
Exam
Quantum Engineering (FKA132), Chalmers

2016-10-26

Time and place: 14:00-18:00 on October 26, 2016, Campus Johanneberg.
Examinator: Per Hyldgaard (phone 031 772 8422; mobile phone 076 1010 581).
Allowed references: Dictionaries, Beta, Physics Handbook, one handwritten paper of
size A4 (both sides) with own notes, and a Chalmers-approved calculator. Correct solu-
tion of each problem gives 6 points. 15 points are needed to pass.
MOTIVATE YOUR ANSWERS, answers lacking reasonable motivation will not yield
full credit.

Problem 1. [Six points total]

a) State the main idea, key result, and usefulness of Bohr’s atom model.

b) Explain the relevance of a superposition principle in a wave description of the elec-
tron behavior. You can, for example, list and discuss phenomena or experiments where
superposition is needed for a theoretical account.

c) Calculate the de Broglie wavelength of neutrons and electrons at kinetic energies
corresponding to 4K and to room temperature. Explain why thermal neutrons are an
ideal tool for a mapping of the atomic structure of crystaline material; It may be useful to
recall that the scattering of waves enhances dramatically when the wavelength matches
the length scale of the potential variation.

d) Discuss the difference between the regular, i.e., time-dependent, and the time-independent
Schrödinger equations. Also, define the energy expectation value and describe the vari-
ational approach to estimating the ground-state energy E0 of a system. Show that this
estimate will be an upper bound on the value of E0.

e) What defines a bonding molecular orbital?

f) One basic assumption in Hückel theory is that the atomic orbitals (pz) contributing to
the π-bonding in a planar molecule can be treated independently from the atomic orbitals
contributing to the σ-bonding in the molecule. Why is this assumption valid?

Problem 2. [6 points total]

The combination of van der Waals (vdW) attraction and Pauli exclusion interactions
between two noble-gas atoms or small molecules separated by distance R can sometimes
be modeled by the so-called Lennard-Jones potential

V (R) = ε

{(
Rm

R

)12

− 2
(
Rm

R

)6
}
. (1)

Here −ε is the potential minimum and Rm is the position of the minimum. You can
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Figure 1: Binding-energy curves for H2 physisorption on various types of Cu surfaces (left
panel) The top panel shows date reconstructed from experimental observation where as
the bottom panel shows results of a recent vdW-DF calculation.

assume that Rm and ε have been fitted by either measurements or accurate calculations
of the interatomic forces.

a) Extract an effective model of the vibrational dynamics. In other words, find the best-fit
parameters for an harmonic-oscillator model Hamiltonian

Hvib =
P 2
R̃

2m
+

1

2
mω2

vibR̃
2 − ε . (2)

Express the model parameter ωvib in terms of the reduced mass m and of Rm and ε.
Explain why you need the offset and why m = M/2 for a system comprising two identical
molecules of mass M . [2 points]

b) Discuss the accuracy of the vibrational modeling. First determine the excitation
energies of the harmonic-oscillator model. Then answer the question: How do you expect
these vibrational frequencies to relate to those of the more relevant Lennard-Jones model
potential? As a part of the discussion, sketch and compare the variation in the Lennard-
Jones and in the model potential of Eq. (2). [2 points]

Fig. 1 shows the variation of the effective potential V (z) for H2 molecules physisorbed on
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various Cu facets (various types of Cu surfaces). The curves are extracted from Chalmers
experiments (top panel) and from a DFT study using the Chalmers-Rutgers vdW-DF
method (bottom panel). The Pauli exclusion principle gives rise to repulsion (set of curves
marked ‘V1’) that are dramatic at short molecule-to-surface separations z. However,
the electron-density overlap – and therefore repulsion – also decays exponentially with
increasing separation and the vdW attraction therefore provides a net attraction outside
the so-called classical turning point, marked as zt. The potentials V (z) extracted from
experiment and from vdW-DF calculations are unchanged for physisorption of deuterium
molecules D2.

c) Use knowledge of the hydrogen-molecule mass and vdW-DF calculations for the Cu(111)
surface to predict the vibrational levels (given in meV) for the physisorption well? How
large is the molecular zero-point energy value? How do your predictions change for D2?
[2 points]

Problem 3. [6 points total]

Consider a model of an atom in which the electron dynamics is assumed fully characterized
as a one-dimensional harmonic-oscillator problem

Ĥa =
p̂2
x

2m
+

1

2
mω2

eff x̂
2 − εeff , (3)

given by an effective oscillator frequency ωeff . The offset −εeff ensures that the electrons
are bound, i.e., that the lowest-lying state(s) have an energy smaller than the spectrum
of free-electron states, at Efree

k = (h̄k)2/(2m).

