
FUF040 Quantum Mechanics: Dugga/Exam

Course: FUF040
Time: 2021/10/22, 1400 – 1800
Responsible: Tom Blackburn
Permitted materials: Physics Handbook, attached formula sheet
Questions: 7
Total points: 40
You may answer in either Swedish or English.

1. (4 points) Write down the time-independent and time-dependent Schrödinger equations and
define the symbols that you use.

Solution: Time-independent: �̂ |�〉 = � |�〉 (or equivalent in position representation).
Time-dependent: �̂ |k〉 = 8ℏ m

mC
|k〉 (or equivalent in position representation).

1. �̂ is the Hamiltonian/energy operator (or equivalent in terms of kinetic and potential
energy).

2. � is the energy (total energy/energy eigenvalue).

3. |�〉 is an energy eigenstate (or k(G) is the wavefunction of a state of definite energy).

4. |k〉 is a general quantum state (or k(G) is the wavefunction of a general quantum
state).

2. An experiment on a quantum mechanical system has two possible, different, outcomes: � and
�. The probability amplitude for outcome � is given by U(�). Outcome � can occur by one of
two, mutually exclusive, indistinguishable, routes, - and . , with probability amplitude V(-)
and V(. ), respectively.
(a) (1 point) What is the probability for outcome � to occur?

Solution: %(�) = |V(-) + V(. ) |2.

1



FUF040 Quantum Mechanics Dugga/Exam

(b) (1 point) What is the probability for outcome � or � to occur?

Solution: %(�|�) = |U(�) |2 + %(�) = 1.

3. An operator &̂ is Hermitian if it satisfies 〈q | &̂ |k〉 = 〈k | &̂ |q〉★.
(a) (1 point) What is the momentum operator ?̂G in the position representation?

Solution: 〈G | ?̂ |k〉 = −8ℏ m
mG
〈G |k〉 or equivalent.

(b) (2 points) Prove that ?̂G is Hermitian and explain any assumptions that you make.

Solution: In the position representation, the trick is to integrate by parts:

〈q| ?̂ |k〉 = −8ℏ
∫ ∞

−∞
q★(G) mk(G)

mG
3G (1)

= −8ℏ
[
q★(G)k(G)

��∞
−∞ −

∫ ∞

−∞

mq★(G)
mG

k(G)3G
]

(2)

= 8ℏ

∫ ∞

−∞
k(G) mq

★(G)
mG

3G (3)

= 〈k | ?̂ |q〉★ (4)

Assumption is that the wavefunction vanishes at G = ±∞. Equivalent with |k〉 = |q〉
also OK. Alternatively, the Hermiticity of momentum can be proved by requiring the
translation operator be unitary.

(c) (3 points) Why are Hermitian operators used to represent physical observables?

Solution:

1. The eigenvalues of Hermitian operator, which give the possible outcomes of a
measurement, are real.

2. Eigenstates corresponding to different eigenvalues are orthogonal to each other,
thus different physical outcomes do not overlap.

3. The eigenstates form a complete basis, so any quantum state in the relevant
Hilbert space can be written as a linear combination of these eigenvectors.

4. (6 points) A particle of mass < is trapped in a 1D harmonic oscillator of natural frequency l.
Show that the product of the uncertainties in position and momentum, fGf?, for the =th energy
level satisfies the uncertainty principle. (The standard deviation of an observable & is defined
by f& =

√〈
&2

〉
− 〈&〉2.)
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Solution: The ladder operators for the harmonic oscillator are 0̂ |=〉 =
√
= |= − 1〉 and

0̂† |=〉 =
√
= + 1 |= + 1〉. Using the formula sheet, we have Ĝ = ! (0̂ + 0̂†) and ?̂ =

ℏ/(28!) (0̂ − 0̂†). We have the following expectation values:

• 〈G〉 = 〈=| Ĝ |=〉 = 0 as a single application of the ladder operators creates |= − 1〉 or
|= + 1〉 which is orthogonal to |=〉.

