FUF040 Quantum Mechanics: Omdugga/Re-exam

Course: FUF040
Time: 2022/01/05, 0830-1230
Responsible: Tom Blackburn
Permitted materials: Physics Handbook, attached formula sheet
Questions: 6
Total points: 50
You may answer in either Swedish or English.

1. The quantum state of a particle moving in one dimension can be described by its wavefunction in the position representation, $\psi(x)$, or equivalently by its wavefunction in the momentum representation, $\tilde{\psi}(p)$.
(a) (4 points) Give the wavefunction in the position representation, $\psi(x)$, for a particle with definite momentum p_{0}. Is this wavefunction properly normalised? Can it represent a physical particle?

Solution: $\psi(x)=\exp \left(i p_{0} x / \hbar\right) / \sqrt{2 \pi \hbar}$. This wavefunction is not normalised properly, $\int_{-\infty}^{\infty}|\psi(x)|^{2} d x \neq 1$, so it is not physical. Instead, we have $\left\langle p^{\prime} \mid p\right\rangle=\delta\left(p-p^{\prime}\right)$. A real particle would be described by a wavepacket, i.e. a linear combination of these states.
(b) (2 points) What is the wavefunction in the momentum representation, $\tilde{\psi}(p)$, for the case in part (a)?

Solution: $\tilde{\psi}(p)=\delta\left(p-p_{0}\right)$.
(c) (1 point) What is the momentum operator in the momentum representation?

Solution: $\hat{p} \tilde{\psi}(p)=p \tilde{\psi}(p)$.
(d) (2 points) What is the position operator in the momentum representation?

Hint: Transform the wavefunction $\psi(x)$ of a particle with definite position x_{0} to the momentum representation.

Solution: The wavefunction of a particle with definite position x_{0} is $\psi(x)=\delta\left(x-x_{0}\right)$. Transforming, we obtain $\tilde{\psi}(p)=\int_{-\infty}^{\infty} \psi(x) e^{-i p x / \hbar} / \sqrt{2 \pi \hbar} d x=\exp \left(-i p x_{0} / \hbar\right) / \sqrt{2 \pi \hbar}$. Applying \hat{p} to this $\tilde{\psi}(p)$ must yield $x_{0} \tilde{\psi}(p)$, so $\hat{p}=i \hbar \frac{\partial}{\partial p}$.
(e) (4 points) Show that the position and momentum operators do not commute. What does this imply?

Solution:

$$
\begin{align*}
{[\hat{x}, \hat{p}] \psi(x) } & =\left[x,-i \hbar \frac{\partial}{\partial x}\right] \psi(x) \tag{1}\\
& =i \hbar\left[-x \frac{\partial \psi}{\partial x}+\frac{\partial}{\partial x}(x \psi)\right] \tag{2}\\
& =i \hbar \psi(x) \tag{3}
\end{align*}
$$

As $[\hat{x}, \hat{p}] \neq 0$, we cannot simultaneously know both the position and momentum of the particle.
2. Suppose you have an infinitely deep, square potential well of width a, such that the potential $V(x)=0$ for $|x|<a / 2$ and infinity otherwise. An electron, of mass m, is trapped inside this well.
(a) (4 points) Derive expressions for the allowed energies E_{n} and the wavefunctions $\left\langle x \mid E_{n}\right\rangle$ of the energy eigenstates. How many energy levels are there?

