
MTF053 - Fluid Mechanics
2021-10-29 08.30 – 13.30

Approved aids:

– The formula sheet handed out with the exam (attached as an appendix)

– Beta - Mathematics Handbook for Science and Engineering

– Physics Handbook : for Science and Engineering

– Graph drawing calculator with cleared memory

Exam Outline:

– In total 6 problems each worth 10p

Grading:

number of points on exam (including bonus points) 24-35 36-47 48-60
grade 3 4 5



Problem 1 - Couette-Poiseuille (10 p.)

A Couette flow is established in the fluid between two parallel plates if the plates move with
different velocity as in the left figure below where the lower plate is fixed and the upper plate
moves to the right with the constant velocity V . The right figure shows a Poiseuille flow
generated as a fluid between two fixed parallel plates is exposed to a constant pressure gradient.
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Now, let’s combine the two elementary flows above, i.e. flow between two parallel plates of
which the upper is moving with a constant velocity V and the fluid is exposed to a constant
pressure gradient dp/dx.

(a) Derive an expression for the velocity profile u(y) starting from the momentum equations
on partial differential form (Eqn. 4.38). The vertical distance between the plates is 2h as
in the figures above (4p)

(b) Find the velocity V as a function of the height (h), the fluid viscosity (µ), and the pressure
gradient (dp/dx) such that the wall-shear stress at the upper wall is zero (2p)

(c) Find the vorticity at the center of the channel when the wall-shear stress at the upper
wall is zero (2p)

(d) What is the physical interpretation of fluid viscosity? (1p)

(e) What does it mean that a fluid is Newtonian? (1p)



Problem 2 - Flow Deflection (10 p.)

A jet strikes an inclined fixed plate and the jet flow is divided into two jets (as indicated in
the picture below). The jet flow velocity is unchanged and the volume flow Q is separated such
that the volume flow of the jet going upwards is αQ, α ∈ [0, 1] and consequently the volume
flow of the jet going in the opposite direction is (1− α)Q.

(a) Find α as a function of the deflection angle θ such that the tangential force Ft is zero (7p)

(b) Explain the physical meaning of each of the terms in Reynolds transport theorem (2p)
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(c) Explain the physical meaning of the local acceleration term and the convective acceleration
term (1p)
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Problem 3 - Surface Roughness (10 p.)

In order to estimate the surface roughness of a badly corroded pipe, pressure is measured at
two positions in the pipe as water with a temperature of 20◦C flows through the pipe at a flow
rate Q = 20 m3/h. The inner diameter of the pipe is 5.0 cm and the pipe slopes downward at
an angle of 8◦.

station pressure [kPa] z-coordinate [m]

1 420 12
2 250 3

(a) Estimate the average surface roughness ε (6p)

(b) Estimate the percent change in head loss if the pipe were smooth (same flow rate) (2p)

(c) What does critical Reynolds number mean for a pipe flow? (1p)

(d) Why does the Moody chart not give reliable values in the Reynolds number range 2000 <
Re < 4000? (1p)

Problem 4 - Boundary Layer Flow (10 p.)

A stagnation tube is mounted on a flat plate as shown in the figure below. The entrance of
the tube is located at the axial distance L = 0.5 m from the leading edge of the plate. The
vertical distance from the flat plate surface to the center of the orifice of the stagnation tube is
h = 2.0 mm. The freestream velocity is U∞ = 15 m/s. The fluid is air at 20◦C and atmospheric
pressure. The stagnation tube is attached to water-manometer.

(a) Calculate ∆h if the boundary layer is laminar (8p)

(b) Explain the closure problem related to the Reynolds-averaged flow equations (1p)

(c) How does the turbulence viscosity νt compare to the kinematic viscosity ν in the viscous
sublayer and in the fully turbulent region, respectively? (1p)
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Problem 5 - Pump (10 p.)

The construction schematically represented in the figure below is used to pump up water from
a reservoir. The pipe between the pump and the reservoir has the diameter D1 = 30.0 cm. At
the height h = 10.0 m above the water level in the reservoir, a nozzle with the exit diameter
D2 = 15.0cm is attached to the pipe. The water leaves the nozzle with an average velocity of
Vexit = 5.0 m/s. The friction losses in the pipe system can be approximated as V 2

exit/g and the
flow can be assumed to be turbulent in all pipes.

