 1)n =

n∑
k=0

(
n

k

)
(−1)n−k(x2)k =

n∑
k=0

(
n

k

)
(−1)n−kx2k.

Therefore, if we differentiate n times, only the terms with k ≥ n/2 survive. Differ-
entiating a term x2k once we get 2kx2k−1. Differentiating n times gives

dn

dxn
(x2k) = x2k−n

n−1∏
j=0

(2k − j).

If we want to be really persnickety, we prove this by induction. For n = 1, we get
that

(x2k)′ = 2kx2k−1.

Which is correct. If we assume the formula is true for n, then differentiating n+ 1
times using the formula for n we get

(2k − n)x2k−(n+1)
n−1∏
j=0

(2k − j) = x2k−(n+1)
n∏
j=0

(2k − j).

See, it is correct. As a result,

Pn(x) =
1

2nn!

n∑
k≥n/2

(−1)n−k
(
n

k

)
x2k−n

n−1∏
j=0

(2k − j).

So, we see that this is indeed a polynomial of degree n. With this formula, we can
write

Pn(x) =
1

2nn!

n∑
k≥n/2

(−1)n−k
(
n

k

)
x2k−n

n−1∏
j=0

(2k − j).

Differentiating n times gives us just the term with the highest power of x, so we
have

dn

dxn
Pn(x) =

1

2nn!
n!

n−1∏
j=0

(2n− j) =
(2n)!

2nn!
.

Consequently,

〈Pn, Pn〉 = (−1)n
1

2nn!

(2n)!

2nn!

∫ 1

−1
(x2 − 1)ndx = (−1)n

2(2n)!

22n(n!)2

∫ 1

0

(x2 − 1)ndx

= (−1)n
2(2n)!

22n(n!)2

∫ 1

0

n∑
k=0

(−1)n−k
(
n

k

)
x2kdx

= (−1)n
2(2n)!

22n(n!)2

n∑
k=0

(−1)n−k
x2k+1

2k + 1

(
n

k

)∣∣∣∣∣
1

0

= (−1)n
2(2n)!

22n(n!)2

n∑
k=0

(−1)n−k
(
n

k

)
1

2k + 1

=
2(2n)!

22n(n!)2

n∑
k=0

(−1)k
(
n

k

)
1

2k + 1
.
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This looks super complicated. Apparently by some miracle of life∫ 1

0

(1− x2)ndx =
Γ(n+ 1)Γ(1/2)

Γ(n+ 3/2)
.

Since

〈Pn, Pn〉 = (−1)n
2(2n)!

22n(n!)2

∫ 1

0

(x2 − 1)ndx =
2(2n)!

22n(n!)2

∫ 1

0

(1− x2)ndx,

we get
Γ(n+ 1)Γ(1/2)2(2n)!

22n(n!)2Γ(n+ 3/2)
.

We use the properties of the Γ function together with the fact that Γ(1/2) =
√
π

to obtain √
π2(2n)!

22nn!(n+ 1/2)Γ(n+ 1/2)
.

Let us consider

2(n+ 1/2)Γ(n+ 1/2) = (2n+ 1)Γ(n+ 1/2).

Next consider
2(n− 1/2)Γ(n− 1/2) = (2n− 1)Γ(n− 1/2).

Proceeding this way, the denominator becomes

2nn!(2n+ 1)(2n− 1) . . . 1
√
π.

However, now looking at the first part

2nn! = 2n(2n− 2)(2n− 4) . . . 2.

So together we get
(2n+ 1)!

√
π.

Hence putting this in the denominator of the expression we had above, we have
√
π2(2n)!

(2n+ 1)!
√
π

=
2

2n+ 1
.

Corollary 2. The Legendre polynomials are an orthogonal basis for L2 on the
interval [−1, 1].

Theorem 3. The even degree Legendre polynomials {P2n}n∈N are an orthogonal
basis for L2(0, 1). The odd degree Legendre polynomials {P2n+1}n∈N are an orthog-
onal basis for L2(0, 1).

