MTF053 - Fluid Mechanics
 2022-10-28 08.30-13.30

Approved aids:

- The formula sheet handed out with the exam (attached as an appendix)
- Beta - Mathematics Handbook for Science and Engineering
- Physics Handbook : for Science and Engineering
- Graph drawing calculator with cleared memory

Exam Outline:

- In total 6 problems each worth 10p

Grading:

number of points on exam	$24-35$	$36-47$	$48-60$
grade	3	4	5

Problem 1 - Tank Flow (10 p.)

The water tank in the figure below is evacuated through the pipe at the bottom and continuously filled from the top with a flow rate such that the level is constant at $h=0.20 \mathrm{~m}$. The pipe diameter is $d=0.01 \mathrm{~m}$. The water holds the temperature $T=20^{\circ} \mathrm{C}$. The pressure at the pipe exit and at the water surface at the top of the tank is the atmospheric pressure.

(a) Tank problems are often solved assuming that the fluid velocity at the surface is zero. Obviously, the fluid velocity cannot be zero, but it is often a good assumption. The assumption gets better as the ratio d / D decreases. Calculate the ratio d / D such that the error is 0.01%. (6p.)

If Q is the flow rate obtained with $V_{1} \neq 0$ (the velocity of a fluid particle at the surface) and Q_{0} the flow rate that you get if you assume that $V_{1}=0$, the error is calculated as follows:

$$
\text { error }=\left|\frac{Q-Q_{0}}{Q}\right|
$$

(b) For the calculated ratio d / D, calculate the flow rate by which the tank is filled from above and the velocity at which water is leaving the tank at the bottom. (1p.)
(c) Explain the difference between streamline, pathline, and streakline. Under what circumstances do these three line types coincide in a fluid flow? (1p.)
(d) When in use, the fluid in a fire extinguisher is flowing out from the tank through the hose. Describe the difference between

$$
\left.\frac{d B}{d t}\right|_{\text {system }}, \text { and } \frac{d}{d t}\left(\int_{c v} \beta \rho d \mathcal{V}\right)
$$

if the extensive property B is fluid mass and if the control volume $(C V)$ is fixed and aligned with the tank surface. (2p.)

For the tennis ball in the figure, the velocity along the streamline $A \rightarrow B$ is given by

$$
\mathbf{V}=u(x) \mathbf{e}_{x}=V_{o}\left(1+\frac{R^{3}}{x^{3}}\right) \mathbf{e}_{x}
$$

where R is the radius of the tennis ball and x is the coordinate from the center of the ball positive in the flow direction.
(a) Assuming the flow around the ball to be steady-state, derive an expression describing the acceleration experienced by a fluid particle along the streamline $A \rightarrow B$ (5p.)
(b) At what axial position will the magnitude of the acceleration be the biggest? (2p.)
(c) The diameter of a tennis ball is 2.7 inches (68.58 mm). When a professional tennis player serves, the velocity of the ball can reach velocities of up to $200.0 \mathrm{~km} / \mathrm{h}$. What is the maximum magnitude of acceleration that a fluid particle approaching the stagnation point at the front of the tennis ball will experience at this velocity? (2p.)
note: it is a ridiculously high value
(d) Finally a question related to another sport. Why do dimpled golf balls have lower pressure drag than golf balls with smooth surfaces? (1p)

Problem 3 - Not a Big Fan (10 p.)

An axial-flow fan installed in an air ventilation system is driven by an electric motor marked 0.4 kW . The flow velocity in the air intake ahead of the fan can be assumed to be zero and after the fan, the fluid velocity is $12.0 \mathrm{~m} / \mathrm{s}$. The duct in which the fan is installed has the diameter $D=0.6 \mathrm{~m}$.
(a) Based on the data provided above and assuming that the flow is adiabatic and that the pressure is the atmospheric pressure both upstream and downstream of the fan, calculate the efficiency for the fan installation. (6p.)
hints:

