MTF053 - Fluid Mechanics
 2023-10-27 08.30-13.30

Approved aids:

- The formula sheet handed out with the exam (attached as an appendix)
- Beta - Mathematics Handbook for Science and Engineering
- Physics Handbook : for Science and Engineering
- Graph drawing calculator with cleared memory

Exam Outline:

- In total 6 problems, each worth 10p

Grading:

number of points on exam	$24-35$	$36-47$	$48-60$
grade	3	4	5

Problem 1 - Table-Tennis Ball (10 p.)

It is a classic result from potential flow theory that rotating cylinders and spheres will generate lift. The figure below shows a schematic illustration of the streamlines around a rotating sphere. As a consequence of the rotation, the upper part of the sphere will rotate with the flow increasing the flow velocity locally due to the no-slip condition and in the same way, the lower part will rotate against the flow direction and thus decrease the flow velocity. The result is a net turning of the flow, which will lead to generation of a lift force in the flow-normal direction (in the same way as the net turning of the flow generated by a wing is associated with a lift force). The lift force generated by rotating spheres and cylinders is often referred to as the Magnus effect and is the physical principle behind, for example, David Beckham's famous bended free kicks - in that case, there might be a certain amount of talent involved as well.

(a) Calculate the backspin (ω) required to make a table-tennis ball follow a horizontal path rather than the curved path that it would follow without adding spin to the ball. The weight and diameter of a table-tennis ball are 2.5 g and 38.0 mm , respectively. After hitting the ball, its velocity in the horizontal direction is $V=12.0 \mathrm{~m} / \mathrm{s}(6 \mathrm{p}$.

Theory questions related to the topic:
(b) If you are going to do an experimental investigation of a problem including several important physical variables, why is it beneficial to divide the variables into non-dimensional groups? (1p.)
(c) Make a schematic representation of the pressure distribution around a cylinder for inviscid flow (potential flow), viscous flow with laminar and turbulent separation respectively. Explain why the pressure varies the way it does. Which of the three cases will give the lowest and highest pressure drag? (2p.)
(d) Why do dimpled golf balls have lower pressure drag than golf balls with smooth surfaces? (1p.)

Problem 2 -Water Ski (10 p.)

Although the flow over the bottom surface of a water ski in use is rather far from a flow over a flat plate, assuming that the flow resembles a flat plate flow will give a quite good estimate of the skin friction drag. Let's investigate the skin friction drag of a water ski that is $L=1.5 \mathrm{~m}$ long and $b=0.15 \mathrm{~m}$ wide. For the boundary layer analysis it can be assumed that transition to turbulence takes place at a local Reynolds number of $R e_{x}=5.0 \times 10^{5}$.
(a) What is the maximum velocity for which the entire boundary layer built up under the water ski will be laminar? (2p.)
(b) Make two graphs that shows how the transition location and total drag varies with velocity (V) for velocities in the range $1.0 \mathrm{~m} / \mathrm{s}<V<9.0 \mathrm{~m} / \mathrm{s}(6 \mathrm{p}$.)

Theory questions related to the topic:

(c) For laminar flow over a flat plate, the velocity profile is self-similar - what does that mean? (1p.)
(d) Name two alternative ways to measure the boundary layer thickness than δ. How can these measures be interpreted physically? (1p.)

Problem 3 - Pipe Flow (10 p.)
An engineer works on a construction where water at $20^{\circ} \mathrm{C}$ flows through a 30.0 m long galvanized iron pipe (new condition) with the diameter $D=7.5 \mathrm{~cm}$ at a flow rate of $Q=0.09 \mathrm{~m}^{3} / \mathrm{s}$.
(a) Based on the information given above, calculate the head loss. (3p)
(b) At a design meeting where the engineer presents his part of the construction, the calculated head loss is deemed to be too high for the pumps installed upstream. After a bit of research, the engineer finds that it would be possible to add a thin plastic liner coating to the pipe walls and make the pipe hydraulically smooth. The addition of the liner will however make the effective diameter slightly smaller. As input for the next project meeting the engineer calculates the head loss for a smooth pipe at the same Reynolds number as for the rough pipe (the maximum possible reduction of head loss) and the diameter for a smooth pipe that gives the same head loss as the rough pipe (the smallest diameter that could be allowed). Calculate these values. (5p.)