• 〈?〉 = 〈=| ?̂ |=〉 = 0, by the same reasoning.

•
〈
G2〉 = !2 〈=| 0̂0̂† + 0̂†0̂ |=〉, expanding out the square and discarding terms which
have unequal numbers of 0̂ and 0̂†. Thus 〈G〉 = !2(2= + 1).

•
〈
?2〉 = − ℏ2

(28!)2 〈=| 0̂0̂
† + 0̂†0̂ |=〉 = ℏ2

4!2 (2= + 1).

As such, fGf? = ℏ
2 (2= + 1) ≥ ℏ/2 for all = ≥ 0.

5. A hydrogen atom is prepared such that its state is given by

|k〉 = |= = 2, ℓ = 1, < = 1〉 − |= = 2, ℓ = 1, < = −1〉
√

2
, (5)

where = is the principal quantum number, ℓ is the orbital angular momentum quantum number,
and < is the quantum number associated with the projection of the orbital angular momentum
along the I-axis.
(a) (2 points) If the energy is measured, what are the possible outcomes, and the probabilities

for those outcomes?

Solution: The state is a superposition of two eigenstates with the same principal
quantum number = = 2. The only possible outcome is −R/4 = −3.4 eV.

(b) (2 points) If the orbital angular momentum in the I-direction is measured, what are the
possible outcomes, and the probabilities for those outcomes?

Solution: The state is a superposition of two eigenstates with < = +ℏ and < = −ℏ.
A measurement of !I yields ±ℏ with equal probability.

(c) (3 points) If the orbital angular momentum in the G-direction is measured, what are the
possible outcomes, and the probabilities for those outcomes?

Solution: Here we need to express the state as a linear combination of eigenstates of
!G rather than !I. Call these eigenstates |<G = ±1, 0〉 = U |<I = +1〉 + V |<I = 0〉 +
W |<I = −1〉 and represent them as three-component spinors (U, V, W)) . !G is given
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by the 3× 3 matrix fG , which has eigenvalues ±1, 0. Solving the eigenvalue equation,
we get:

• |<G = −1〉 = (1,−
√

2, 1))/2

• |<G = +1〉 = (1,
√

2, 1))/2

• |<G = 0〉 = (−1, 0, 1))/
√

2

The state we have is |k〉 = (1, 0,−1))/
√

2 = − |<G = 0〉. Therefore a measurement of
!G yields 0 with 100% probability.

6. (6 points) Dr. Knowitall has purchased some overpriced electrons from Blackburn’s Discount
Quantum Devices and is keen to ensure they do not escape the lab. He attempts to confine
them to the region G < 0 with a very strong, but very narrow, potential barrier: + (G) = +XX(G),
where +X is a real, positive constant. Electrons, with energy � , travel from G = −∞ towards
the barrier. Show that the probability that an electron passes through the barrier is

% =

(
1 +

<4+
2
X

2ℏ2�

)−1

(6)

You may treat the problem as one-dimensional.

Solution: On the LHS of the barrier, we have k(G) = 48:G + '4−8:G where : =
√

2<�/ℏ.
On the RHS, we havek(G) = )48:G . ' and) are the reflection and transmission amplitudes.
The wavefunction must be continuous at G = 0, so

1 + ' = ). (7)

The boundary condition on the derivative follows by integrating the TISE over a region
around G = 0:

− ℏ2

2<
mk(G)
mG

����+n
−n
++Xk(0) = 0 (8)

where n is vanishingly small:

− ℏ2

2<
[8:) − (8: − 8:')] ++X) = 0 (9)

Eliminating ', we get

) =

(
1 + 8<4+X

ℏ2:

)−1
. (10)

Mod-squaring yields the desired result.
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7. A quantum-mechanical system is translated through space, by a 3D displacement a. Its state is
transformed as |k′〉 = *̂ |k〉, where *̂ = exp(−8a · p̂/ℏ).
(a) (3 points) By considering how 〈p〉, the expectation value of momentum, changes under

a small translation, show that all components of the momentum operator commute with
each other: [ ?̂8, ?̂ 9 ] = 0.

