FUF040 Quantum Mechanics: Omdugga/Re-exam

Course: FUF040
Time: 2022/08/22, 0830 - 1230
Responsible: Tom Blackburn
Permitted materials: Physics Handbook, attached formula sheet
Questions: 6
Total points: 50
You may answer in either Swedish or English.

1. (10 points) Your colleague, Dr. Knowitall, has some quick-fire questions for you.
(a) (1 point) What wavefunctions satisfy the time-independent Schrödinger equation?

Solution: Only the wavefunctions of energy eigenstates (stationary states).
(b) (1 point) What wavefunctions satisfy the time-dependent Schrödinger equation?

Solution: All wavefunctions must satisfy the TDSE.
(c) (1 point) If the quantum state of a system is given by an energy eigenstate at $t=0$, how does it evolve in time?

Solution: Via the "wiggle factor": $\psi(t)=\psi(t=0) \exp (-i E t / \hbar)$ where E is the energy eigenvalue.
(d) (2 points) What are the wavefunctions in the position and momentum representations, $\psi(x)$ and $\tilde{\psi}(p)$, of a free particle with definite momentum p_{0} ?

Solution: $\psi(x)=\exp \left(i p_{0} x / \hbar\right) / \sqrt{2 \pi \hbar}$ and $\tilde{\psi}(p)=\delta\left(p-p_{0}\right)$.
(e) (2 points) Give two important properties of Hermitian operators.

Solution: They have real eigenvalues, eigenstates (kets/vectors) corresponding to different eigenvalues are orthogonal to each other, the set of eigenstates forms a complete basis.
(f) (2 points) Why are these properties necessary for Hermitian operators to represent physical observables?

Solution: The eigenvalues represent the possible outcomes of a measurement (which must therefore be real). Eigenstates with different eigenvalues are orthogonal to each other, so different physical outcomes do not overlap. A complete set means that any physical state within the Hilbert space of the system can be represented by a linear combination of the basis states.
(g) (1 point) The three position operators, \hat{x}, \hat{y} and \hat{z}, and the three momentum operators \hat{p}_{x}, \hat{p}_{y} and \hat{p}_{z}, can be used to form 15 distinct commutators. How many are zero?

Solution: The only non-zero ones are $\left[x, p_{x}\right]=\left[y, p_{y}\right]=\left[z, p_{z}\right]=i \hbar$, so 12 .
2. (6 points) The quantum state of a spin- 1 particle is given by

$$
\begin{equation*}
|\psi\rangle=-\frac{i}{\sqrt{3}}|m=0\rangle+\sqrt{\frac{2}{3}}|m=1\rangle, \tag{1}
\end{equation*}
$$

(a) (2 points) If the component of the spin parallel to z, \hat{S}_{z}, is measured, what are the possible outcomes and the probabilities of those outcomes?

Solution: Possible outcomes are 0 and \hbar, with probabilities $1 / 3$ and $2 / 3$ respectively.
(b) (4 points) If the component of the spin parallel to y, \hat{S}_{y}, is measured, what are the possible outcomes and the probabilities of those outcomes?

Solution: We need to find the eigenstates of \hat{S}_{y}. Use the Pauli matrix representation and solve the eigenvalue equation

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -i & 0 \tag{2}\\
i & 0 & -i \\
0 & i & 0
\end{array}\right)\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)=\lambda\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)
$$

for $\lambda=-1,0$ and 1 . We obtain $(-1, i \sqrt{2}, 1)^{T} / 2,(1,0,1)^{T} / \sqrt{2},(-1,-i \sqrt{2}, 1)^{T} / 2$, respectively. Now solve $|\psi\rangle=a\left|m_{y}=-1\right\rangle+b\left|m_{y}=0\right\rangle+c\left|m_{y}=1\right\rangle$ to obtain $a=0$, $b=\sqrt{1 / 3}$ and $c=\sqrt{2 / 3}$. Therefore in a measurement of the spin component along y, we obtain 0 with $1 / 3$ probability and $+\hbar$ with $2 / 3$ probability.
3. (12 points) A particle of mass m is trapped in a narrow, but very deep, potential well at $x=0$. We will model this potential well as a Dirac δ function $V(x)=V_{\delta} \delta(x)$.
(a) (3 points) The energy of the bound state is $E=-m V_{\delta}^{2} /\left(2 \hbar^{2}\right)$. Show that the wavefunction in the position representation $\psi(x)=N \exp (-\alpha x)$ for $x>0$ and $N \exp (\alpha x)$ for $x<0$, where α and N are constants to be determined.

Solution: Plug the wavefunction into the TISE (working point): $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x)=$ $E \psi(x)$ to obtain $\alpha=m V_{\delta} / \hbar^{2}$. The wavefunction must be normalised, $\int_{-\infty}^{\infty} \psi(x)^{2} d x=$ 1, so $N=\sqrt{\alpha}=\sqrt{m V_{\delta} / \hbar^{2}}$.
(b) (5 points) Find the wavefunction in the momentum representation $\tilde{\psi}(p)$.