Theory questions related to the topic:
(c) What does the concept entrance length mean? How does the flow velocity profile change over the entrance length? (1p.)
(d) How does the turbulence viscosity μ_{t} compare to the fluid viscosity μ in the viscous sublayer and in the fully turbulent region, respectively? (1p.)

Problem 4 - Belt-Driven Flow (10 p.)

A wide belt passes through a container filled with a viscous liquid. The belt moves vertically upward at a constant velocity V_{b}. Due to the viscous forces, a fluid film with the thickness h is built up over the belt surface. Since the belt moves vertically, gravity tends to make the fluid drain down the belt. The film flow can be assumed to be laminar, steady, and fully developed.

(a) Starting from the Navier-Stokes equations, derive an expression for the fluid velocity distribution in the liquid film. (5p.)
(b) For what belt velocities V_{b} will the average velocity in the film be positive? (3p.)

Theory questions related to the topic:
(c) Explain the physical meaning of local acceleration and convective acceleration. (1p.)
(d) How can we simplify the continuity equation on differential form under the following circumstances? (1p.)

$$
\frac{\partial \rho}{\partial t}+\frac{\partial(\rho u)}{\partial x}+\frac{\partial(\rho v)}{\partial y}+\frac{\partial(\rho w)}{\partial z}=0
$$

1: steady-state flow
2: incompressible flow

Problem 5 - Water Pump (10 p.)

A pump delivers water at a steady flow rate of $Q=1136.0 \mathrm{~L} / \mathrm{min}$. Water enters the pump through a $9.0 \mathrm{~cm}\left(D_{\text {in }}\right)$ pipe and leaves the pump through a $2.5 \mathrm{~cm}\left(D_{\text {out }}\right)$ pipe. Just upstream of the pump, the pressure is $p_{i n}=124.0 \mathrm{kPa}$ and the pump increases the pressure to $p_{\text {out }}=$ 414.0 kPa . There is a temperature rise over the pump of that corresponds to a rise of the internal energy of the fluid of $d \hat{u}=278.0 \mathrm{Nm} / \mathrm{kg}$. The pump can be considered to be well isolated and thus the flow is adiabatic. Under the above described conditions, the pump consumes 27.5 kW of electric power.
(a) Calculate the power consumption related to losses (the sum of viscous losses, mechanical losses, etc) (5p.)
(b) Break the nominal pump power (pump power without losses) down into its components (pressure rise, increase of kinetic energy, and increase of internal energy), i.e. calculate the fraction of the total nominal pump power that is consumed by each of these components (2p.)

Theory questions related to the topic:
(c) Explain the physical meaning of each of the terms in Reynolds transport theorem: (1p.)

$$
\frac{d}{d t}\left(B_{s y s t}\right)=\frac{d}{d t}\left(\int_{c v} \beta \rho d \mathcal{V}\right)+\int_{c s} \beta \rho\left(\mathbf{V}_{r} \cdot \mathbf{n}\right) d A
$$

(d) What does it mean that inlets and outlets are one-dimensional? (1p.)
(e) The Bernoulli equation can be said to be a simplified form of the energy equation.

$$
\frac{p_{1}}{\rho}+\frac{1}{2} V_{1}^{2}+g z_{1}=\frac{p_{2}}{\rho}+\frac{1}{2} V_{2}^{2}+g z_{2}=\mathrm{const}
$$

In what ways are the Bernoulli equation above more limited than the energy equation? (1p.)

Problem 6 - Overexpanded Nozzle Flow (10 p.)

When a convergent-divergent nozzle operates at overexpanded conditions, oblique shocks are formed at the nozzle exit as illustrated in the figure below. The presence of the oblique shocks leads to a change of flow direction as the jet flow passes through the shock. In an experiment where air was expanded through a convergent-divergent nozzle into a room at atmospheric conditions ($p_{a}=101325 P a$, and $T_{a}=293 K$), Schlieren imaging reviled the presence of oblique shocks downstream of the nozzle exit. From the Schlieren images, the shock angle could be estimated to be $\beta=45^{\circ}$ and the flow deflection angle (the change of flow direction over the shock) was estimated to be $\theta=15^{\circ}$.

