FUF040 Quantum Mechanics: Omdugga/Re-exam

Course: FUF040 Time: 2022/08/22, 0830 – 1230 Responsible: Tom Blackburn Permitted materials: Physics Handbook, attached formula sheet Questions: 6 Total points: 50 You may answer in either Swedish or English.

- 1. (10 points) Your colleague, Dr. Knowitall, has some quick-fire questions for you.
 - (a) (1 point) What wavefunctions satisfy the *time-independent* Schrödinger equation?

Solution: Only the wavefunctions of energy eigenstates (stationary states).

(b) (1 point) What wavefunctions satisfy the *time-dependent* Schrödinger equation?

Solution: All wavefunctions must satisfy the TDSE.

(c) (1 point) If the quantum state of a system is given by an energy eigenstate at t = 0, how does it evolve in time?

Solution: Via the "wiggle factor": $\psi(t) = \psi(t = 0) \exp(-iEt/\hbar)$ where E is the energy eigenvalue.

(d) (2 points) What are the wavefunctions in the position and momentum representations, $\psi(x)$ and $\tilde{\psi}(p)$, of a free particle with definite momentum p_0 ?

Solution: $\psi(x) = \exp(ip_0 x/\hbar)/\sqrt{2\pi\hbar}$ and $\tilde{\psi}(p) = \delta(p - p_0)$.

(e) (2 points) Give two important properties of Hermitian operators.

Solution: They have real eigenvalues, eigenstates (kets/vectors) corresponding to different eigenvalues are orthogonal to each other, the set of eigenstates forms a complete basis.

(f) (2 points) Why are these properties necessary for Hermitian operators to represent physical observables?

Solution: The eigenvalues represent the possible outcomes of a measurement (which must therefore be real). Eigenstates with different eigenvalues are orthogonal to each other, so different physical outcomes do not overlap. A complete set means that any physical state within the Hilbert space of the system can be represented by a linear combination of the basis states.

(g) (1 point) The three position operators, \hat{x} , \hat{y} and \hat{z} , and the three momentum operators \hat{p}_x , \hat{p}_y and \hat{p}_z , can be used to form 15 distinct commutators. How many are zero?

Solution: The only non-zero ones are $[x, p_x] = [y, p_y] = [z, p_z] = i\hbar$, so 12.

2. (6 points) The quantum state of a spin-1 particle is given by

$$|\psi\rangle = -\frac{i}{\sqrt{3}} |m=0\rangle + \sqrt{\frac{2}{3}} |m=1\rangle, \qquad (1)$$

(a) (2 points) If the component of the spin parallel to z, \hat{S}_z , is measured, what are the possible outcomes and the probabilities of those outcomes?

Solution: Possible outcomes are 0 and \hbar , with probabilities 1/3 and 2/3 respectively.

(b) (4 points) If the component of the spin parallel to y, \hat{S}_y , is measured, what are the possible outcomes and the probabilities of those outcomes?

Solution: We need to find the eigenstates of \hat{S}_y . Use the Pauli matrix representation and solve the eigenvalue equation

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0\\ i & 0 & -i\\ 0 & i & 0 \end{pmatrix} \begin{pmatrix} \alpha\\ \beta\\ \gamma \end{pmatrix} = \lambda \begin{pmatrix} \alpha\\ \beta\\ \gamma \end{pmatrix}$$
(2)

for $\lambda = -1$, 0 and 1. We obtain $(-1, i\sqrt{2}, 1)^T/2$, $(1, 0, 1)^T/\sqrt{2}$, $(-1, -i\sqrt{2}, 1)^T/2$, respectively. Now solve $|\psi\rangle = a |m_y = -1\rangle + b |m_y = 0\rangle + c |m_y = 1\rangle$ to obtain a = 0, $b = \sqrt{1/3}$ and $c = \sqrt{2/3}$. Therefore in a measurement of the spin component along y, we obtain 0 with 1/3 probability and $+\hbar$ with 2/3 probability.

- 3. (12 points) A particle of mass *m* is trapped in a narrow, but very deep, potential well at x = 0. We will model this potential well as a Dirac δ function $V(x) = V_{\delta}\delta(x)$.
 - (a) (3 points) The energy of the bound state is $E = -mV_{\delta}^2/(2\hbar^2)$. Show that the wavefunction in the position representation $\psi(x) = N \exp(-\alpha x)$ for x > 0 and $N \exp(\alpha x)$ for x < 0, where α and N are constants to be determined.