Proof: Let f be defined on [0, 1]. We can extend f to [−1, 1] either evenly or
oddly. First, assume we have extended f evenly. Then, since f ∈ L2 on [0, 1],∫ 1

−1
|fe(x)|2dx = 2

∫ 1

0

|f(x)|2dx <∞.

Therefore fe is in L2 on the interval [−1, 1]. We have proven that the Legendre
polynomials are an orthogonal basis. So, we can expand fe in a Legendre polynomial
series, as ∑

n≥0

f̂e(n)Pn,
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where

f̂e(n) =
〈fe, Pn〉
||Pn||2.

By definition,

〈fe, Pn〉 =

∫ 1

−1
fe(x)Pn(x)dx.

Since fe is even, the product fe(x)Pn(x) is an odd function whenever n is odd.
Hence all of the odd coefficients vanish. Moreover,

〈fe, P2n〉 = 2

∫ 1

0

f(x)P2n(x))dx.

We also have

||P2n||2 = 2

∫ 1

0

|P2n(x)|2dx.

Consequently

f =
∑
n∈N

(∫ 1

0
f(x)P2n(x)dx∫ 1

0
|P2n(x)|2dx

)
P2n.

We can also extend f oddly. This odd extension satisfies∫ 1

−1
|fo(x)|2dx =

∫ 0

−1
|fo(x)|2dx+

∫ 1

0

|fo(x)|2dx = 2

∫ 1

0

|fo(x)|2dx <∞.

So, the odd extension is also in L2 on the interval [−1, 1]. We can expand fo in a
Legendre polynomial series, as ∑

n≥0

f̂o(n)Pn,

where

f̂o(n) =
〈fo, Pn〉
||Pn||2.

By definition,

〈fo, Pn〉 =

∫ 1

−1
fo(x)Pn(x)dx.

Since fo is odd, the product fo(x)Pn(x) is an odd function whenever n is even.
Hence all of the even coefficients vanish. Moreover,

〈fo, P2n+1〉 = 2

∫ 1

0

f(x)P2n+1(x))dx,

because the product of two odd functions is an even function. We also have

||P2n+1||2 =

∫ 0

−1
|P2n+1(x)|2dx+

∫ 1

0

|P2n+1(x)|2dx = 2

∫ 1

0

|P2n+1(x)|2dx.

Consequently

f =
∑
n∈N

(∫ 1

0
f(x)P2n+1(x)dx∫ 1

0
|P2n+1(x)|2dx

)
P2n+1.
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1.1. Applications of Legendre polynomials to best approximations on
bounded integrals.

Exercise 1. Find the polynomial q(x) of at most degree 10 which minimizes the
following integral ∫ π

−π
|q(x)− sin(x)|2dx.

To do this exercise, we need different polynomials... If Legendre polynomials are
orthogonal on (−1, 1), can we somehow use them to create orthogonal polynomials
on (−π, π)? Let’s think about changing variables. How about setting

t =
x

π
.

Then, ∫ π

−π
Pn(x/π)Pm(x/π)dx =

∫ 1

−1
Pn(t)Pm(t)πdt =

{
0 n 6= m
2π

2n+1 n = m
.

Therefore the polynomials

Pn(x/π)

are orthogonal on x ∈ (−π, π), and their norms squared on that interval are

2π

2n+ 1
.

The best approximation is therefore the polynomial

q(x) =

10∑
n=0

anPn(x/π), an :=

∫ π
−π sin(x)Pn(x/π)dx

2π
2n+1

.

Exercise 2. Find the polynomial p(x) of degree at most 100 which minimizes the
following integral ∫ 10

0

|ex
2

− p(x)|2dx.

Yikes! Well, let’s not panic just yet. The number 100 is even. Hence, we know
that the even degree Legendre polynomials are an orthogonal basis for L2(0, 1).
So, we can use the even degree Legendre polynomials if we can just deal with this
interval not being (0, 1) but being (0, 10). To figure this out, let’s think about
changing variables... As before, think about changing variables,

t = x/10,

so that∫ 10

0

P2n(x/10)P2m(x/10)dx =

∫ 1

0

P2n(t)P2m(t)10dt =

{
0 n 6= m
10

4n+1 n = m

The last calculation we obtained by recalling our calculation∫ 1

−1
|Pn(x)|2dx = (−1)n

(2n)!