(a) Calculate the exit-to-throat area ratio for the nozzle A / A^{*} (4p.)
(b) Calculate the total conditions at the nozzle inlet (T_{o} and p_{o}) (4 p.)

Theory questions related to the topic:
(c) Which of the properties $h_{o}, T_{o}, a_{o}, p_{o}$, and ρ_{o} are constants in a flow if the flow is adiabatic and isentropic, respectively? (1p.)
(d) Show schematically how the oblique shock formed ahead of a wedge traveling at supersonic speed if the flow deflection angle (half the wedge angle) is greater than the maximum deflection angle and less than the maximum defection angle, respectively. (1p.)

Pl) TABLE-TENNIS BALL

$$
\begin{aligned}
& M_{\text {ball }}=2.5 \mathrm{~s} \\
& D_{\text {ball }}=38.0 \mathrm{~mm}
\end{aligned}
$$

Find the backspin that rares the BALL FOLLOW A HORIZONTAL PATH..

IF TAE BAU IS TO Fouch a horizontal path, the weight of the bale has To be bal anced by the lift

$$
\begin{aligned}
& F_{L}=C_{L} \frac{1}{2} \rho V^{2} \frac{\pi D^{2}}{4} \Rightarrow \\
& m g=C_{L} \frac{1}{2} \rho V^{2} \frac{\pi D^{2}}{4} \Rightarrow \\
& C_{L}=\frac{8 m^{2} g}{\rho V^{2} \pi D^{2}} \approx 0.24
\end{aligned}
$$

$$
\begin{aligned}
& C_{L}=0.24 \Rightarrow \frac{\omega D}{2 \mathrm{~V}}=0.9 \\
& \Rightarrow \omega=549.5 \mathrm{rad} / \mathrm{s} \\
& (5247 \mathrm{rpm})
\end{aligned}
$$

Given:
DIMFNUINUS CF WATER SKI:

$$
\begin{aligned}
& \text { LENGTH: } \quad L=7.5 \mathrm{~m} \\
& \text { WIDTH: } b=0.15 \mathrm{~m}
\end{aligned}
$$

TRAOVITEN DEGNCLDINUREER:

$$
5.0 \times 10^{5}
$$

ASSUME FRESH WATER \& $20^{\circ} \mathrm{C}$
(WHO IN THEIR RIGHT MIND WOULD EVER CINDIDER SALT WATER \because)

$$
\begin{aligned}
& \rho=998 \mathrm{les} / \mathrm{m}^{3} \\
& \mu=1.0 \times 10^{-3} \mathrm{~kg} / \mathrm{ms}
\end{aligned}
$$

a) Find the ravin veiccity Fir whet THE ENTIRE BOUNDARY LAYER UNDER THE SKI is LAMINAR.

LAMINAR BL. \Rightarrow TRANHTICN NOT REACHED \Rightarrow RA VEICCITY WHEN
 DUST REACHES AT THE TRAILiNG EDGE., (@ $x=L$)

$$
\begin{aligned}
& \Rightarrow R e_{L}=R e_{\text {transition }} \\
& \frac{\rho U L}{\mu}=8.0 \times 10^{5} \Rightarrow U=0.33 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

COMMENT: $\quad u=0.33 \mathrm{~m} / \mathrm{s} \quad c 2$ $1.2 \mathrm{~km} / \mathrm{h}$ D A FAR TO LN W VELOCITY AND THUS ONE WOULD NEVER EXPERIENCE Fully LAMNAR BOUNDARY LAYER IN REALITY
b) TAAKE CIRAPHS SHCNINC THE transition lecation and tutal (viocas) Deta Ao function of VELCCITY FCR $1.0<u<9.0$ $n=1.0>0.33 \Rightarrow$ THELE WIL BE transition to turpancince..

$$
\begin{align*}
& R e_{x_{c r}}=\frac{\rho U x_{c r}}{M}=5.0 \times 10^{5}=R e_{t r} \\
& \Rightarrow x_{c r}=\frac{\mu e_{e t r}}{8 U} \tag{1}
\end{align*}
$$