Solution: Plug the wavefunction into the TISE (working point): $-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x) = E\psi(x)$ to obtain $\alpha = mV_{\delta}/\hbar^2$. The wavefunction must be normalised, $\int_{-\infty}^{\infty}\psi(x)^2 dx = 1$, so $N = \sqrt{\alpha} = \sqrt{mV_{\delta}/\hbar^2}$.

(b) (5 points) Find the wavefunction in the momentum representation $\tilde{\psi}(p)$.

Solution: Fourier-transform the wavefunction in the position representation ($k = p/\hbar$):

$$\tilde{\psi}(p) = \langle p | \psi \rangle = \int_{-\infty}^{\infty} \langle x | p \rangle^{\star} \langle x | \psi \rangle \, dx \tag{3}$$

$$=\sqrt{\frac{\alpha}{2\pi\hbar}}\left[\int_{-\infty}^{0}e^{-ikx}e^{\alpha x}dx+\int_{0}^{\infty}e^{-ikx}e^{-\alpha x}dx\right]$$
(4)

$$=\sqrt{\frac{\alpha}{2\pi\hbar}}\left[\frac{1}{\alpha-ik}+\frac{1}{\alpha+ik}\right]$$
(5)

$$=\sqrt{\frac{2}{\pi\hbar}}\frac{\alpha^{3/2}}{\alpha^2+k^2}\tag{6}$$

(c) (2 points) Using your answer to part (b), find the expectation value of the squared momentum $\langle p^2 \rangle$. (You may use your answer to part (a) instead – but be *very* careful in your working.)

Hint:
$$\int_{-\infty}^{\infty} p^2 / [p^2 + b^2]^2 dp = \pi / (2b).$$

Solution: Working in momentum space, we have
$$\langle p^2 \rangle = \int_{-\infty}^{\infty} p^2 \tilde{\psi}(p)^2 dp$$
:
 $\langle p^2 \rangle = \frac{2\alpha^3 \hbar^2}{\pi} \int_{-\infty}^{\infty} \frac{k^2}{(\alpha^2 + k^2)^2} dk = \alpha^2 \hbar^2 = \frac{m^2 V_{\delta}^2}{\hbar^2}.$ (7)

(d) (2 points) Show that the bound state satisfies the uncertainty relation. Hint: $\int_{-\infty}^{\infty} x^2 \exp(-\kappa x) dx = 2/\kappa^3$.

Solution: The position uncertainty is $\langle x^2 \rangle = 2\alpha \int_0^\infty x^2 e^{-2\alpha x} dx = 1/(2\alpha^2)$, using the symmetry $\psi(-x) = \psi(x)$. We have therefore that $\sigma_x^2 \sigma_p^2 = \langle x^2 \rangle \langle p^2 \rangle = \hbar^2/2 > \hbar^2/4$.

4. (6 points) The wavefunction of the electron in a hydrogen atom, at t = 0, is given by

$$\psi(r,\theta,\varphi) = \sqrt{\frac{15}{16\pi}} R(r) \sin^2 \theta \cos(2\varphi) \tag{8}$$

where R(r) is a function of radius r.

(a) (3 points) If the squared magnitude of the orbital angular momentum (L^2) is measured at t = 0, what are the possible results and the probabilities to obtain those results?

Solution: $|\psi\rangle = \frac{1}{\sqrt{2}}(|\ell = 2, m = +2\rangle + |\ell = 2, m = -2\rangle)$ so there is 100% probability to obtain $L^2 = 2(2+1)\hbar^2 = 6\hbar^2$.

(b) (3 points) If the z-component of the orbital angular momentum (L_z) is measured at t = 0, what are the possible results and the probabilities to obtain those results?

Solution: Using the above representation, we find there is a 50% probability to obtain $L_z = -2\hbar$ or $+2\hbar$.

- 5. (8 points) A particle of mass *m* is trapped in a 1D harmonic oscillator of natural frequency ω , which is perturbed by a weak potential $V(x) = (m\omega/\hbar)V_0x^2$.
 - (a) (2 points) What is the exact change to the energy of the *n*th level?

Solution: $V(x) = \frac{1}{2}m\omega^2 x^2 \rightarrow \frac{1}{2}m\omega^2 x^2 [1 + 2V_0/(\hbar\omega)]$. Thus the natural frequency shifts by $\omega \rightarrow \omega \sqrt{1 + 2V_0/(\hbar\omega)}$ and the the exact change in the energy level is

$$\Delta E_n = \hbar \omega \left(n + \frac{1}{2} \right) \left[\sqrt{1 + \frac{2V_0}{\hbar \omega}} - 1 \right]. \tag{9}$$

(b) (4 points) Use first-order perturbation theory to determine the change in the energy of the *n*th level. Show that your result is consistent with your answer to part (a).