Solution: Solve $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x)=E \psi(x)$ with the boundary conditions $\psi(\pm a / 2)=0$. The general solution is $\psi(x)=A \sin (k x)+B \cos (k x)$ where $k=\sqrt{2 m E} / \hbar$. The boundary conditions require that $B=0$ and $k a / 2=n \pi$, or $A=0$ and $k a / 2=$ $(2 n+1) \pi / 2$, where n is an integer. The values of A and B are fixed by normalisation: $\int_{-a / 2}^{a / 2}|\psi(x)|^{2} d x=1$.
So we have $E_{n}=\hbar^{2} \pi^{2} n^{2} /\left(2 m a^{2}\right)$ and $\psi_{n}(x)=\left\langle x \mid E_{n}\right\rangle=\sqrt{2 / a} \cos (n \pi x / a)$ for odd $n \geq 1$ or $\sqrt{2 / a} \sin (n \pi x / a)$ for even $n \geq 2$.
There are an infinite number of energy levels.
(b) (5 points) This potential is perturbed by a static electric field, such that $\hat{H}^{\prime}=e \mathcal{E} \hat{x}$, where $e<0$ and $\mathcal{E}>0$. What is the first-order correction to the energy levels ΔE_{n} ? Explain your result physically.

Solution:

$$
\begin{align*}
\Delta E_{n}=\langle E| \hat{H}^{\prime}|E\rangle & =e \mathcal{E} \int_{-a / 2}^{a / 2} \psi_{n}^{\star}(x) x \psi_{n}(x) d x \tag{4}\\
& =\frac{2}{a} \int_{-a / 2}^{a / 2} x \cos ^{2}(n \pi x / a) d x \tag{5}\\
& =0 \tag{6}
\end{align*}
$$

because x is an odd function and $\cos ^{2}$ (or $\sin ^{2}$) are even functions.
The first-order change is zero because the electron is equally likely to be found at $x>0$ (where the energy is lower) as at $x<0$ (where the energy is higher).
3. The adjoint \hat{Q}^{\dagger} of an operator \hat{Q} is defined by

$$
\begin{equation*}
\langle f| \hat{Q}|g\rangle=\langle g| \hat{Q}^{\dagger}|f\rangle^{\star} \tag{7}
\end{equation*}
$$

for all $|f\rangle$ and $|g\rangle$.
(a) (4 points) Prove that the eigenvalues of Hermitian operators are real, and that the eigenstates corresponding to different eigenvalues are orthogonal to each other.

Solution: Let $|f\rangle=|g\rangle=\left|q_{n}\right\rangle$ be an eigenstate of \hat{Q} with eigenvalue q_{n}. Then the LHS becomes q_{n}. The RHS can be written as $\langle g| \hat{Q}|f\rangle^{\star}=q_{n}^{\star}$. So q_{n} must be real.

Now consider $|f\rangle=\left|q_{m}\right\rangle$ and $|g\rangle=\left|q_{n}\right\rangle$. Then the LHS becomes $q_{n}\left\langle q_{m} \mid q_{n}\right\rangle$. The RHS is $\langle g| \hat{Q}|f\rangle^{\star}=q_{m}^{\star}\left\langle q_{m} \mid q_{n}\right\rangle=q_{m}\left\langle q_{m} \mid q_{n}\right\rangle$. But $q_{n} \neq q_{m}$, so this can only be satisfied if $\left\langle q_{m} \mid q_{n}\right\rangle=0$.
(b) (2 points) Why are these two properties necessary for these operators to represent physical observables?

Solution: The allowed results of a measurement are the eigenvalues of the associated operator, which must therefore be real. The eigenstates corresponding to different results must be orthogonal, because if Q is measured, with the result q_{n}, the probability that an immediate, subsequent measurement yields q_{m} must be zero: $P=\left|\left\langle q_{m} \mid \psi\right\rangle\right|^{2}=$ $\left|\left\langle q_{m} \mid q_{n}\right\rangle\right|^{2}=0$.
4. A particle of mass m, trapped in a 1 D harmonic oscillator with natural frequency ω, is prepared such that its state at $t=0$ is:

$$
\begin{equation*}
|\psi ; t=0\rangle=\frac{|n=0\rangle-\sqrt{2}|n=1\rangle+|n=2\rangle}{2} \tag{8}
\end{equation*}
$$

where $|n\rangle$ is an energy eigenstate with energy E_{n}.
(a) (3 points) What is the expectation value of a measurement of the energy, $\langle E\rangle$, at time t ?