(2nn!)2

∫ 1

−1
(x2−1)ndx =

2

2n+ 1
=⇒

∫ 1

0

|P2n(x)|2dx =
1

4n+ 1
.
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So, the functions P2n(x/10) are an orthogonal basis for L2(0, 10). Consequently
the Best Approximation Theorem says that the best approximation is given by the
polynomial

p(x) =

50∑
n=0

cnP2n(x/10), cn =

∫ 10

0
ex

2

P2n(x/10)dx
10

4n+1

.

Exercise 3. Find the polynomial p(x) of degree at most 99 which minimizes the
following integral ∫ 10

0

|ex
2

− p(x)|2dx.

Here, we can recycle our previous solution since 99 is odd, so we can use the odd
degree Legendre polynomials in this case to form an orthogonal basis for L2(0, 10).
Our polynomial shall be

p(x) =

49∑
n=0

cnP2n+1(x/10), cn =

∫ 10

0
ex

2

P2n+1(x/10)dx
10

2(2n+1)+1

.

1.2. Legendre polynomials for best approximations on arbitrary inter-
vals. Let’s consider a best approximation problem on an interval (a, b). First, we
find its midpoint,

m =
a+ b

2
.

Next, we find its length

` =
b− a

2
.

Then the interval
(a, b) = (m− `,m+ `).

Since we know about the Legendre polynomials, Pn, on (−1, 1) since x 7→ x−m
` = t

sends (a, b) to (−1, 1),

Pn

(
x−m
`

)
are orthogonal on (a, b).

In case this is not super obvious, let us compute using the substitution t = x−m
` ,∫ b

a

Pn

(
x−m
`

)
Pk

(
x−m
`

)
dx =

∫ 1

−1
`Pn(t)Pk(t)dt = 0 if n 6= k.

We have simply used substitution in the integral with t = x−m
` . So, these modified

Legendre polynomials are orthogonal on (a, b). Moreover∫ b

a

P 2
n

(
x−m
`

)
dx =

∫ 1

−1
`P 2

n(t)dt = `||Pn||2 =
2`

2n+ 1
.

So, we simply expand the function f using this version of the Legendre polynomials.
Let

cn =

∫ b
a
f(x)Pn

(
x−m
`

)
dx∫ b

a
[Pn((x−m)/`)]2dx

.

The best approximation amongst all polynomials of degree at most N is therefore

P (x) =

N∑
n=0

cnPn

(
x−m
`

)
.
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2. Les polynomes d’hermite

These polynomials shall be a basis for L2(R) with respect to the weight function

e−x
2

.

Definition 4. The Hermite polynomials are defined to be

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

.

Proposition 5. The Hermite polynomials are polynomials with the degree of Hn

equal to n.

Proof: The proof is by induction. For n = 0, this is certainly true, as H0 = 1.
Next, let us assume that

dn

dxn
e−x

2

= pn(x)e−x
2

,

is true for a polynomial, pn which is of degree n. Then,

dn+1

dxn+1
e−x

2

=
d

dx

(
pn(x)e−x

2
)

= p′n(x)e−x
2

−2xpn(x)e−x
2

= (p′n(x)− 2xpn(x)) e−x
2

.

Let
pn+1 = p′n(x)− 2xpn(x).

Then we see that since pn is of degree n, pn+1 is of degree n+ 1. Moreover

dn+1

dxn+1
e−x

2

= pn+1(x)e−x
2

.

So, in fact, the Hermite polynomials satisfy:

H0 = 1, Hn+1 = − (H ′n(x)− 2xHn(x)) .

Proposition 6. The Hermite polynomials are orthogonal on R with respect to the

weight function e−x
2

. Moreover, with respect to this weight function ||Hn||2 =
2nn!
√
π.

Proof: Assume n > m ≥ 0. We compute∫
R
Hn(x)Hm(x)e−x

2

dx =

∫
R

(−1)n
dn

dxn
e−x

2

Hm(x)dx.