Solution: The first-order correction is $\Delta E_n = \langle n | \hat{H}' | n \rangle$, where $\hat{H}' = \frac{1}{2}V_0(\hat{a} + \hat{a}^{\dagger})^2$. Thus we obtain $\Delta E_n = V_0(n + 1/2)$. This is consistent with expanding $\sqrt{1 + 2V_0/(\hbar\omega)} \simeq V_0/(\hbar\omega)$.

(c) (2 points) What condition must V_0 satisfy for perturbation theory to be accurate? Explain your reasoning.

Solution: Either: PT works while the energy shift is small compared to the energy itself, i.e. $\Delta E_n/E_n \simeq V_0/(\hbar\omega) \ll 1$. Or: expanding to second order, $\Delta E_n = V_0(n+1/2) - (n+1/2)V_0^2/(2\hbar\omega)$, the next-order correction is small if $V_0/(2\hbar\omega) \ll 1$.

6. (a) (2 points) What physical transformation is associated with the parity operator Î1? What does this operator do, when applied to the state (or wavefunction) describing a quantum-mechanical system?

Solution: The parity operator inverts the spatial axes $x \to -x$, etc. In terms of position eigenstates, $\hat{\Pi} |x\rangle = |-x\rangle$, or in the position representation, $\langle x | \hat{\Pi} | \psi \rangle = \hat{\Pi} \psi(x) = \psi(-x)$.

(b) (3 points) By considering how the expectation value of position, $\langle x \rangle$, changes under parity transformation (or otherwise), show that $[\hat{\Pi}, \hat{x}] = 2\hat{\Pi}\hat{x}$.

Solution: The expectation value of the position changes as $\langle \psi' | x | \psi' \rangle = - \langle \psi | x | \psi \rangle$ if $|\psi' \rangle = \Pi |\psi\rangle$. Therefore $\hat{\Pi}^{\dagger} \hat{x} \hat{\Pi} = -\hat{x}$. The parity operator is unitary, so apply $\hat{\Pi}$ to both sides, obtaining $\hat{x} \hat{\Pi} = -\hat{x} \hat{\Pi}$. QED. Alternatively, in the position representation, $\langle x | [\hat{\Pi}, \hat{x}] | \psi \rangle = \hat{\Pi} [x\psi(x)] - \hat{x} [\psi(-x)] = -2x\psi(-x) = \langle x | 2\hat{\Pi} \hat{x} | \psi \rangle$.

(c) (3 points) Under what conditions does the parity operator commute with the kinetic and potential energy operators \hat{T} and $V(\hat{x})$? What does this mean for the wavefunctions $\psi(x) = \langle x | E \rangle$ of the energy eigenstates $|E\rangle$?

Solution: The parity operator always commutes with the kinetic energy operator. The parity operator commutes with the potential energy operator iff the potential V(x) even, i.e. V(x) = V(-x). If $[\hat{\Pi}, \hat{H}] = 0$, it is possible to construct eigenstates that are simultaneously eigenstates of parity and the Hamiltonian; the wavefunctions of these eigenstates would be either even or odd.

END

Formulas

• The Dirac delta function:

$$f(a) = \int_{-\infty}^{\infty} \delta(x-a) f(x) \, dx, \qquad \qquad \delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} dx \qquad (10)$$

• Creation and annihilation operators for the harmonic oscillator, $V(\hat{x}) = \frac{1}{2}m\omega^2 \hat{x}^2$:

$$\hat{a}^{\dagger} = \frac{\hat{x}}{2L} - \frac{iL\hat{p}}{\hbar}, \qquad \qquad \hat{a} = \frac{\hat{x}}{2L} + \frac{iL\hat{p}}{\hbar} \qquad (11)$$

where $L = \sqrt{\hbar/(2m\omega)}$.

• Pauli matrices for *j* or s = 1/2 $(\hat{J}_i | \hat{S}_i = \frac{\hbar}{2} \sigma_i)$:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \qquad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \qquad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \tag{12}$$

• Pauli matrices for j, ℓ or s = 1 $(\hat{J}_i | \hat{L}_i | \hat{S}_i = \hbar \sigma_i)$:

$$\sigma_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \qquad \sigma_y = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \qquad \sigma_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$
(13)

• The Hamiltonian in spherical polar coordinates:

$$\hat{H} = \frac{\hat{p}_r^2}{2m} + \frac{\hat{L}^2}{2mr^2} + V(r),$$
(14)

where

$$\hat{p}_r^2 = -\frac{\hbar^2}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) \tag{15}$$

$$\hat{L}^{2} = -\hbar^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right]$$
(16)