The model Eq. 3 can also be characterized by creation b̂+ and annihilation operators b̂,
given by

b̂ =
mωeff x̂+ ip̂x√

2h̄mωeff

. (4)

a) Sketch the form of the first two oscillator eigenfunctions, ψ0(x) and ψ1(x), showing
also the potential. Furthermore, express Ĥa in terms of b̂ and b̂+. [1 point]

b) The atom is subjected to an external radiation field E(t) = Eext cos(ωt), giving rise to
a perturbation H1(t) = −eEext cos(ωt) x̂. Express H1(t) in terms of b̂ and b̂+. [1 point]

c) Compute the first-order and second-order energy shifts for the lowest-energy state in
the limit of steady-state (or ω � ωeff). [1 point]

d) Assume that the system begins in the ground state n = 0 when we initate the external
radiation. Compute the rate of transition to the first excited (n = 1) state as a function
of the angular frequency ω of the radiation. [1 point]

Consider next two such model atoms, characterized by the same ωeff at large enough
separations R that you can also ignore both chemical interactions and Pauli exclusion.
The atoms have no static dipole or multipole moments. Thus you can also ignore all
electrostatic interactions between the atoms. It is tempting to think that the two-atom
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model Hamiltonian could therefore be described

H0
2a = Ha1 +Ha2 =

∑
i=1,2

p̂2
xi

2m
+

1

2
mω2

eff(x̂2
1 + x̂2

2) (5)

where x1 and x2 denote coordinates of atom ‘1’ and ‘2’, respectively. However, the ground
state solution of the atom model, Eq. (3) still reflects a zero-point vibration in the density
of charged particles. Such fluctuations cause an inter-atomic coupling mediated by the
electrodynamic field. We model this coupling by adding the Hamiltonian term

H ′
R = −fRx1x2; fR =

e2/2π

R3
. (6)

Below we seek a nonperturbative account of the dispersive or van der Waals (vdW) bind-
ing ∆EvdW < 0 that results from including H ′

R in the total two-atom model Hamiltonian
H2a(R) = H0

2a +H ′
R.

e) Show that you can rewrite H2a(R) as a sum of two new, independent harmonic-
oscillator terms

H2a =
p̂2
X

2m
+
p̂2
Y

2m
+

1

2
m
(
ω2

eff − fR/m
)
X̂2 +

1

2
m
(
ω2

eff + fR/m
)
Ŷ 2 , (7)

by introducing so-called normal coordinates X̂ = (x1 + x2)/
√

2 and Ŷ = (x1 − x2)/
√

2.
When establishing the form of, for example, p̂X it is correct to assume independence of
x̂1 and x̂2 so that [p̂x1 , x̂2] = 0, etc. [1 point]

f) Compute the vdW binding energy ∆EvdW by contrasting the ground state expectation
value of Ĥ2a and Ĥ0

2a. [1 point]

Problem 4. [6 points total]

This problem concerns a two-level model system given by eigenenergies ε1 ≥ ε0 and
eigenstates |0〉 and |1〉. You can assume that |0〉 and |1〉 are normalized and orthogonal.

a) Assume that |0〉 and |1〉 represent states with different spatial wavefunctions and that
you have a number of s = 1/2 particles to distribute into these levels. What is the lowest
energy configuration of the total system that you can have if you have: 1 particle? 2
particles of opposite spins? 2 particles of same spin? 3 particles? [1 point]

From now on ignore the level degeneracy discussed in ‘a)’. Assume that at time t = 0
the system is prepared in the normalized quantum state

|ψ(t = 0)〉 = α0|0〉+ β0|1〉 . (8)

At a later time t we express the quantum state

|ψ(t)〉 = exp(iθ(t)){α0|0〉+ c(t)|1〉} . (9)

b) Identify θ(t) and show that c(t) = β0 exp(−iωosct) where ωosc = (ε1 − ε0)/h̄ represents
a characteristic, so-called Rabi, oscillation of the system. Also compute the probablity
of finding eigenenergies ε1 and ε0 as a function of time t. [1 point].
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In the remainder of the problem we explore manifestations of the Rabi oscillations.