- A fan can be represented as shaft work added to the flow in the same way as shaft work can represent a pump
- Efficiency (η) is defined as the energy that has been transferred to the flow by the fan divided by the energy consumed by the electric motor
- Head (dimension $[m]$) can be converted to flow power (dimension $[W]$) by multiplying with mass flow ($\dot{m}[\mathrm{~kg} / \mathrm{s}])$ times gravity constant $\left(\mathrm{g}\left[\mathrm{m} / \mathrm{s}^{2}\right]\right)$
(b) What does Q and W in the energy equation represent? (1p.)
(c) What is the physical meaning of the terms in the energy equation on the form given below? (1p.)

$$
\rho C_{v} \frac{d T}{d t}=k \nabla^{2} T+\Phi
$$

(d) The Bernoulli equation on the form given below is derived for steady-state, incompressible, frictionless flow along a streamline

$$
\frac{p_{1}}{\rho}+\frac{1}{2} V_{1}^{2}+g z_{1}=\frac{p_{2}}{\rho}+\frac{1}{2} V_{2}^{2}+g z_{2}=\text { const }
$$

In what ways are the Bernoulli equation more limited than the energy equation on the form given below? (2p.)

$$
\left(\frac{p_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+z_{1}\right)=\left(\frac{p_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+z_{2}\right)+\frac{\hat{u}_{2}-\hat{u}_{1}-q}{g}
$$

Problem 4 - Valve Test (10 p.)

A large check valve designed to be installed in a water supply system is to be tested in model scale. The full-scale valve has an inlet diameter of $D_{p}=0.6 \mathrm{~m}$ and the water system is supposed to be able to handle water with the temperature $T=20^{\circ} \mathrm{C}$ at a flow rate of $Q=0.85 \mathrm{~m}^{3} / \mathrm{s}$. The reason for doing the test is to get estimates of forces on hinges and installation bolts. Geometric similarity and Reynolds number similarity is assumed to be sufficient to obtain dynamic similarity.

The following constraints are given by the test facility:

valve inlet diameter
$70 \mathrm{~mm} \leq D_{\text {inlet }} \leq 140 \mathrm{~mm}$
flow rate
$Q \leq 0.20 \mathrm{~m}^{3} / \mathrm{s}$
certified fluids
Water
SAE 30W oil
SAE 10W oil
SAE 10W30 oil
Ethylene glycol
Ethanol

(a) Is it possible to design a model-scale valve for testing in the facility with the given constraints and obtain dynamic similarity? (6p)
(your answer must be justified by calculations)
(b) Explain the concepts geometric similarity and dynamic similarity (2p.)
(c) How does the fluid viscosity vary with temperature in liquids and gases, respectively? (2p.)

Problem 5 - Pipe Flow (10 p.)

(a) A sprinkler system used in case of fire is fed by a pipe made from galvanized iron that can be assumed to be in new condition. When the sprinkler system is activated the flow rate through the pipe should be $0.2 \mathrm{~m}^{3} / \mathrm{s}$. The total length of the pipe is 35 m and the head loss must not exceed 50 m . Calculate the smallest pipe diameter that fulfills the constraints. (6p.)
(b) Why does the Moody chart not give reliable values in the Reynolds number range $2000<$ $R e<4000$? (1p.)
(c) Show that, for a laminar pipe flow, the friction factor f can be calculated as

$$
f=\frac{64}{R e D}
$$

(3p.)

Problem 6 - Engine Intake for Supersonic Flight (10 p.)

The center cone of the engine intake in the figure below has an angle θ that corresponds to 90% of maximum possible flow deflection at $M=2.5$. This means that if the engine is operated at a freestream Mach number of 2.5 , an oblique shock will be attached to the leading edge of the cone.
(a) Calculate the cone angle at the leading edge (θ) (2p)
(b) Calculate the Mach number downstream of the oblique shock attached to the leading edge if the freestream Mach number is 2.5 (2p.)
(c) Calculate the pressure and temperature downstream of the oblique shock if the upstream temperature and pressure is $T_{1}=20^{\circ} \mathrm{C}$ and $p_{1}=1.0 \mathrm{bar}$, respectively. (2p.)
(d) Show schematically, what the flow in the in the vicinity of the engine intake would look like if the angle of the center cone was larger than the maximum deflection angle for the freestream Mach number. (2p.)
(e) What is required for a process to be isentropic? (1p.)
(f) Which of the properties $h_{o}, T_{o}, a_{o}, p_{o}$, and ρ_{o} are constants in a flow if the flow is adiabatic and isentropic, respectively? (1p.)
$h=0.2$