Solution: The expectation value of energy is independent of time, because the Hamiltonian is independent of time. $E_{n}=(n+1 / 2) \hbar \omega .\langle E\rangle=\sum_{n} P_{n} E_{n}=\frac{1}{4} E_{0}+\frac{1}{2} E_{1}+\frac{1}{4} E_{2}=$ $3 \hbar \omega / 2$.
(b) (5 points) What is the expectation value of a measurement of the position, $\langle x\rangle$, at time t ?

Solution: The time-dependent state is

$$
\begin{equation*}
|\psi ; t\rangle=\frac{e^{-i \omega t / 2}}{2}\left(|0\rangle-\sqrt{2} e^{-i \omega t}|1\rangle+e^{-i 2 \omega t}|2\rangle\right) . \tag{9}
\end{equation*}
$$

Applying $\hat{x}=L\left(\hat{a}+\hat{a}^{\dagger}\right)$, we get

$$
\begin{equation*}
\hat{x}|\psi ; t\rangle=L \frac{e^{-i \omega t / 2}}{2}\left[|1\rangle-\sqrt{2} e^{-i \omega t}(|0\rangle+\sqrt{2}|2\rangle)+e^{-i 2 \omega t}(\sqrt{2}|1\rangle+\sqrt{3}|3\rangle)\right] . \tag{10}
\end{equation*}
$$

Bra through by $\langle\psi ; t|$ to get:

$$
\begin{align*}
\langle x\rangle & =\frac{L}{4}\left[-\sqrt{2} e^{-i \omega t}-\sqrt{2} e^{i \omega t}-2 e^{-i \omega t}-2 e^{i \omega t}\right] \tag{11}\\
& =-L\left(1+\frac{1}{\sqrt{2}}\right) \cos \omega t \tag{12}
\end{align*}
$$

(c) (2 points) Compare your answer to part (c) with the amplitude and frequency of oscillation of a classical harmonic oscillator.

Solution: This should read "answer to part (b)". Due to this error, any attempt at question 4 received full marks for this part.
Intended solution: any reasonable response accepted, including: The position oscillates with natural frequency ω for both. The amplitude of oscillation for a classical oscillator with energy $3 \hbar \omega / 2$ would be $\sqrt{6} L$, which does not agree.
5. The state of a spin- 1 particle is given by

$$
\begin{equation*}
|\psi\rangle=\frac{|m=-1\rangle-i \sqrt{2}|m=0\rangle-|m=1\rangle}{2}, \tag{13}
\end{equation*}
$$

(a) (3 points) If the component of the spin parallel to z, \hat{S}_{z}, is measured, what are the possible outcomes and the probabilities of those outcomes?

Solution: Possible outcomes are $-\hbar, 0$ and \hbar, with probabilities $1 / 4,1 / 2$ and $1 / 4$ respectively.
(b) (3 points) If the component of the spin parallel to y, \hat{S}_{y}, is measured, what are the possible outcomes and the probabilities of those outcomes?

Solution: We need to find the eigenstates of \hat{S}_{y}. Use the Pauli matrix representation and solve the eigenvalue equation

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -i & 0 \tag{14}\\
i & 0 & -i \\
0 & i & 0
\end{array}\right)\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)=\lambda\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)
$$

for $\lambda=-1,0$ and 1. We obtain $(-1, i \sqrt{2}, 1)^{T} / 2,(1,0,1)^{T} / \sqrt{2},(-1,-i \sqrt{2}, 1)^{T} / 2$, respectively. Observe that $|\psi\rangle=-\left|S_{y}=-1\right\rangle$. Therefore in a measurement of the spin component along y, we obtain $-\hbar$ with 100% probability.
6. The energy of the electron in a hydrogen atom is measured. Immediately afterwards, its wavefunction is given by:

$$
\begin{equation*}
\psi(\mathbf{r})=\frac{1}{\sqrt{32 \pi a_{0}^{3}}} \frac{z}{a_{0}} \exp \left(-\frac{r}{2 a_{0}}\right) \tag{15}
\end{equation*}
$$

where $a_{0}=4 \pi \varepsilon_{0} \hbar^{2} /\left(m e^{2}\right)$ and m is the reduced mass of the electron-proton system.
(a) (2 points) If the energy is measured again, what is the result?