We use integration by parts n times, noting that the rapid decay of e−x
2

kills all
boundary terms. We therefore get∫

R
e−x

2 dn

dxn
Hm(x)dx = 0.

This is because the polyhomial, Hm, is of degree m < n. Therefore differentiating
it n times results in zero. Finally, for n = m, we have by the same integration by
parts, ∫

R
H2
n(x)e−x

2

dx =

∫
R
e−x

2 dn

dxn
Hn(x)dx.

The nth derivative of Hn is just the nth derivative of the highest order term. By
our preceding calculation, the highest order term in Hn is

(2x)n.
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Differentiating n times gives

2nn!.

Thus ∫
R
H2
n(x)e−x

2

dx = 2nn!

∫
R
e−x

2

dx = 2nn!
√
π.

We may wish to use the following lovely fact, but we shall not prove it.

Theorem 7. The Hermite polynomials are an orthogonal basis for L2 on R with

respect to the weight function e−x
2

.

2.1. Answers to the exercises to be done oneself.

(1) (5.2.4) Demonstrate the identity:∫ x

0

sJ0(s)ds = xJ1(x),

∫ x

0

J1(s)ds = 1− J0(x).

Well, one of the recurrence formulas says

d

dx
(xJ1(x)) = xJ0(x).

Thus a function whose derivative is equal to sJ0(s) is the function xJ1(x).
Hence we can evaluate∫ x

0

sJ0(s)ds = sJ1(s)|s=xs=0 = xJ1(x).

Another of the recurrence formulas says

d

dx
J0(x) = −J1(x).

So, ∫ x

0

J1(s)ds = − J0(s)|s=xs=0 = J0(0)− J0(x) = 1− J0(x).

(2) (5.5.1) A cylinder of radius b is initially at the constant temperature A.
Find the temperatures in it at subsequent times if its ends are insulated
and its circular surface obeys Newton’s law of cooling, ur + cu = 0, (c > 0).
Answer:

u(r, t) = 2A
∑
k≥1

λkJ1(λk)

(λ2k + b2c2)J0(λk)2
J0

(
λkr

b

)
e−λ

2
kt/b

2

,

where λk is the kth positive solution to

λkJ
′
0(λk) + bcJ0(λk) = 0.

(3) (5.5.5) Solve the problem

urr + r−1ur + r−2uθθ + uzz = 0 in D = {(r, θ, z) : 0 ≤ r ≤ b, 0 ≤ z ≤ l}

u(r, θ, 0) = 0, u(r, θ, l) = g(r, θ), u(b, θ, z) = 0.

Answer:

u(r, θ, z) =
∑
n≥0

∑
k≥1

(akn cosnθ + bkn sinnθ)Jn

(
λk,nr

b

)
sinh

(
λk,nz

b

)
,
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where

bk,n =
2

b2π sinhλk,n

∫ π

−π

∫ b

0

g(rθ)
Jn(λk,nr)

Jn+1(λk,n)2
sinnθrdrdθ,

and similarly for ak,n where λk,n is the kth positive zero of Jn.
(4) (5.5.6) Find the steady-state temperature in the cylinder 0 ≤ r ≤ 1, 0 ≤ z ≤

1 when the circular surface is insulated, the bottom is kept at temperature
0, and the top is kept at temperature f(r). Answer:

u(r, z) = a0z +
∑
k≥1

akJ0(λkr) sinh(λkz),

where λk is the kth positive zero of J0,

a0 = 2

∫ 1

0

rf(r)dr,

and

ak =
2

J0(λk)2 sinhλk

∫ 1

0

rf(r)J0(λkr)dr, k > 0.

(5) Eö 29 (answer is in there!)
(6) Eö 35 (answer is in there!)
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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. The generating function for the Hermite polynomials

This theory item is similar to the analogous result for the Bessel functions, but
with a bit of a twist.

Theorem 1. For any x ∈ R and z ∈ C, the Hermite polynomials,

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

,

satisfy
∞∑
n=0

Hn(x)
zn

n!
= e2xz−z

2

.