$$
d=0.01
$$

$$
\text { error }=0.01 \%
$$

Task @ :-
step (1),Q_{0}

$$
\begin{align*}
& V_{2}=\sqrt{2 g h} ; \tag{1}\\
& V_{2}=1.981 \mathrm{~m} / \mathrm{s} ; \\
& Q_{0}=V_{2} A_{2} \\
& Q_{0}=1.5558 * 10^{-4}
\end{align*}
$$

Siep (2), $V_{1} \neq 0$ assumption

$$
\begin{aligned}
& V_{1} A_{1}=V_{2} A_{2} ; \\
& V_{1}=V_{2}\left(\frac{d}{D}\right)^{2} ; \text { Let } x=\frac{d}{D} \\
& V_{1}=V_{2} \cdot x^{2} ; \\
& \Rightarrow \frac{P /}{D^{2}}+\frac{1}{2} V_{1}^{2}+g z_{1}=\frac{P_{2}}{8}+\frac{1}{2} V_{2}^{2}+g z_{2} \\
& V_{1}^{2}+2 g z=V_{2}^{2} ; \\
& V_{2}^{2} x^{4}+2.924=V_{2}^{2} ; \\
& z .924=V_{2}^{2}\left(1-x^{4}\right) ; \\
& V_{2}=\sqrt{3.924} \\
& \text { e110r }=\frac{Q-Q u}{4} ; \\
& 0.0001 Q=\frac{1.555}{1-0 .} \\
& Q=\frac{1.5558 * 10^{-4}}{(1-0.0001)}
\end{aligned}
$$

(b) $Q_{0}=? ? \quad V_{0}$? $=7 ?$

$$
\begin{align*}
Q_{\text {in }} & =Q_{\text {ort }} \\
Q_{\text {in }} & =V_{2} A_{2}=\sqrt{\frac{3.924}{1-x^{4}}} * \frac{\pi}{4} * 0.01^{2} \\
Q_{\text {in }} & =1.556 * 10^{-4} \mathrm{~m}^{3} / \mathrm{s} \tag{0}\\
V_{\text {out }} & =\sqrt{\frac{3.924}{1-x^{4}}} \Rightarrow V_{\text {ot }}=1.9811 \mathrm{~m} / \mathrm{s}
\end{align*}
$$

(C) Streamline: tangent to the velocity vector everywhere at an instant of time.

Pathline: line traced by single fluid particle over time.
Streateline: lIne formed by multiple fluid particles that have all passed through a certain point.
(d) $\left.\frac{d B}{d r} \right\rvert\,$ (1) Lagrangian Approactif; where B is an
\Rightarrow extensive property that describes the mass quantity ins the extinguster
$\frac{d}{d t}\left(\int_{0} \beta \rho d v\right)^{(1)} \Rightarrow \beta$ is an Icarian Approach describes the rate of chang of mess over the arbitrary control volume.

Problem 2. Problem 2
a) $a=\frac{D v}{D t}=\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}$

$$
\begin{align*}
& a=u \frac{\partial v}{\partial x} ; \\
& \Rightarrow u=v_{0}\left(1+\frac{R^{3}}{x^{2}}\right) ; \text { (1) } \\
& \Rightarrow \frac{\partial v}{\partial x}=-3 \frac{v_{0} R^{3}}{x^{4}} ; \\
& a=-3 v_{0}^{2} R^{3}\left(\frac{1}{x^{4}}+\frac{R^{3}}{x^{7}}\right) \tag{1}
\end{align*}
$$

(b) Maximum acceleration $\frac{\partial a}{\partial x}=0$

$$
\begin{align*}
& \frac{\partial a}{\partial x}=-3 v_{0} R^{3}\left(\frac{-4}{x^{5}}+-\frac{7 R^{3}}{x^{6}}\right)=0 \tag{1}\\
& -4-\frac{7 R^{3}}{x^{3}}=0 \\
& -4 x^{3}=7 R^{3} \\
& x^{3}=\frac{-7}{4} R^{3} \\
& x=\sqrt[0]{\frac{-7}{4} R^{3}} \tag{1}\\
& L x=-0.04132 \mathrm{~m}
\end{align*}
$$