Fer Bcunnary layeas with tebotien we can ude ean. 7.49

$$
\begin{equation*}
C_{D}=\frac{0.031}{R_{e_{L}}{ }^{1 / 7}}-\frac{1400}{R_{e_{L}}} \tag{2}
\end{equation*}
$$

WHERE $R e_{L}=\frac{s U L}{q}$
The taral unan draa do thin CALCULAFES AS

$$
\begin{equation*}
D=C_{D} \frac{1}{2} \rho u^{2} b L \tag{3}
\end{equation*}
$$

$U(n / s)$	$x_{c r}(n)$	$D(N)$
1.0	0.394	0.35
1.5	0.229	0.81
2.0	0.167	1.44
2.5	0.194	2.24
5.0	0.111	3.20
3.5	0.095	4.31
4.0	0.087	5.57
4.5	0.074	6.96
5.0	0.067	8.54
5.5	0.061	10.25
6.0	0.056	12.09
6.5	0.051	14.08
7.0	0.048	16.21
7.5	0.045	18.47
8.0	0.042	20.87
8.5	0.039	23.40
2.0	0.037	26.07

Pipe flow
Given :
wATER@20

$$
\begin{aligned}
& 8=998 \mathrm{~kg} / \mathrm{n}^{3} \\
& q=9.0 \cdot 10^{-3} \mathrm{ks} / \mathrm{ws}
\end{aligned}
$$

FLOW RATE: $Q=0,09 \mathrm{~m}^{3} / \mathrm{s}$
Pipe lenuth: $L=30.0 \mathrm{~m}$
Pipe Dinmerte: $D=7.5 \mathrm{~cm}$ (0.095_{m})
Pide rameyti: catinanizeo iren (new)

$$
\Rightarrow \varepsilon=0,15 \mathrm{~mm}
$$

a) Chcuute the head loss

$$
\begin{align*}
& V=\frac{Q}{A}=\frac{4 Q}{\pi D^{2}} \\
& R_{e_{0}}=\frac{\rho V D}{\mu}=\frac{4 \rho Q}{\mu \pi D}=1.5 .10^{6} \\
& \Rightarrow \operatorname{TURQULENT.} \\
& h_{f}=f \frac{L V^{2}}{D 2 g} \quad(6.10) \\
& h_{f}=f \frac{\delta Q^{2} L}{\pi^{2} \delta D^{5}} \quad \text { (1) } \tag{1}\\
& \text { unlenewn. }
\end{align*}
$$

Colerracole/rucoy (6.48)

$$
\frac{1}{\sqrt{f}}=-2.0 \log _{10}\left(\frac{\varepsilon / D}{3.7}+\frac{2.51}{R_{e_{0}} \sqrt{f}}\right)
$$

(USE RCODY CHART WITH E/D $=20 \cdot 00^{-3} \mathrm{CR}$ sulve uoing iterative gethoo..)

$$
\begin{equation*}
\Rightarrow \quad t=2.35 \cdot 10^{-2} \tag{2}
\end{equation*}
$$

(2) in (1) $\Rightarrow h_{f}=199.2 \mathrm{~m}$
b)

THIN PLAOTIC LINER CCATINK \Rightarrow
Hydramicany sarcuth PIPE
Two scenarics:
I) SAME REGnoldos nurvier is in a)
\Rightarrow Maximur reductin of hetd cals
II) SAME HEAD LCSA AS in a)
\Rightarrow MARIMLION DAAMETER REDUCTIN Alloweo.
I)

SAME RESNCMDSNUT BER
SAME FICN RAFE AND $R_{E D}=\frac{4 \rho Q}{\pi D K}$
$\Rightarrow D$ io the sue as in as

MOWDJ CHART CI (6.38)

$$
\begin{equation*}
\Rightarrow \quad f=1.08 \cdot 10^{-2} \tag{3}
\end{equation*}
$$

