1. \((0.5p+0.5p+1p+1p)\) Funktionen

\[f(z) = \frac{z^2 + 1}{z^3 - 4z^2 + z + 6} \]

har en Laurentserieutveckling av typen \(\sum_{n=0}^{\infty} a_n(z - 2)^n + \sum_{n=1}^{\infty} b_n(z - 2)^{-n}\)
i området \(|z - 2| > 3\).

a) Bestäm \(a_n\) för \(n \geq 0\). Ange endast svar!
b) Bestäm \(b_1\). Ange endast svar!
c) Bestäm \(b_n\) för \(n \geq 2\). Ange endast svar!
d) Beräkna

\[\int_C \frac{f'(z)}{f(z)} \, dz \]

där \(C\) är den positivt orienterade cirkeln med centrum 0 och radie \(\frac{3}{2}\).

OBS: Motivera beräkningen!

Lösning a) - c). Det gäller att

\[f(z) = \frac{z^2 + 1}{z^3 - 4z^2 + z + 6} = \frac{z^2 + 1}{(z+1)(z-2)(z-3)} \]
\[= \frac{1}{6z+1} - \frac{5}{3z-2} + \frac{5}{2z-3} \]

Vi sätter \(w = z - 2\) och får

\[f(z) = \frac{1}{6w+3} - \frac{5}{3w} + \frac{5}{2w-1} \]
\[= \frac{1}{6w+3w^{-1}} - \frac{5}{3w^{-1}} + \frac{5}{2w-1} - \frac{1}{w^{-1}} \]
\[y = \frac{1}{6} \sum_{n=0}^{\infty} (-3)^n w^{n-1} - \frac{5}{3} w^{-1} + \frac{5}{2} \sum_{n=0}^{\infty} w^{-n-1} \]

\[= w^{-1} + \sum_{n=1}^{\infty} \left(\frac{5}{2} + \frac{1}{2}(-1)^n 3^{n-1} \right) w^{-n-1} \]

\[= (z-2)^{-1} + \sum_{n=1}^{\infty} \frac{1}{2} (5 + (-1)^n 3^{n-1})(z-2)^{-n-1} \]

\[= (z-2)^{-1} + \sum_{n=2}^{\infty} \frac{1}{2} (5 + (-1)^{n-1} 3^{n-2})(z-2)^{-n} \]

Alltså är a) \(a_n = 0, n \geq 0 \) b) \(b_1 = 1 \) och c) \(b_n = \frac{1}{2}(5 + (-1)^{n-1} 3^{n-2}) \), \(n \geq 2 \), \(\leftarrow \) **SVAR**

Lösning d). Kända satser visar att integralens värde är lika med \(2\pi i \times \) (Antalet nollställen för \(f \) innanför \(C \) räknade med multiplicitet minus antalet poler för \(f \) innanför \(C \) räknade med multiplicitet) = \(2\pi i(2 - 1) = 2\pi i \leftarrow \) **SVAR**

2. (3p) En Möbiusavbildning \(w = f(z) \) avbildar punkterna \(-1, 0\) och \(1\) på punkterna \(\infty, 1 \), respektive \(0\). Bestäm det minimala avståndet mellan \(f(z_1) \) och \(f(z_2) \) då \(z_1 \) och \(z_2 \) är diametralt motsatta punkter på cirkel \(|z| = \frac{1}{2}\).

Lösning. Möbiusavbildningen uppfyller

\[
\begin{align*}
\frac{w - 0}{w - \infty} &= \frac{1 - \infty}{1 - 0} = \frac{z - 10 + 1}{z + 10 - 1}
\end{align*}
\]
dvs

\[
\frac{w}{w - \infty} = \frac{\frac{1 - z}{1 + z}}{\frac{z - 10 + 1}{z + 10 - 1}}
\]

Om \(z_1 = \frac{1}{2} e^{it} \) och \(z_2 = -\frac{1}{2} e^{it} \), där \(0 \leq t < \pi \), blir

\[
| f(z_1) - f(z_2) | = \left| \frac{2 - e^{it}}{2 + e^{it}} - \frac{2 + e^{it}}{2 - e^{it}} \right|
\]
\[\frac{8}{|4 - e^{2it}|} \geq \frac{8}{5} \]
där likhet inträffar om \(t = \frac{\pi}{2} \). \(\text{SVAR: } \frac{8}{5} \).