(c)

$$
\begin{aligned}
& R=0.03429 \mathrm{~m} \\
& V_{0}=55.556 \mathrm{~m} / \mathrm{s} \\
& x=-0.04312 \mathrm{~m}
\end{aligned}
$$

$$
a=-5.48 * 10^{4} \mathrm{~m} / \mathrm{s}^{2}
$$

(2)
(d) turbulent boundory layer \rightarrow delayed seperation

PS
Problem 3
Given:

$$
\begin{aligned}
& P_{i n}=0.4 \mathrm{~kW} \\
& V_{2}=12 \mathrm{~m} / \mathrm{s} \\
& V_{1} \approx 0 \\
& D_{2}=0.6 \mathrm{~m}
\end{aligned}
$$

Assume adiabatic

$$
P_{1}=P_{2}=P a t m
$$

a) Use Bernoulli with losses from 1 to 2
(z.70) $\frac{P_{1}}{p_{g}}+v_{1}^{2}+z_{1}=\frac{P_{2}}{P g}+\frac{v_{2}^{2}}{2 g}+z_{2}+h_{\text {purine }}-\underbrace{\text { hap }}_{\text {pump }}+$ hpric not turbine $\underbrace{}_{h_{\text {fan }}} \begin{aligned} & \text { assume frictionlea } \\ & \text { dur to short ane }\end{aligned}$ $P_{1}=P_{2} \quad V_{1} \approx 0 \quad Z_{1} z_{z_{2}}$

$$
\Rightarrow 0=\frac{v_{2}^{2}}{2 g}-h_{\text {fan }} \Rightarrow h_{\text {fan }}=\frac{v_{2}^{2}}{2 g}=7.34 \mathrm{~m}
$$

Given in hints: $\quad h=\frac{P}{\dot{m} g}$

$$
\begin{aligned}
& P_{\text {out }}=h_{\text {fan }} \dot{m} g \\
& \dot{m}=\rho Q=\rho A V=\rho \frac{\pi D_{2}^{2}}{4} V_{2}=\left[\begin{array}{c}
\text { assume air } Q 20^{\circ} \mathrm{C} \\
p=1.2 \mathrm{~kg} \mathrm{~m}^{3}(A .2)
\end{array}\right]=1.2 \cdot 0.2826 \cdot 12 \\
& \dot{m}=4.07 \mathrm{~kg} / \mathrm{s} \\
& P_{\text {out }}=7.34 \cdot 4.07 \cdot 9.81=293 \mathrm{~W}
\end{aligned}
$$

Given in hints: $\eta=\frac{\text { Precived }}{\text { Paused }}=\frac{\text { Pout }}{\text { Pin }}$

$$
n=\frac{P_{\text {out }}}{P_{\text {in }}}=\frac{293}{400}=0.73
$$

The efficiency of the fan installation is 73%

PU
hum:
Prototype
Male

$$
\begin{aligned}
& D_{p}=0.6 \mathrm{~m} \\
& a_{p}=0.85 \mathrm{~m} 3 / \mathrm{s} \\
& \text { water e } 20 . \mathrm{C}\left\{\begin{array}{l}
e=998 \mathrm{~kg} / \mathrm{m}^{3} \\
\mu=1.0 \cdot 10^{-3} \frac{\mathrm{~kg}}{\mathrm{~m} . \mathrm{s}}
\end{array}\right.
\end{aligned}
$$