(8) in (1) $\Rightarrow h_{f}=91.8 \mathrm{~m}$
II) Sane h_{f} As in a)

$$
\left\{\begin{array}{l}
h_{f}=f \frac{8 Q^{2} L}{\pi^{2} g D^{5}} \\
R_{e_{D}}=\frac{48 Q}{\mu \pi D} \\
\frac{1}{\sqrt{t}}=2.0 \log _{10}\left(R_{e_{D}} \sqrt{t}\right)-0.8
\end{array}\right.
$$

sace iterativey:

$$
\Rightarrow D=6.4 \mathrm{~cm} \quad\left(R e_{D}=1.8 \cdot 10^{6}\right)
$$

COMMENT: THE REDULT SHOW THAT
THE MINITMOR HEAD LCAS THAT WE CAN GET iS 91.8 m CIF THF PLZOTC CDATINK HAD GERO THCFNED.. J

IF THE THICKNED OF THE CCATING GIVED A NEW INNER DIAGETER SMALCER TAAN G.Y cm, THE HEAD LCSD WILL INCREADE AFTER ADOING THFE CCATING. TAD INFCRMATION CAN BE MSED TO MAKE A DECTSTON..

\# WIPE BELT $\Rightarrow 2 D$ HLCNT
\# laminar
\# steady state
*Fuug develcped

NAVIER-dTaKES EGMATKON Y-DIPECTIN

$$
\begin{aligned}
& \rho\left(\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}\right)= \\
& =0=0 \\
& =-\frac{\partial p}{\partial y}+\rho g_{y}+4\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}\right)
\end{aligned}
$$

$$
\text { STEABY STATE } \Rightarrow \frac{\partial U}{\partial T}=0
$$

$$
\begin{aligned}
& \text { FuUy DEVECCPED } \Rightarrow \frac{\partial()}{\partial y}=0 \\
& \text { COR CONTNUTM) }
\end{aligned}
$$

$$
\text { No Flaw in } x \text { ce } z \text { Dipection } \Rightarrow u=w=0
$$

$$
2 D \text { Fow } \Rightarrow \frac{\partial()}{\partial z}=0
$$

$$
\Rightarrow \quad 0=-\frac{\partial p}{\partial y}+\rho g_{y}+\mu \frac{\partial^{2} v}{\partial x^{2}}
$$

THE PREOURE CNTSIDE THE FILMA THE ATMUSPHERIC PREOURE $\Rightarrow \frac{\partial p}{\partial y}=0$

$$
\begin{aligned}
& g_{y}=-g \\
& \Rightarrow \\
& 0=-\rho g+\mu \frac{\partial^{2} u}{\partial x^{2}} \\
& \frac{\partial^{2} v}{\partial x^{2}}=\frac{\rho g}{\mu}
\end{aligned}
$$

INTEGRATE:

$$
\begin{aligned}
& \frac{\partial v}{\partial x}=\frac{\rho 9}{\mu} x+c_{1} \\
& v(x)=\frac{1}{2} \frac{\rho 9}{\mu} x^{2}+c_{1} x+c_{2}
\end{aligned}
$$

BCundary conditicns:

1) $\tau_{x y}=0$ © $x=h$
$\tau_{x y}=p \frac{\partial v}{\partial x}=\rho g x+c_{1} q$
$\left.\tau_{x y}\right|_{x=h}=0 \Rightarrow$
$\rho g h+c_{1} \mu=0 \Rightarrow c_{1}=-\frac{\rho g h}{\Gamma}$
2) $V(0)=V_{6} \Rightarrow$

$$
\begin{aligned}
V_{b} & =\frac{1}{2} \frac{g s}{\Gamma} 0^{2}+C_{1} \cdot 0+C_{2} \\
& \Rightarrow C_{2}=V_{b}
\end{aligned}
$$

$$
V(x)=\frac{\rho s}{\mu} \times\left(\frac{x}{2}-h\right)+V_{b}
$$

b) FOR WHAT SEIT VECCITIS $\left(V_{b}\right)$ will The Averke arw velccity be Pouitue?

$$
V_{A V}=\frac{Q}{A}=\frac{b q}{b h}=\frac{q}{h},(1)
$$

where Q is THE Fich ficw phe, A A THE FILM COCN-SECTIN AEEA, b is THE BETLWIDTH, AND q A THE FLCW RAE PER UNIT WIDTH.