Assume first that the two-level model describes a wavefunction problem. Also assume
that the wavefunctions 〈x|0〉 and 〈x|1〉 can be approximated as the first and second
eigenstates of the infinite-wall particle-in-a-box potential

Veff(x) =

{
0 if |x| < d/2 ,
∞ if |x| > d/2 .

(10)

c) Compute the time-dependence in the expectation value of the particle position 〈x〉(t)
(subject to the assumption that α0 = β0 = 1/

√
2) and discuss the nature of the Rabi

oscillations in this case. [2 points]

Consider next a pure spin system. Consider the dynamics of a beam of Ag atoms moving
in a uniform magnetic field directed in spatial direction z but which is also prepared and
tested by a pair of Stern-Gerlach (SG) probes. We treat the displacement of the Ag atoms
as classical and H0 = (h̄ωosc/2)σz + (ε1 + ε0)/2 (where σz denotes the Pauli matrix σz)
describes the quantum spin dynamics. Here, the higher-energy state |1〉 (lower-energy
state |0〉) corresponds to a spin-up (spin-down) configuration with respect to direction z.
The oscillation frequency ωosc is proportional to the magnitude of the homogeneous field.

Inside a SG probe, in which the atoms only spend a vanishing time, the inhomogeneous
magnetic field causes the beam of Ag atoms to be split into two. The sorting can be
seen as a measurement of the spin polarization according to the direction n̂ of the SG
inhomogeneous field. The SG beam sorting at a time t is therefore given from knowledge
of the Ag state |ψ(t)〉 and the ”spin-up” and ”spin-down” eigenstates of the operator that
emerges from the dot-product of n̂ and the vector of Pauli matrices σ.

d) Show that the initial quantum state Eq. (8), for α0 = β0 = 1/
√

2, can be seen as
arising from performing a SG probe at t = 0 with the inhomogeneous field in direction
x. Suggest a practical way to engineer any deriable initial state |ψ(t = 0)〉. [1 point]

e) Assume that beam of Ag atoms enters a second SG with an inhomogenous field in
direction x at a later time t, having moved only in the homogenous magentic field in
between. Compute the probability (as a function of t) that a given Ag atom will be
sorted into either of the second-SG beams. Discuss the nature of the Rabi oscillations in
this spin case. [1 point]
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Figure 2: Atom configuration of Teflon (left panel) and Hexafluoroethane (right panel).

Problem 5. [6 points total]

The polymer polytetrafluoroethylene (PTFE/Teflon) is a solid and is often used when
a very nonrective (stable) and non-sticky surfaces is needed. The desirable properties
of this material is due to the nature of the carbon-fluorine bond and its constitutional
elements.

a) Draw an orbital interaction diagram showing the bonding and antibonding molecular
orbitals (MOs) corresponding to a carbon-fluorine bond in teflon (left panel of Fig. 2).
Use a sp3-orbital on the carbon atom and a p-orbital on the fluorine atom as the base
(starting-point). [1 point]

b) The carbon-fluorine is one of the strongest, if not the strongest, bond in organic
chemistry. It is also one of the most polar covalent bonds. Use your orbital interaction
diagram to show why the carbon-fluorine is a highly polarized bond. [1 point]

c) Hexafluoroethane (right panel of fig. 2) may be considered as a small model of Teflon.
Does this molecule have a large or small dipole moment? [1 point]

d) Explain why Teflon is a non-sticky material. It is both hydrophobic and lipophobic, i.e.,
it does not shows substantial intermolecular interactions with neither polar compounds
nor with non-polar compounds such as hydrocarbons (CxH(2x+2)). [3 points]
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