
Re-examination
Quantum Engineering (FKA132), Chalmers

2014-01-14

Time and place: 14:00-18:00 on January 14th, 2014, Johanneberg, “Maskin-salar”.
Registration for re-examination is mandatory.
Examinator: Elsebeth Schröder (tel 031 772 8424).
Allowed references: Dictionaries, Beta, Physics Handbook, one handwritten paper of
size A4 (both sides) with own notes, and a Chalmers-approved calculator. Correct solu-
tion of each problem gives 6 points. 15 points are needed to pass.
MOTIVATE YOUR ANSWERS, answers lacking reasonable motivation will not yield
full credit. Extra resources are given at the end of the set of problems.

Problem 1. (One point per question)
a) Two observables are represented by the operators Â and B̂. What does the relation
[Â, B̂] = 0 imply?
b) Using wavefunctions explain the quantum phenomena of tunneling. Give at least one
example of an experiment where quantum tunneling is essential.
c) Write down a wavefunction that is a superposition and explain the meaning of its
components.
d) Draw a three-dimensional structure of Si(CH3)2Cl2 showing all valence electrons.
e) Draw a molecular orbital diagram for two interacting atomic orbitals (AOs) that be-
long to two different atoms. Outline how the covalent bond strength, i.e. the interaction
energy, depends on the interaction between two atomic orbitals. What are the two most
important parameters?
f) Write down the time-independent Schrödinger equation and explain all terms of the
equation. Assume that the time-independent Schrödinger equation has the set of eigen-
values {Eα} and eigenvectors {ψα}, then argue for the form of and write down the general
solution ψ(r, t) to the quantum problem.

Problem 2. The Hamiltonian for a particle of mass m in a harmonic oscillator potential
is given by

H =
p2
x

2m
+
mω2x2

2
(1)

where ω is the angular frequency of the oscillator. The oscillation is subjected to a per-
turbation V = bx where b is a real constant.
a) Use perturbation theory: Calculate to lowest non-vanishing order the energy shift of
the ground state due to the perturbation.
b) Solve the problem exactly and compare to the result obtained in question a).
c) Write down the (unperturbed) Hamiltonian for the three-dimensional harmonic oscil-
lator that has the same angular frequency ω in all spatial directions. Compared to the
case of the one-dimensional harmonic oscillator in (1), what is the qualitative difference
of the energy spectrum?
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Figure 1: (Problem 4) Quantum dots with vivid colours stretching from violet to deep
red are being currently manufactured at PlasmaChem GmbH at a large scale. Alexei
Antipov/Wikipedia Commons.

Problem 3. A particle of mass m moves in a one-dimensional potential well given by

V (x) =


∞ for x < 0
0 for 0 < x < b
∞ for b < x

(2)

The particle is initially in the ground state ψ1 with eigenvalue (energy) E1. At time t = 0
the potential is rapidly changed to double the width

V (x) =


∞ for x < 0
0 for 0 < x < 2b
∞ for 2b < x

(3)

Find the probabilities that the particle is in the first, second, third and fourth excited
state in this new potential when t ≥ 0.

Problem 4. Wikipedia on Quantum dots: A quantum dot is a nanocrystal made of
semiconductor materials that are small enough to display quantum mechanical proper-
ties . . .Researchers have studied applications for quantum dots in transistors, solar cells,
LEDs, and diode lasers. They have also investigated quantum dots as agents for medical
imaging and as possible qubits in quantum computing.
Electrons in quantum dots may be modelled as electrons in three-dimensional infinite
square wells.
a) Qualitatively, what happens to the energy levels of the electron as the size of the dot
is decreased, and why?
b) Assume that the quantum dot has the side lengths L = 1 nm in two directions (the
x and y direction) but length L/

√
2 in the third direction (the z-direction). What is the

ground state energy of the electron? Needed is both the expression in terms of L and a
numerical result.
c) Draw a scetch of the energy levels of the ground state and the first three excited states
with correct values and spacing of the energy levels.
d) What is the wavelength of the lowest energy photon that can be emitted from the
quantum dot as a result of the electron decaying from one state to a state of lower en-
ergy? (Which two states are involved?)
e) What is the degeneracy of the first and second excited states?
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Figure 2: (Problem 5) Poly(1,4-phenylene-ethynyl), ethynylbenzene, HOMO, and LUMO.

Figure 3: (Problem 5) The shortest possible polymer of ethynylbenzene.

Problem 5.
Conjugated organic molecules such as poly(1,4-phenyleneethynylene) are investigated as
potential candidates to be used as molecular wires in molecular electronics and in nan-
otechnology. The repeating unit (building block) in the polymer is shown in Figure 2.
So are the highest occupied and lowest unoccupied molecular orbitals for the monomer
ethynylbenzene.

a) To which class of molecular orbitals are HOMO and LUMO designated, σ or π, and
what is the definition of such an orbital?
b) Give a mathematical expression for the HOMO wave function in terms of suitable
atomic orbitals ϕi, where i is the atom number shown in the structure of ethynylbenzene
above. Numerical values for the constants used in your expression are not needed but
the correct signs must be shown. What atomic orbital does ϕi correspond to?
c) Will the HOMO-LUMO gap increase or decrease with increasing number of repeating
units in the polymer? Rationalize your answer briefly.
d) Draw the orbital shapes for the HOMO and the LUMO of the shortest possible polymer
of ethynylbenzene, the dimer shown in Figure 3.
e) Compounds similar to the dimer shown in Figure 3 are also used as liquid crystals.
What are the two most important intermolecular forces between molecules in assemblies
of such compounds? Describe briefly the origin of each one of these two forces.

Extra resources
Depending on how you solve this set of problems you may find useful the following
definition of the creation and annihilation operators in the harmonic oscillator:

a =
1√
2

(
x̂

a0

+ i
p̂

p0

); a† =
1√
2

(
x̂

a0

− i p̂
p0

); (4)

with the properties
[a, a†] = 1 (5)

and where

a0 =

√
h̄

mω
; p0 =

h̄

a0

=
√
h̄mω (6)

END OF DOCUMENT
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