$$
q=\int_{0}^{4} V(x) d x=
$$

$$
=\int_{0}^{0} \frac{\rho 9}{\mu}\left(\frac{x^{2}}{2}-x 4\right)+v_{b} d x
$$

$$
q=\left[\frac{\rho s}{\mu}\left(\frac{x^{3}}{6}-\frac{x^{2} h}{2}\right)+V b h\right]_{0}^{h}
$$

$$
\begin{equation*}
\Rightarrow q=V_{b} h-\frac{1}{3} \frac{\rho g h^{3}}{\mu} \tag{2}
\end{equation*}
$$

(2) $\sim(1) \Rightarrow$

$$
V_{a v}=V_{b}-\frac{1}{3} \frac{s g h^{2}}{\mu}
$$

$$
V_{\text {av }}>0 \Rightarrow V_{b}>\frac{1}{3} \frac{s s^{2}}{r}
$$

P5
WATER PUTP
$D_{\text {m }} \uparrow \underbrace{\downarrow}_{P_{\text {nte }}} D_{\text {out }}$
Given:

$$
\text { Frew RATE: } Q=1136 \mathrm{~L} / \mathrm{mu}
$$

$D_{1}=D_{m}=9.0 \mathrm{~cm}$
$P_{1}=124 \mathrm{kPa}$
$D_{2}=$ Dont $=2.5 \mathrm{~cm}$
$P_{2}=414 \mathrm{k} \mathrm{Pa}_{a}$
Temperatime rise cuer pump
$\Rightarrow \hat{u}_{2}-\hat{u}_{1}=278 \mathrm{Nu} / \mathrm{ks}$
THE PUMP D WEL TwLATEO \Rightarrow ADIABATKC
Consumfo fewte 27.5 kW

Aヵnute:
STEAOY STATE
OUNE INIET AND ONE COTLET
negillaible erevation chancae wATER@2080 $\Rightarrow g=938 \mathrm{lg} / \mathrm{u}^{3}$
a) CALCMATIE THE PCNER CONsumpTiN
RELATED TO LESSES..

STEAOY FCCN WITH CNE INLET AOW CNE curct:
(3.70)
$\hat{h}_{1}+\frac{1}{2} v_{1}^{2}+g_{z_{1}}=\hat{h}_{2}+\frac{1}{2} v_{2}^{2}+g_{2_{2}}+$

$$
-q+w_{s}+w_{v}
$$

NOTE:
IT wanls BE MORE CCRREA TO
WRITE THE KINETIC ENERY TVRMS AS
$\frac{1}{2} \alpha V^{2}$ WHERE α IS THE KINETIC EnERAY CIRRECTKN FACTDR.
LET'' KSURE TURPUENT FCW $\Rightarrow x=1.0$

Now,

$$
\begin{aligned}
& \text { ADIABATIC } \Rightarrow q-0 \\
& \text { NEGLICIDLE CHANGE IN ELEVAIICN } \Rightarrow \\
& \Rightarrow z_{1}=-z_{2} \\
& \Rightarrow
\end{aligned}
$$

$$
\hat{h}_{1}+\frac{1}{2} v_{1}^{2}=\hat{h}_{2}+\frac{1}{2} v_{2}^{2}+w_{s}+w_{v}
$$

$$
\hat{h}=\hat{h}+\frac{p}{s} \Rightarrow
$$

$$
\hat{u}_{1}+\frac{P_{1}}{s}+\frac{1}{2} v_{1}^{2}=\hat{u}_{2}+\frac{P_{2}}{\varphi}+\frac{1}{2} v_{2}^{2}+w_{1}+w_{0}
$$

THE VIrecus wcele wo is PAet cF
LCAS TAAT WE ARE SUPPCREO TO CALCUCATE SO WE WIL RERWE iT HERE..

$$
\hat{u}_{1}+\frac{P_{1}}{g}+\frac{1}{2} v_{1}^{2}=\hat{u}_{2}+\frac{P_{2}}{\rho}+\frac{1}{2} V_{2}^{2}+w_{1}
$$