Solution: Fourier-transform the wavefunction in the position representation $(k=$ $p / \hbar)$:

$$
\begin{align*}
\tilde{\psi}(p) & =\langle p \mid \psi\rangle=\int_{-\infty}^{\infty}\langle x \mid p\rangle^{\star}\langle x \mid \psi\rangle d x \tag{3}\\
& =\sqrt{\frac{\alpha}{2 \pi \hbar}}\left[\int_{-\infty}^{0} e^{-i k x} e^{\alpha x} d x+\int_{0}^{\infty} e^{-i k x} e^{-\alpha x} d x\right] \tag{4}\\
& =\sqrt{\frac{\alpha}{2 \pi \hbar}}\left[\frac{1}{\alpha-i k}+\frac{1}{\alpha+i k}\right] \tag{5}\\
& =\sqrt{\frac{2}{\pi \hbar}} \frac{\alpha^{3 / 2}}{\alpha^{2}+k^{2}} \tag{6}
\end{align*}
$$

(c) (2 points) Using your answer to part (b), find the expectation value of the squared momentum $\left\langle p^{2}\right\rangle$. (You may use your answer to part (a) instead - but be very careful in your working.)
Hint: $\int_{-\infty}^{\infty} p^{2} /\left[p^{2}+b^{2}\right]^{2} d p=\pi /(2 b)$.
Solution: Working in momentum space, we have $\left\langle p^{2}\right\rangle=\int_{-\infty}^{\infty} p^{2} \tilde{\psi}(p)^{2} d p$:

$$
\begin{equation*}
\left\langle p^{2}\right\rangle=\frac{2 \alpha^{3} \hbar^{2}}{\pi} \int_{-\infty}^{\infty} \frac{k^{2}}{\left(\alpha^{2}+k^{2}\right)^{2}} d k=\alpha^{2} \hbar^{2}=\frac{m^{2} V_{\delta}^{2}}{\hbar^{2}} . \tag{7}
\end{equation*}
$$

(d) (2 points) Show that the bound state satisfies the uncertainty relation. Hint: $\int_{-\infty}^{\infty} x^{2} \exp (-\kappa x) d x=2 / \kappa^{3}$.

Solution: The position uncertainty is $\left\langle x^{2}\right\rangle=2 \alpha \int_{0}^{\infty} x^{2} e^{-2 \alpha x} d x=1 /\left(2 \alpha^{2}\right)$, using the symmetry $\psi(-x)=\psi(x)$. We have therefore that $\sigma_{x}^{2} \sigma_{p}^{2}=\left\langle x^{2}\right\rangle\left\langle p^{2}\right\rangle=\hbar^{2} / 2>\hbar^{2} / 4$.
4. (6 points) The wavefunction of the electron in a hydrogen atom, at $t=0$, is given by

$$
\begin{equation*}
\psi(r, \theta, \varphi)=\sqrt{\frac{15}{16 \pi}} R(r) \sin ^{2} \theta \cos (2 \varphi) \tag{8}
\end{equation*}
$$

where $R(r)$ is a function of radius r.
(a) (3 points) If the squared magnitude of the orbital angular momentum $\left(L^{2}\right)$ is measured at $t=0$, what are the possible results and the probabilities to obtain those results?

Solution: $|\psi\rangle=\frac{1}{\sqrt{2}}(|\ell=2, m=+2\rangle+|\ell=2, m=-2\rangle)$ so there is 100% probability to obtain $L^{2}=2(2+1) \hbar^{2}=6 \hbar^{2}$.
(b) (3 points) If the z-component of the orbital angular momentum $\left(L_{z}\right)$ is measured at $t=0$, what are the possible results and the probabilities to obtain those results?

Solution: Using the above representation, we find there is a 50% probability to obtain $L_{z}=-2 \hbar$ or $+2 \hbar$.
5. (8 points) A particle of mass m is trapped in a 1D harmonic oscillator of natural frequency ω, which is perturbed by a weak potential $V(x)=(m \omega / \hbar) V_{0} x^{2}$.
(a) (2 points) What is the exact change to the energy of the nth level?

Solution: $V(x)=\frac{1}{2} m \omega^{2} x^{2} \rightarrow \frac{1}{2} m \omega^{2} x^{2}\left[1+2 V_{0} /(\hbar \omega)\right]$. Thus the natural frequency shifts by $\omega \rightarrow \omega \sqrt{1+2 V_{0} /(\hbar \omega)}$ and the the exact change in the energy level is

$$
\begin{equation*}
\Delta E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)\left[\sqrt{1+\frac{2 V_{0}}{\hbar \omega}}-1\right] . \tag{9}
\end{equation*}
$$

(b) (4 points) Use first-order perturbation theory to determine the change in the energy of the nth level. Show that your result is consistent with your answer to part (a).