Proof: The key idea with which to begin is to consider instead

e−(x−z)
2

= e−x
2+2xz−z2 .

We consider the Taylor series expansion of this guy, with respect to z, viewing x
as a parameter. By definition, the Taylor series expansion for

e−(x−z)
2

=
∑
n≥0

anz
n,

where

an =
1

n!

dn

dzn
e−(x−z)

2

, evaluated at z = 0.

To compute these coefficients, we use the chain rule, introducing a new variable
u = x− z. Then,

d

dz
e−(x−z)

2

= − d

du
e−u

2

,

and more generally, each time we differentiate, we get a −1 popping out, so

dn

dzn
e−(x−z)

2

= (−1)n
dn

dun
e−u

2

,

Hence, evaluating with z = 0, we have

an =
1

n!
(−1)n

dn

dun
e−u

2

, evaluated at u = x.

1
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The reason it’s evaluated at u = x is because in our original expression we’re
expanding in a Taylor series around z = 0 and z = 0 ⇐⇒ u = x since u = x− z.
Now, of course, we have

dn

dun
e−u

2

, evaluated at u = x =
dn

dxn
e−x

2

.

Hence, we have the Taylor series expansion

e−(x−z)
2

= e−x
2+2xz−z2 =

∑
n≥0

zn

n!
(−1)n

dn

dxn
e−x

2

.

Now, we multiply both sides by ex
2

to obtain

e2xz−z
2

= ex
2 ∑
n≥0

zn

n!
(−1)n

dn

dxn
e−x

2

.

We can bring ex
2

inside because everything converges beautifully. Then, we have

e2xz−z
2

=
∑
n≥0

zn

n!
ex

2

(−1)n
dn

dxn
e−x

2

.

Voilà! The definition of the Hermite polynomials is staring us straight in the face!
Hence, we have computed

e2xz−z
2

=
∑
n≥0

zn

n!
Hn(x).

1.1. Applications to best approximations.

Exercise 1. Find the polynomial of at most degree 40 which minimizes∫
R
|f(x)− P (x)|2e−x

2

dx,

where f is some function in the weighted L2 space on R with weight e−x
2

.

We know that the Hermite polynomials are an orthogonal basis for L2 on R
with the weight function e−x

2

. We see that same weight function in the integral.
Therefore, we can rely on the theory of the Hermite polynomials! Consequently,
we define

cn =

∫
R f(x)Hn(x)e−x

2

dx

||Hn||2
,

where

||Hn||2 =

∫
R
H2
n(x)e−x

2

dx = 2nn!
√
π.

The polynomial we seek is:

P (x) =

40∑
n=0

cnHn(x).

Some variations on this theme are created by changing the weight function.
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Exercise 2. Find the polynomial of at most degree 60 which minimizes∫
R
|f(x)− P (x)|2e−2x

2

dx.

This is not the correct weight function for Hn. However, we can make it so. The

correct weight function for Hn(x) is e−x
2

. So, if the exponential has 2x2 = (
√

2x)2,
then we should change the variable in Hn as well. We will then have, via the
substitution t =

√
2x,∫

R
Hn(
√

2x)Hm(
√

2x)e−2x
2

dx =

∫
R
Hn(t)Hm(t)e−t

2 dt√
2

= 0, n 6= m.

Moreover, the norm squared is now∫
R
H2
n(t)e−t

2 dt√
2

=
||Hn||2√

2
=

2nn!
√
π√

2
.

Consequently, the functions Hn(
√

2x) are an orthogonal basis for L2 on R with

respect to the weight function e−2x
2

. We have computed the norms squared above.
The coefficients are therefore

cn =

∫
R f(x)Hn(

√
2x)e−2x

2

dx

2nn!
√
π/
√

2
.

The polynomial is

P (x) =

60∑
n=0

cnHn(
√

2x).

2. The Laguerre polynomials

The Laguerre polynomials come from understanding the quantum mechanics of
the hydrogen atom. We shall not get into this1

Definition 2. The Laguerre polynomials,

Lαn(x) =
x−αex

n!

dn

dxn
(xα+ne−x).