(a) Calculate the efficiency of the pump (η = powerout/powerin) if 20 kW delivered to the
pump (8p)

(b) Why is the kinetic energy correction factor larger for laminar flows than for turbulent
flows (αlam = 2.0, αturb ≈ 1.0)? (1p)

(c) Give three examples of sources of local losses in a pipe system (1p)
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Problem 6 - Engine Inlet (10 p.)

Engine inlets designed for supersonic operation often feature inlet cones for gradual deceleration
of the flow by setting up a system of oblique shocks. In the schematic figure below, two engine
inlets are compared. The engine inlet to the left has an inlet cone were the flow angle is changed
in two discrete steps, which will produce two oblique shocks. In each of the two steps, the flow
is bent 8 degrees. After passing the two oblique shocks the flow passes a normal shock when
reaching the engine nacelle. In the example to the right, the flow is decelerated by a single
normal shock at the engine inlet face.
In reality, the engine inlets are circular but for simplicity let’s assume that it is possible to
analyse the flow in two dimensions.

(a) Considering that the oblique shock formed at the tip of the cone needs to deflect the flow
an angle of 8 degrees, make an estimate of the lowest Mach number for which the engine
inlet will function as intended (2p)

(b) Calculate the Mach number of the flow entering the engine in the two cases if the freestream
Mach number is 3.0 (6p)

(c) Explain why the engine inlet design with the oblique shock system (left figure) would be
more efficient than the an engine inlet design with a single normal shock at the inlet plane
(right figure) (2p)



Problem 1. Couette-Poiseuille (10p) 
Suggested answer (based on ‘’Fluid Mechanics’’, Frank M. White, 8th edition): 

a) [4/10] 

• Implement continuity equation to show that u=u(y) [1p]: 
i. State assumptions for simplifying continuity equation [0.5p]: 

2D incompressible flow à 
!
!" = 0 

Plates very long and very wide à # = 0,% = 0 

Since the flow is incompressible, continuity equation (4.4) 
simplified as: 
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ii. Implement the rest of the assumptions listed above and derive 
u=u(y) [0.5p]: 
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• Implement linear momentum equation (4.38) and calculate the velocity 
profile [3p]: 

i. State assumptions to simplify equation [0.5p]: 

2D incompressible flow à 
!
!" = 0 

Plates very long and very wide à # = 0,% = 0 

Neglect gravity effects, steady pressure gradient, constant viscosity 
(μ): 
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ii. Use the listed assumptions to simplify the above equation and 
calculate the velocity profile with constants [1.5p]: 
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iii. Employ boundary conditions to get the correct velocity profile 
[1p]: 

No-slip conditions at upper and lower plates: 

'(−ℎ) = 0	R41	'(+ℎ) = S 

Insert boundary conditions in eq.1: 
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The final expression for the velocity profile is: 
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b) [2/10] 

• Implement the correct equations for calculating the shear stress [1p]: 

The assumption of Newtonian fluid (viscous stresses proportional to the 
element strain rates and viscosity coefficient) along with incompressible 
flow, enable usage of (4.37): 
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• Arrive at the correct result [1p]: 

Based on earlier assumptions, the only stress term that is non-zero is τxy: 
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c) [2/10] 
• Implement the correct equations (4.109-4.111) for calculating the 

vorticity [1p]: 
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• Arrive at the correct value [1p]. 

Calculating the vorticity vector, considering assumptions made, gives: 
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d) [1/10]  
• Viscosity is a quantitative measure of a fluid’s resistance to flow. It 

determines fluid’s strain rate generated by a given applied shear stress. 
e) [1/10] 

• The applied shear stress is proportional to the velocity gradient for a 
Newtonian fluid. The constant of proportionality is the viscosity 
coefficient. This is expressed by equation (1.23). 



2. Flow Deflection

(a) Find ↵ as a function of the deflection angle ✓such that the tangential force
Ft is zero
.