Solution: The first-order correction is $\Delta E_{n}=\langle n| \hat{H}^{\prime}|n\rangle$, where $\hat{H}^{\prime}=\frac{1}{2} V_{0}(\hat{a}+$ $\left.\hat{a}^{\dagger}\right)^{2}$. Thus we obtain $\Delta E_{n}=V_{0}(n+1 / 2)$. This is consistent with expanding $\sqrt{1+2 V_{0} /(\hbar \omega)} \simeq V_{0} /(\hbar \omega)$.
(c) (2 points) What condition must V_{0} satisfy for perturbation theory to be accurate? Explain your reasoning.

Solution: Either: PT works while the energy shift is small compared to the energy itself, i.e. $\Delta E_{n} / E_{n} \simeq V_{0} /(\hbar \omega) \ll 1$. Or: expanding to second order, $\Delta E_{n}=$ $V_{0}(n+1 / 2)-(n+1 / 2) V_{0}^{2} /(2 \hbar \omega)$, the next-order correction is small if $V_{0} /(2 \hbar \omega) \ll 1$.
6. (a) (2 points) What physical transformation is associated with the parity operator $\hat{\Pi}$? What does this operator do, when applied to the state (or wavefunction) describing a quantummechanical system?

Solution: The parity operator inverts the spatial axes $x \rightarrow-x$, etc. In terms of position eigenstates, $\hat{\Pi}|x\rangle=|-x\rangle$, or in the position representation, $\langle x| \hat{\Pi}|\psi\rangle=$ $\hat{\Pi} \psi(x)=\psi(-x)$.
(b) (3 points) By considering how the expectation value of position, $\langle x\rangle$, changes under parity transformation (or otherwise), show that $[\hat{\Pi}, \hat{x}]=2 \hat{\Pi} \hat{x}$.

Solution: The expectation value of the position changes as $\left\langle\psi^{\prime}\right| x\left|\psi^{\prime}\right\rangle=-\langle\psi| x|\psi\rangle$ if $\left|\psi^{\prime}\right\rangle=\Pi|\psi\rangle$. Therefore $\hat{\Pi}^{\dagger} \hat{x} \hat{\Pi}=-\hat{x}$. The parity operator is unitary, so apply $\hat{\Pi}$ to both sides, obtaining $\hat{x} \hat{\Pi}=-\hat{x} \hat{\Pi}$. QED. Alternatively, in the position representation, $\langle x|[\hat{\Pi}, \hat{x}]|\psi\rangle=\hat{\Pi}[x \psi(x)]-\hat{x}[\psi(-x)]=-2 x \psi(-x)=\langle x| 2 \hat{\Pi} \hat{x}|\psi\rangle$.
(c) (3 points) Under what conditions does the parity operator commute with the kinetic and potential energy operators \hat{T} and $V(\hat{x})$? What does this mean for the wavefunctions $\psi(x)=\langle x \mid E\rangle$ of the energy eigenstates $|E\rangle$?

Solution: The parity operator always commutes with the kinetic energy operator. The parity operator commutes with the potential energy operator iff the potential $V(x)$ even, i.e. $V(x)=V(-x)$. If $[\hat{\Pi}, \hat{H}]=0$, it is possible to construct eigenstates that are simultaneously eigenstates of parity and the Hamiltonian; the wavefunctions of these eigenstates would be either even or odd.

END

Formulas

- The Dirac delta function:

$$
\begin{equation*}
f(a)=\int_{-\infty}^{\infty} \delta(x-a) f(x) d x, \quad \delta(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i k x} d x \tag{10}
\end{equation*}
$$

- Creation and annihilation operators for the harmonic oscillator, $V(\hat{x})=\frac{1}{2} m \omega^{2} \hat{x}^{2}$:

$$
\begin{equation*}
\hat{a}^{\dagger}=\frac{\hat{x}}{2 L}-\frac{i L \hat{p}}{\hbar}, \quad \hat{a}=\frac{\hat{x}}{2 L}+\frac{i L \hat{p}}{\hbar} \tag{11}
\end{equation*}
$$

where $L=\sqrt{\hbar /(2 m \omega)}$.

- Pauli matrices for j or $s=1 / 2\left(\hat{J}_{i} \left\lvert\, \hat{S}_{i}=\frac{\hbar}{2} \sigma_{i}\right.\right)$:

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \tag{12}\\
1 & 0
\end{array}\right), \quad \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- Pauli matrices for j, ℓ or $s=1\left(\hat{J}_{i}\left|\hat{L}_{i}\right| \hat{S}_{i}=\hbar \sigma_{i}\right)$:

$$
\sigma_{x}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \tag{13}\\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad \sigma_{y}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

- The Hamiltonian in spherical polar coordinates:

$$
\begin{equation*}
\hat{H}=\frac{\hat{p}_{r}^{2}}{2 m}+\frac{\hat{L}^{2}}{2 m r^{2}}+V(r), \tag{14}
\end{equation*}
$$

where

$$
\begin{align*}
& \hat{p}_{r}^{2}=-\frac{\hbar^{2}}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right) \tag{15}\\
& \hat{L}^{2}=-\hbar^{2}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right] \tag{16}
\end{align*}
$$