Task. Is it possible to design molded scale with geom in and the-similerity? \rightarrow dynamic similarity
For n_{c} Similarity: $R_{c_{p}}=R_{c} \mu$
$\left.\begin{array}{l}\text { (1.24) } R_{c}=\frac{\rho U L}{\mu} \text {, For cylinese cross section use } \mathcal{L}=D, \\ \text { ane at } U=\frac{Q}{4}=\frac{4 a}{\pi D^{2}}\end{array}\right\} \Rightarrow$

$$
\begin{aligned}
& R_{e}=\frac{\rho}{\mu} \cdot\left(\frac{4 Q}{\pi D^{2}}\right) \cdot D=\frac{4 \rho Q}{\mu \pi D} \quad\left[R_{c p}=1.8 \cdot 10^{6}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{a_{p}}{D_{p}}=\frac{a_{\mu}}{D_{\mu}} \Rightarrow a_{\mu}=\frac{a_{p}}{D_{p}} D_{\mu} \Rightarrow\left[0,07 \leqslant D_{\mu} \leqslant 0.1 \mu\right] \Rightarrow \\
& Q_{m}=[0.1 ; 0.19] \mathrm{m}^{3} / \mathrm{s} \text {, Ole for the lab }
\end{aligned}
$$

b) Geometric similarity \rightarrow Scale gauntry, $L_{p}=\alpha I_{n}$

Dynamic Similarity \rightarrow Scale Force vectors, req you sim and lin sim
c) Liquids: Decreasing with temperature

Muses: Incransing with Teperature

Problem 5
Problem 5 -Pipe Flow (10 P.)
(a)

$$
\begin{array}{ll}
Q=0.2 \mathrm{~m}^{3} / \mathrm{s} \\
\text { los. head } \leqslant 50 \mathrm{~m}
\end{array} \quad \quad \quad L ?
$$

\rightarrow Solution

- From table 6.1 for galvanized iron new

$$
\varepsilon=0.15 \mathrm{~mm}
$$

Assume at the limit that $h=50 \mathrm{~m}$

- Write the diameter in term of friction factor:

$$
\begin{array}{r}
\text { (6.10) } h_{f}=f \frac{L}{d} \frac{V^{2}}{2 g} \Rightarrow\left(V=\frac{4 Q}{\pi d^{2}}\right) \Rightarrow \\
h f=f \frac{L}{J} \frac{16 Q^{2}}{2 g n^{2} d^{4}} \Rightarrow f=\frac{n^{2} g h_{f} d^{5}}{8 L Q^{2}} \\
d^{5}=f \frac{L}{h_{f}} \frac{8 Q^{2} n^{2} g}{\text { or }} \quad[1 p] \tag{1}
\end{array}
$$

- Write Reynolds number $\&$ roughness ratio in terms of " d ":

$$
\begin{align*}
& R_{e d}=\frac{e v d}{u}=\frac{4 e Q d}{\mu \pi Q^{2}}=\frac{4 e Q}{\mu n d} \text { (2) } \tag{2}\\
& \frac{\varepsilon}{d}=?(3) \tag{3}
\end{align*}
$$

- Explain process of calculation [Rp]
(1́1) 1) Guess f

2) Compute of from (1)
3) Compute $R_{\text {e }}$ from (2)
4) Compute better f from Moody chart or E.6.6.48

* Do one iteration and got reasonable number $[7.5 p]$
* Do two iterations and got better number [Rp]
- Initial guess of $f=0,03 \rightarrow$ midole of gruph torturbulent

Equation (1) $\rightarrow \delta=0,139 \mathrm{~m}$
l

$$
\text { Equation(2) } \longrightarrow R_{e}=606384
$$

$$
\text { Moodg chor }+\left(\text { Eq. } 6.43^{3}\right) \rightarrow f_{\text {new }}=0,02
$$

$$
E_{q} \cdot(1) \rightarrow d=0,135 \mathrm{~m} \rightarrow E_{q}(2) \rightarrow f_{e}=623573
$$

Converged

$$
\mu_{00}^{\downarrow} d y\left(E_{4.6 .48}\right)
$$

$$
d=0,137 \mathrm{~m}
$$

$$
f_{\sim c_{\omega}}^{d}=0,021
$$

(b) Due to not having reliable friction factors [0.5p] in this range, which corresponds to transition from laminar to turbulent flow [0.5p]
(c) Start with equation 6.11