Solution: The first measurement collapsed the state to an energy eigenstate, so a second measurement must yield the same result again. Hence the given wavefunction satisfies $\hat{H} \psi=E \psi$. We can apply the radial Hamiltonian directly:

$$
\begin{equation*}
\hat{H}=-\frac{\hbar^{2}}{2 m r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)-\frac{\hbar^{2}}{2 m r^{2}}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right]-\frac{e^{2}}{4 \pi \varepsilon_{0} r} \tag{16}
\end{equation*}
$$

or look up the wavefunction in the handbook. We obtain $n=2, \ell=1, m=0$ so $E=-R / 4(-0.85 \mathrm{eV})$.
(b) (4 points) How much of this energy do we expect to come from the potential energy? And therefore how much do we expect to come from the kinetic energy?
Hint: $\int_{0}^{\infty} x^{n} \exp (-x) d x=n$!

Solution: We need to calculate the expectation value of $\hat{V}=-e^{2} /\left(4 \pi \varepsilon_{0} \hat{r}\right)$.

$$
\begin{align*}
\langle V\rangle & =-\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{32 \pi a_{0}^{3}} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \sin \theta \int_{0}^{\infty} d r r^{2} \frac{r \cos ^{2} \theta}{a_{0}^{2}} \exp \left(-\frac{r}{a_{0}}\right) \tag{17}\\
& =-\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{32 \pi a_{0}^{3}} \underbrace{2 \pi}_{\phi \text { integral }} \underbrace{\frac{2}{3}}_{\theta \text { integral }} \underbrace{6 a_{0}^{2}}_{\text {radial integral }} \tag{18}\\
& =-\frac{e^{2}}{16 \pi \varepsilon_{0} a_{0}}=-\frac{R}{2} \tag{19}
\end{align*}
$$

The expectation value of the kinetic energy $\langle T\rangle=R / 4$.

Formulas

- The Dirac delta function:

$$
\begin{equation*}
f(a)=\int_{-\infty}^{\infty} \delta(x-a) f(x) d x, \quad \delta(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i k x} d x \tag{20}
\end{equation*}
$$

- Creation and annihilation operators for the harmonic oscillator, $V(\hat{x})=\frac{1}{2} m \omega^{2} \hat{x}^{2}$:

$$
\begin{equation*}
\hat{a}^{\dagger}=\frac{\hat{x}}{2 L}-\frac{i L \hat{p}}{\hbar}, \quad \hat{a}=\frac{\hat{x}}{2 L}+\frac{i L \hat{p}}{\hbar} \tag{21}
\end{equation*}
$$

where $L=\sqrt{\hbar /(2 m \omega)}$.

- Pauli matrices for j or $s=1 / 2\left(\hat{J}_{i} \left\lvert\, \hat{S}_{i}=\frac{\hbar}{2} \sigma_{i}\right.\right)$:

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \tag{22}\\
1 & 0
\end{array}\right), \quad \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- Pauli matrices for j, ℓ or $s=1\left(\hat{J}_{i}\left|\hat{L}_{i}\right| \hat{S}_{i}=\hbar \sigma_{i}\right)$:

$$
\sigma_{x}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \tag{23}\\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad \sigma_{y}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

- The Hamiltonian in spherical polar coordinates:

$$
\begin{equation*}
\hat{H}=\frac{\hat{p}_{r}^{2}}{2 m}+\frac{\hat{L}^{2}}{2 m r^{2}}+V(r), \tag{24}
\end{equation*}
$$

where

$$
\begin{align*}
& \hat{p}_{r}^{2}=-\frac{\hbar^{2}}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right) \tag{25}\\
& \hat{L}^{2}=-\hbar^{2}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right] \tag{26}
\end{align*}
$$