Ws is BY DEFinITION NEantive Far
A PUTIP SINCE UNOES IA ADPEO TO
THE FLUID \Rightarrow
$W_{S}=-W_{\text {punp }}$
$\Rightarrow\left(\hat{u}_{2}-\hat{u}_{1}\right)+\frac{1}{\rho}\left(p_{2}-p_{1}\right)+\frac{1}{2}\left(v_{2}^{2}-v_{1}^{2}\right)=$

$$
=W_{p m p}
$$

The cnly thine we need new to
CALCultE THE NCRINAL Punp wark
(wark WITH NO VIDCMS Leives)
is the averare flew veccuties..
$V=\frac{Q}{A}$
$Q=1136 \mathrm{~L} / \mathrm{mim}=\frac{1136}{1000}, \frac{1}{60} \mathrm{~m}^{3} / \mathrm{s}$
$=0.019 \mathrm{~m}^{3} / \mathrm{s}$

$$
\begin{aligned}
& V_{1}=\frac{Q}{A_{1}}=\frac{Q 4}{\pi D_{1}^{2}}=3.0 \mathrm{~m} / \mathrm{s} \\
& V_{2}=\frac{Q}{A_{2}}=\frac{Q 4}{\pi D_{2}^{2}}=38.6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

WE ARE ASKED TO CALCULTE PEWER
SO WE NEED THE MRAOFUN
$\dot{w}=Q . \rho=18.9 \mathrm{~kg} / \mathrm{s}$
$\dot{W}_{p m p}=\dot{u}\left[\left(\hat{u}_{2}-\hat{u}_{1}\right)+\frac{1}{g}\left(p_{2}-p_{1}\right)+\right.$
$\left.+\frac{1}{2}\left(v_{2}^{2}-v_{1}^{2}\right)\right]=24.8 \mathrm{kw}$

CONSURED ACWER $=27.5 \mathrm{~kW}$
\Rightarrow Fower consumed by lesses:

$$
\dot{W}_{1015}=27,5 \cdot 10^{3}-\dot{w}_{\text {pupp }}=
$$

$$
=2.7 \mathrm{kw}
$$

Connent:
The purp efficiency can nem de
CACCULATED AT

$$
\eta_{p u p} \frac{\dot{W}_{\text {pupp }}}{\dot{W}_{\text {cinanat }}}=\frac{24.8}{27.5}=0.9
$$

b) BREAK THE NOINAK PUMP PCNTH

DUWN INTO iTs cempenents:
$\dot{W}_{\text {internal evesy }}=\dot{\dot{w}_{2}}\left(\hat{U}_{2}-\hat{U}_{1}\right)=5.3 \mathrm{kN}$
$\dot{w}_{\text {preave }}=\dot{w_{i}} \frac{1}{\rho}\left(P_{2}-P_{1}\right)=5.5 \mathrm{hw}$
$\dot{w}_{\text {kineter }}=\dot{m} \frac{1}{2}\left(v_{2}^{2}-V_{1}^{2}\right)=14 \mathrm{~kW}$
$\frac{\dot{W}_{\text {nternal evezs }}}{\dot{W}_{\text {pure }}}=19 \%$
$\frac{\dot{W}_{\text {prespure }}}{\dot{W}_{\text {pmp }}}=20 \%$

$$
\frac{\dot{W}_{\text {umate }}}{\dot{W}_{\text {pmp }}}=57 \%
$$

P6 OVEREXPANDED NCAZLE FLWT

OVEREXPANDED \Rightarrow OBCIQUE SHeCLS AT Nozzle Exit

GuEN:
SHock Ancile: $\beta=45^{\circ}$
Flow defleet kn ankle: $\theta=75^{\circ}$
AMBIENT CONDITICN:

$$
\begin{aligned}
& P_{a}=101825 P_{4} \\
& T_{4}=298 \mathrm{~K}
\end{aligned}
$$

ADSUME:
INVISCID FLCN
AIR (CALORICAUY PERFECT)

$$
\gamma=1.4
$$

calculate:
a) A_{e} / A^{*}
b) Nozzl INLE CONDITINWS: To, Pa
a)