$$
\begin{align*}
& {[0.5 p] f=\frac{8 \tau_{w}}{e v^{2}}} \tag{1}\\
& {[1 p] \quad \tau_{\omega_{l a m}}=\left|\mu \frac{\rho u}{e r}\right|_{r=R}} \\
& {\left[0 . S_{p}\right] u=u_{\max }\left(1-\frac{r^{2}}{R^{2}}\right) \Rightarrow \tau_{u_{\text {lam }}}=\frac{4 \mu V}{R} \Rightarrow} \\
& \text { [} 0.5 p] \quad v=\frac{u_{\text {max }}}{2} \\
& \Rightarrow f_{\text {lam }}=\frac{8.4 \mu V}{\rho V^{2} R}=\frac{R=\frac{\rho}{2}}{\rho V d} \Rightarrow \\
& \Rightarrow f_{\text {lam }}=\frac{64}{R_{e j}}[0.5 \mathrm{p}]
\end{align*}
$$

Problem 6 - Engine Intake for Supersonic Fligh(10f)
(a) - From figure 9.1 max deflection for

$$
M=2.5 \rightarrow g_{\text {max }}=30^{\circ} \quad[1 p]
$$

- Roget $90 \% \rightarrow \theta=0.9 \theta_{\max }=27^{\circ}[1 p]$
(b) -From figure $9.1 \rightarrow M=2.5$ \& $\theta=27^{\circ}$
we get $B \approx 55^{\circ} \quad[0.5 p]$
- Use 9.82 to get $M_{n_{1}}$;

$$
M_{n 1}=M_{1} \sin B^{0}=2,047 \quad[0.5 p]
$$

- Use 9.57 to get $M_{n_{2}}$:

$$
M_{n_{2}}^{2}=\frac{(\gamma-1) M_{n 1}^{2}+2}{2 \gamma M_{n_{1}}^{2}-(\gamma-1)} \stackrel{\gamma=1.4, \text { air }}{\Rightarrow} M_{n_{2}}=0,57
$$

- Use 9.82 to get M_{2} :

$$
\mu_{2}=\mu_{n_{2}} / \sin (B-\theta) \Rightarrow \mu_{2}=1,21 \quad[0.5 p]
$$

(C) Use equation $9.55($ or table B.2):

$$
\begin{aligned}
& \frac{P_{2}}{P_{1}}=1+\frac{2 \gamma}{\gamma+1}\left(M_{n_{1}}^{2}-1\right) \Rightarrow \\
& \Rightarrow P_{2}=P_{1}\left(1+\frac{2 \gamma}{\gamma+1}\left(M_{n}^{2},-1\right)\right) \Rightarrow \\
& \Rightarrow P_{2}=4,72 \text { bar }[1 p]
\end{aligned}
$$

Use equation 9.58 (or table B.2):

$$
\begin{aligned}
& \frac{T_{2}}{T_{1}}=\left(2+(\gamma-1) M_{n}^{2}\right) \frac{2 \gamma M_{n_{1}^{2}}^{2}-(\gamma-1)}{\frac{(\gamma+1) M_{n_{1}}^{2}}{Z}} \Rightarrow \\
& \text { * equation from formula sheet }
\end{aligned}
$$

* equation from formula sheet ${ }^{2}$

$$
\Rightarrow \frac{T_{2}}{T_{1}}=4.13 \quad \Rightarrow T_{2}=\frac{1210^{\circ} \mathrm{K}}{\left(937^{\circ} \mathrm{C}\right)} \quad[1 p]
$$

if using table $\frac{T_{2}}{T_{1}} \simeq 1.72 \rightarrow T_{2}=5039^{\circ} \mathrm{K}$ ($230^{\circ} \mathrm{C}$)
(!) Both will be taken as correct!
(d) The answer is found in Fig 9.226

Main points for case $\theta>\theta_{\text {max }}$:

- attached oblique shock is impossible
- broad curved attached shock forms
- Discontiniars deflection of flaw with $\theta<\theta_{\max }$
- (low curves \rightarrow expands and dethects subsonically around wedge (Sonic \rightarrow supersonic, via comer)

(e) It has to be ad iabatic (not Q) [USp] and reversible [0.5p]
(f) All stagnation properties are constants in an isentropic thou $[0.5 p]$ $h_{0}, T_{0} \& a_{0}$ are constants in an adiabatic but not necess arily P_{0} \& e_{0} [0.Sp]