We summarize their properties in the following

Theorem 3 (Properties of Laguerre polynomials). The Laguerre polynomials are
an orthogonal basis for L2 on (0,∞) with the weight function xαe−x. Their norms
squared,

||Lαn||2 =
Γ(n+ α+ 1)

n!
.

They satisfy the Laguerre equation

[xα+1e−x(Lαn)′]′ + nxαe−xLαn = 0.

For x > 0 and |z| < 1,
∞∑
n=0

Lαn(x)zn =
e−xz/(1−z)

(1− z)α+1
.

1Alex Jones does get into it: https://www.youtube.com/watch?v=i91XV07Vsc0. Check out the

Alex Jones Prison Planet https://www.youtube.com/watch?v=kn_dHspHd8M. Turns out that Alex
Jones’s crazy ranting makes for decent death metal vocals. The gay frogs and America first remix

are pretty decent too.

https://www.youtube.com/watch?v=i91XV07Vsc0
https://www.youtube.com/watch?v=kn_dHspHd8M
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Exercise 3. Find the polynomial of at most degree 7 which minimizes∫ ∞
0

|f(x)− P (x)|2xαe−xdx.

Since the Laguerre polynomials are an orthogonal basis for L2(0,∞) with weight
function xαe−x, we define

cn =

∫∞
0
f(x)Lαn(x)xαe−xdx

||Lαn||2
.

The polynomial we seek is:

P (x) =

7∑
n=0

cnL
α
n(x).

3. Best approximation summary

Assume that based on theoretical considerations we know that a certain collec-
tion of functions

einx, cos, sin, orthogonal polynomials, Bessel functions, weird SLP functions,

are an orthogonal basis on a bounded interval. In the case of SLP functions, do
not forget the weight function in case the weight function is not simply 1. Let us
call such function φn. Then the best approximation to any f in L2 of the bounded
interval under consideration is its Fourier-φn expansion, which is∑ 〈f, φn〉

||φn||2
φn(x).

Recall

〈f, φn〉 =

∫
f(y)φn(y)w(y)dy, if the weight function is w(y),

and
||φn||2 = 〈φn, φn〉.

One can also do best approximations using Hermite and Laguerre polynomials on

R and (0,∞), respectively, with the weight functions e−x
2

and xαe−x, respectively.
It works in very much the same way in all these cases.

4. Distributions done the right way

The mathematical concept of a distribution, or, as they are sometimes called,
generalized function, has been badly abused not only by physicists but also by
mathematicians. You may have already heard about the so-called “delta function.”
It’s not really a function. It’s not a ‘generalized function.’ It has its very own
terminology, and that is that it is a distribution. Now, distributions are not as
mysterious and weird as the mystique in which they are often shrouded.

Distributions are functions which themselves take as input a function. A partic-
ularly nice class of distributions are the tempered distributions. These distributions
take in a Schwarz class function and spit out a number.

Definition 4. Assume that f is a smooth function on R. Then, we say that f ∈ S
if for all k and for all n,

lim
|x|→∞

xnf (k)(x) = 0.
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In other words, f and all its derivatives decay rapidly at ±∞. There are quite a
few functions which satisfy this. For example, all smooth functions which live on a
bounded interval (compactly supported) satisfy this property.

Exercise 4. Show that if f ∈ S then all of the derivatives of f are in S. Show
that if f ∈ S then its Fourier transform is also in S.

Definition 5. A tempered distribution is a function which maps S to C, which
satisfies the following conditions:

• It is linear, so for a distribution denoted by L, we have

L(αf + βg) = αL(f) + βL(g),

for all f and g in C∞c (R) and for all complex numbers α and β.
• There is a non-negative integer N and a constant C ≥ 0 such that for all
f ∈ S

|L(f)| ≤ C
∑

j+k≤N

sup
x∈R
|xjf (k)(x)|.

Let’s do an example. We define a distribution in the following way. For f ∈
C∞c (R),

L(f) := f(0).

That is, the distribution takes in the function, f , and spits out the value of f at
the point 0 ∈ R. This distribution satisfies for any f and g in C∞c (R) and for any
α and β ∈ C,

L(αf + βg) = αL(f) + βL(g).