We know the sheck angle (β)
AND the fian deflection ancace (e)
THUS WE CAN GET THE MACH NUMBER UPSTREAA OF THE SHCCKJ (WHICH IS EGUAZ TO THE NCFELE EXIT MACH NUMREE) WING THE $\epsilon-\beta-\mu$-RELATICN
(9.86)

$$
\tan 6=\frac{2 \cot \beta\left(M_{e}^{2} \delta n^{2} \beta-1.0\right)}{M_{e}^{2}(\gamma-\cos (2 \beta))+2.0}
$$

OR FIG. 9.23

$\sigma-\beta-\pi \Rightarrow M_{e}=2.0$

WITH THE EXIT MACH NuTOBER known, WE CAN CALCULATE THE AREA RATIO Ae/A* USING THE AREA-MACH-NUM2ER RELATION
(9.44)

$$
\left(\frac{A_{e}}{A^{*}}\right)^{2}=\frac{1}{M_{e}^{2}}\left[\frac{20+(\gamma-1) M_{e}^{2}}{\gamma+1}\right]^{(\gamma+1)}
$$

Note: since the flaw is suferienk
in the divergent part cf thencazle,
$A^{*}=A_{\text {threat }}$
(The flan runt be duperdinic swale
SHOCKS ARE TERMED DONN REAM OF
THE NOZZLE EXIT

$$
\frac{A_{\text {exit }}}{\text { Athreat }}=1.7
$$

b)

FIRST WE TUUT CALCULATE THE
TETOFERATURE AND PREdOURE AT
THE NOZZLE EXT, which we Do
USiNG THE ORLIGUE SHock PEATION..

1) CACCULATE THE SHOCK-NCRERAL

HeH number hostream of the
OBLIQUE JHOCK:

$$
M_{u_{1}}=M_{e} \sin (\beta) \quad(9.82)
$$

WHERE Me is THE NOZZLE EXIT MACH NUMRER CACCULAFED in af
2) USE THE NOURAL-SHCCK RELHTIONS

$$
p^{\frac{P_{a}^{2}}{P e}=1+\frac{2 \gamma}{\gamma+1}\left(Y_{n_{1}}^{2}-1\right) \text { (9.55) }} \begin{gathered}
\Gamma_{\substack{\text { AHOCK NCER } A L \\
\text { HACH NURBE }}}
\end{gathered}
$$

Neqzle Exir pressure

AMBIENT TEMPERATURE

$$
\frac{T_{a}}{T_{e}}=\left(2.0+(\gamma-1) m_{n_{1}}^{2}\right) \text {. }
$$

K notile eir terpeature.

$$
\left[\frac{2 \gamma x_{n 1}^{2}-(\gamma-1)}{(\gamma+1)^{2} भ_{n,}^{2}}\right](9.58)
$$

$$
\begin{aligned}
\Rightarrow \quad P_{e} & =46.0 \mathrm{kPa} \\
T_{e} & =230.6 \mathrm{~K} \quad\left(-42.4^{\circ} \mathrm{C}\right)
\end{aligned}
$$

WITH TIE EXIT CONDITRAS kNEWN WE CAN CALCULASE THE TUTAL PREDURE havd toral temperature. Sinle there ARE NO INTERNAZ JHCLES, THE NCZFLE EXPANAILN IA IIENTRCAK \Rightarrow TO AND Po ARE CCNOTANT THRUGIH THE NOIZLE.

$$
\begin{aligned}
& \text { (9.26) } \frac{T_{0}}{T_{e}}=1+\frac{\gamma-1}{2} M_{e}^{2} \Rightarrow T_{0}=417.8 \mathrm{~K} \\
& (9.2 \mathrm{ka}) \quad \frac{P_{0}}{P_{e}}=\left(\frac{T_{0}}{T_{e}}\right)^{\gamma /(\gamma-1)} \Rightarrow P_{0}=368.5 \mathrm{kP} P_{4}
\end{aligned}
$$

\because NUZZCE INCOT CONDTTAN:

$$
\begin{aligned}
& T_{0}=417.8 \mathrm{~K} \quad\left(145^{\circ} \mathrm{C}\right) \\
& P_{0}=368.5 \mathrm{kPa}
\end{aligned}
$$