Conservation of linear momentum with finite 1D inlets and outlets (3.40)
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0 = �⇢Q2V2 + �⇢Q3V3 � �⇢Q1V1

Q1 = Q, Q2 = ↵Q, Q3 = (1� ↵)Q and V1 = cos ✓V , V2 = V , V3 = �V

0 = ↵��QV � (1� ↵)��QV � cos ✓��QV

0 = 2↵� 1� cos ✓

↵ =
1 + cos ✓

2

1



(b) Explain the physical meaning of each of the terms in the Reynolds transport
theorem

d
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• I, Change of B in system over time

• II, Change of B in control volume over time

• III, Change of B over control surface, i.e in- and outflow of B into control volume

(c) Explain the physical meaning of the local acceleration and the convective
acceleration term
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The local term is the change of velocity with respect to time at a given point in the flow field. The convective
term is the rate of change of velocity due to change of position of fluid particle in fluid flow field, for example
due to geometry changes.
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5. Pump

(a) Calculate the efficiency of the pump (⌘ = Powerout/Powerin) if 20kW is deliv-
ered to the pump
Known:

D1 = 0.3 [m] hf = V 2
exit
g [m]

D2 = 0.15 [m] Pin = 20 [kW]
Vexit = 5 [m/s] h = 10 [m]

Assume the water is 20�, this gives ⇢ = 998 [kg/m3]

The energy equation for steady state, incompressible flow (3.73)
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The pump has an efficiency of approximately 60%

(b) Why is the kinetic energy correction factor larger for laminar flows than for
turbulent flows (↵lam = 2.0, ↵turb ⇡ 1.0)?
A laminar flow has a parabolic velocity distribution where Vave = 1/2Vmax, but for turbulent flow the
maximum velocity is much closer to the average due to the irregular flow.

(c) Give three examples of sources of local losses in a pipe system
For example:

• Valves

• Bends

• Junctions

• Expansions and contractions

• Entrances
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Problem 6. Engine Inlet (10p) 
Suggested answer (based on ‘’Fluid Mechanics’’, Frank M. White, 8th edition): 

a) [2/10] 

• An estimate of the lowest Mach number for which the engine inlet can 
deflect the flow 8 degrees cab be made via Figure 9.1. 
Following the dash-dotted line which indicates the maximum deflection 
angles θmax for each Mach number we get: 

!"!"# ≈ 1.4 

 

b) [6/10] 

• Solve the oblique shocks case [4p]: 

To make use of the equations listed in the equation sheet, one must 
state that the flow is assumed isentropic between shock waves and 
adiabatic through shocks. Moreover, assume that the medium (air) 
is perfect gas with k=1.4. 

Calculate flow after the first oblique shock [1.5p]: 

o Deflection angle is θ=8 degrees, M1=3. To get the shock 
angle use Figure 9.1 by assuming the weak shock solution.  
Considering the above take β=25 degrees. 

o Implement equation (9.82): 

!#$ = 1.267 

o Implement equation (9.57) for the normal velocity 
components: 

!#% = 0.8 
o Implement equation (9.82): 

!% = 2.746 

Calculate flow after the second oblique shock [1.5p]: 

o Deflection angle is θ=8 degrees, M2=2.746. To get the 
shock angle use Figure 9.1 by assuming the weak shock 
solution.  
Considering the above take β=28 degrees. 

o Implement equation (9.82): 

!#% = 1.28 

o Implement equation (9.57) for the normal velocity 
components: 

!#& = 0.791 



o Implement equation (9.82): !& = 2.3 

Calculate flow after the normal shock [1p]: 

o Implement equation (9.57) for the normal velocity components: 

!' = !(#)*+ = 0.53 

 

• Solve the normal shock case [1p]: 
o Implement equation (9.57) 

!(#)*+ = 0.4753 

c) [2/10] 
• From the calculations computed in the previous question it was found 

that the oblique shock system needs to decelerate the flow at the last step 
(normal shock) a significant lesser amount compared to the single normal 
shock case. 
Thereby the system losses accompanying this normal shock are expected to 
be less for the oblique shock system, while bringing the inlet flow at 
approximately the same magnitude. 
A system of weaker oblique shocks always results in less losses than a strong 
single normal shock. That’s why engine intakes for supersonic operation are 
usually designed to generate a system of oblique shocks rather than a normal 
shock. 
 