Moreover, we have the estimate that

|L(f)| ≤ |f(0)| ≤ sup
x∈R
|f(x)|.

So the estimate required is satisfied with N = 0 and C = 1. This distribution has
a name. It is called the delta distribution. It is usually written with the letter δ. It
is nothing other than a function which takes a function as its input and spits out a
number as its output.

Exercise 5. Assume that f ∈ C∞c (R). Show that by defining

Lf (g) =

∫
R
f(x)g(x)dx, g ∈ C∞c (R),

Lf is a tempered distribution.

In fact, the assumption that f ∈ C∞c (R) wasn’t even necessary. You can show
that for f ∈ L2(R) or f ∈ L1(R), the distribution, Lf defined above (it takes in a
function g ∈ C∞c (R) and integrates the product with f over R), is a distribution.
So, here’s something which is rather cool. The elements in L2(R) and L1(R) are
in general not differentiable at all. However, the distributions we can make out of
them are differentiable. Here’s how we do that.

Definition 6. The derivative of a tempered distribution, L is another tempered
distribution, denoted by L′ ∈ D(R), which is defined by

L′(g) = −L(g′), g ∈ S.
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To see that this definition makes sense, we think about the special case where
L = Lf , and f ∈ S. Then, we can take the derivative of f , and it is also an element
of S. So, we can define Lf ′ in the analogous way. Let’s write it down when it takes
in g ∈ S,

Lf ′(g) =

∫
R
f ′(x)g(x)dx.

We can do integration by parts. The boundary terms vanish, so we get

Lf ′(g) =

∫
R
f ′(x)g(x)dx = −

∫
R
f(x)g′(x)dx.

So,

Lf ′(g) = −Lf (g′) = (Lf )′(g).

This is why it makes a lot of sense to define the derivative of a distribution in this
way. For the heavyside function, we define

LH , LH(g) =

∫ ∞
0

g(x)dx.

Then, we compute that

L′H(g) = −LH(g′) = −
∫ ∞
0

g′(x)dx.

Due to the fact that g ∈ S,

lim
x→∞

g(x) = 0.

Hence, we have

−
∫ ∞
0

g′(x)dx = −(0− g(0)) = g(0) = δ(g).

So, we see that the derivative of LH is the δ distribution! Pretty neat!
In this way, distributions can solve differential equations! For example, we’d say

that a distribution L satisfies the equation

L′′ + λL = 0

if, for every g ∈ S we have

L′′(g) + λL(g) = 0.

This turns out to be incredibly useful and important in the theory of partial dif-
ferential equations. However, the way it usually works is that instead of actually
finding a distribution which solves the PDE, one shows by abstract mathematics
that there exists a distribution which solves the PDE. Then, one can use clever
methods to show that the mere existence of a distribution solving the PDE, which
is called a weak solution, actually implies that there exists a genuinely differentiable
solution to the PDE. We don’t want to get ahead of ourselves here, so conclude
with one last exercise, which proves that you can differentiate distributions as many
times as you like!

Exercise 6. Use induction to show that you can differentiate a distribution as
many times as you like, by defining

L(k)(g) := (−1)kL(g(k)).

In a similar way, we can define the Fourier transform of a distribution.



FOURIER ANALYSIS & METHODS 2020.03.09 7

Definition 7. Assume that L is a tempered distribution. The Fourier transform
of L is the distribution, L̂ which for f ∈ S acts as follows

L̂(f) := L(f̂).

In this way, we can compute the Fourier transform of our favorite distribution,
δ.

δ̂(f) := δ(f̂) = f̂(0) =

∫
R
f(x)dx.

So, we could think of the Fourier transform of δ as the distribution which acts by

δ̂ : f ∈ S 7→
∫
R
f(x)dx.

On the other hand, by the FIT,

δ(f) = f(0) =
1

2π

∫
R
f̂(ξ)dξ =

1

2π
δ̂(f̂) =

1

2π
ˆ̂δ(f).

So that’s kind of cute. It says that

δ =
1

2π
ˆ̂δ.