3. (4p) Beräkna
\[\int_0^\infty \frac{\sqrt{x} \ln x}{(1 + x^2)^2} \, dx. \]

Lösning. Om \(z = re^{it} \) där \(r > 0 \) och \(-\frac{\pi}{2} < t < \frac{3\pi}{2} \) definieras \(\log z = \ln r + it \),
\[z^{\frac{1}{2}} = e^{\frac{1}{2} \log z} = \sqrt{r} e^{\frac{it}{2}} \] och \(f(z) = \frac{z^{\frac{1}{2}} \ln z}{(1 + z^2)^2} \). Låt nu \(0 < \varepsilon < 1 < \rho \), \(C_\rho : z = \rho e^{it}, 0 \leq t \leq \pi \). Funktionen \(f(z) \) har en pol av ordning 2 i punkten \(z = i \) och är analytisk utanför \(\{i\} \cup \{\text{icke-positiva imaginäraxeln}\} \).

Cauchys sats ger
\[\int_{C_\rho} f(z) \, dz + \int_{C_\varepsilon} f(z) \, dz + \int_{-\rho}^{-\varepsilon} f(x) \, dx + \int_{-\varepsilon}^{\varepsilon} f(x) \, dx \]
\[= 2\pi i \text{Res}(f(z); i). \]

Här är
\[|\int_{C_\rho} f(z) \, dz| \leq \frac{\sqrt{\rho} (\ln \rho + \pi)}{(\rho^2 - 1)^2} \pi \rho \]
och
\[|\int_{-\varepsilon}^{\varepsilon} f(z) \, dz| \leq \frac{\sqrt{\varepsilon} (\ln \frac{1}{\varepsilon} + \pi)}{(1 - \varepsilon^2)^2} \pi \varepsilon \]
och genom att låta \(\varepsilon \to 0 \) och \(\rho \to \infty \) följer att
\[\int_0^\infty f(x) \, dx + \int_{-\infty}^0 f(x) \, dx = 2\pi i \text{Res}(f(z); i). \]

Vidare är
\[\int_{-\infty}^0 f(x) \, dx = \int_{-\infty}^0 \frac{i\sqrt{x} (\ln |x| + i\pi)}{(1 + x^2)^2} \, dx \]
\[= \int_0^\infty \frac{i\sqrt{x} (\ln x + i\pi)}{(1 + x^2)^2} \, dx \]
och eftersom \(f(x) \) är reell för \(x > 0 \) blir

\[
\int_0^\infty \frac{\sqrt{x} \ln x}{(1 + x^2)^2} dx = 2\pi \text{Re} \, \text{Res}(f(z); i).
\]

Här är

\[
\text{Res}(f(z); i) = \left[\frac{d}{dz} \frac{z^{\frac{1}{2}} \log z}{(z + i)^2} \right]_{z = i}
\]

\[
= \left[-2(z + i)^{-3} z^{\frac{1}{2}} \log z + \frac{1}{2} (z + i)^{-2} \frac{1}{z^{\frac{1}{2}}} \log z + (z + i)^{-2} \frac{1}{z^{\frac{1}{2}}} \right]_{z = i}
\]

och vi får

\[
\int_0^\infty \frac{\sqrt{x} \ln x}{(1 + x^2)^2} dx = \frac{\pi}{8\sqrt{2}}(\pi - 4).
\]

4. (2.5p) Funktionen \(f(z) \) är analytisk i området \(0 < |z - z_0| < r \). Visa att om \(|f(z)| \) är begränsad i en punkterad omgivning av \(z_0 \) så finns en i området \(|z - z_0| < r \) konvergent potensserie \(\sum_{n=0}^\infty a_n(z - z_0)^n \) vars summa i punkten \(z \neq z_0 \) är lika med \(f(z) \).

5. (2.5p) Den komplexvärda kontinuerliga funktionen \(f \) är definerad i ett öppet sammanhängande område \(D \) i komplexa talplanet. Vidare gäller att

\[
\int_\gamma f(z)dz = 0
\]

för varje triangulär \(\gamma \) i \(D \) som omslutet ett område som helt ligger i \(D \). Visa att funktionen \(f \) är analytisk.