Solution: 〈p〉 does not change under translation, so 〈k′| p̂ |k′〉 = 〈k | *̂†p̂*̂ |k〉 =
〈k | p̂ |k〉. Now consider a small translation, so *̂ = 1 − 80: ?̂:/ℏ. Looking at the
operators on either side, we need:(

1 + 80: ?̂:
ℏ

)
?̂8

(
1 − 80: ?̂:

ℏ

)
= ?̂8 (11)

?̂8 +
8

ℏ
0: [ ?̂: , ?̂8] +$ (02) = ?̂8 (12)

Hence the commutator must vanish: [ ?̂8, ?̂: ] = 0.

(b) (3 points) By considering how 〈r〉, the expectation value of position, changes under a
small translation, show that the position andmomentum operators satisfy: [Ĝ8, ?̂ 9 ] = 8ℏX8 9 .

Solution: 〈r〉 → 〈r〉 + a under translation by a. so 〈k′| r̂ |k′〉 = 〈k | *̂†r̂*̂ |k〉 =
〈k | r̂ |k〉 + a. Now consider a small translation, so *̂ = 1 − 80: ?̂:/ℏ. Looking at the
operators on either side, we need:(

1 + 80: ?̂:
ℏ

)
Ĝ8

(
1 − 80: ?̂:

ℏ

)
= Ĝ8 + 08 (13)

Ĝ8 +
8

ℏ
0: [ ?̂: , Ĝ8] +$ (02) = Ĝ8 + 08 (14)

To get the second term on the LHS equal to 08, we need the commutator to be
[ ?̂: , Ĝ8] = −8ℏX8: , or [Ĝ8, ?̂: ] = 8ℏX8: .

(c) (3 points) Suppose we wished to describe a particle in terms of its position r and mo-
mentum p. Given these commutation relations, how well can we do that? How does this
compare to the situation in classical physics?

Solution: In classical physics, it is possible to know all six position and momentum
components exactly and simultaneously. In quantum physics, we can only have exact
knowledge of two observables simultaneously if their operators commute. Thus we
can know only three components exactly at any one time: e.g., ?G , ?H and ?I, or G,
H and ?I, etc. The better we know the position in any one direction, the worse our
knowledge of the momentum in that direction.

Page 5



FUF040 Quantum Mechanics Dugga/Exam

Formulas
• The Dirac delta function:

5 (0) =
∫ ∞

−∞
X(G − 0) 5 (G) 3G, X(G) = 1

2c

∫ ∞

−∞
48:G3G (15)

• Creation and annihilation operators for the harmonic oscillator, + (Ĝ) = 1
2<l

2Ĝ2:

0̂† =
Ĝ

2!
− 8! ?̂

ℏ
, 0̂ =

Ĝ

2!
+ 8! ?̂

ℏ
(16)

where ! =
√
ℏ/(2<l).

• Pauli matrices for 9 or B = 1/2 (�̂8 |(̂8 = ℏ
2f8):

fG =

(
0 1
1 0

)
, fH =

(
0 −8
8 0

)
, fI =

(
1 0
0 −1

)
. (17)

• Pauli matrices for 9 , ℓ or B = 1 (�̂8 | !̂8 |(̂8 = ℏf8):

fG =
1
√

2
©­«
0 1 0
1 0 1
0 1 0

ª®¬ , fH =
1
√

2
©­«
0 −8 0
8 0 −8
0 8 0

ª®¬ , fI =
©­«
1 0 0
0 0 0
0 0 −1

ª®¬ . (18)

• The Hamiltonian in spherical polar coordinates:

�̂ =
?̂2
A

2<
+ !̂2

2<A2 ++ (A), (19)

where

?̂2
A = −

ℏ2

A2
m

mA

(
A2 m

mA

)
(20)

!̂2 = −ℏ2
[

1
sin \

m

m\

(
sin \

m

m\

)
+ 1

sin2 \

m2

mq2

]
(21)
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