
Quantum Mechanics FKA081/FIM400

Final Exam 19 August 2014

Next review time for the exam: September 26 any time (9-18) in
my room.
NB: If you want to come to the review you must collect your exam
before at the “Kansli” in Origo 5th floor. (This info is also avail-
able on the course homepage.)

Examinator: Gabriele Ferretti tel. 031-7723168, ferretti@chalmers.se

Allowed material during the exam:

• The course textbook J.J. Sakurai and Jim Napolitano, Modern Quan-
tum Mechanics Second Edition (2010).
NB: The old red cover version: J.J. Sakurai, Modern Quantum Me-
chanics Revised Edition (1994) is also allowed.

• A Chalmers approved calculator.

Write the final answers clearly marked by Ans: ...
and underline them.

You may use without proof any formula in the book.

The grades are assigned according to the table in the course home-
page.
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Problem 1

Consider a spinless particle in one dimension in an arbitrary state |ψ〉 and
denote by x and p the position and momentum operator respectively.
Q1 (1 points) Show that 〈ψ|xp|ψ〉 can never be equal to 〈ψ|px|ψ〉.
Q2 (2 points) Show that neither 〈ψ|xp|ψ〉 nor 〈ψ|px|ψ〉 can ever be real. (In
particular, they can never be zero.)
Q3 (2 points) Find the linear combination of 〈ψ|xp|ψ〉 and 〈ψ|px|ψ〉 that is
always real and give an example where this combination vanishes.

Problem 2

Consider the following hamiltonian for a two state system (units of eV un-
derstood, no need to write them.)

H1 =

(

1 a
a 2

)

(1)

Q1 (2 points) For generic small a make a graph comparing the exact eigen-
values with second order in perturbation theory

Consider now instead

H2 =

(

1 a
a 1

)

(2)

Q2 (3 points) Discuss the most important differences that arise in this case
and the reason for them.
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Problem 3

Consider two states |ψ0〉 and |ψE〉 of energy 0 and E > 0 respectively. At
times t < 0 the system is in the ground state |ψ0〉. Between time t = 0 and
time t = T , we turn on a perturbation H ′ mixing the two states, i.e.

〈ψ0|H ′|ψE〉 = 〈ψE|H ′|ψ0〉 = ǫ ≪ E, 〈ψ0|H ′|ψ0〉 = 〈ψE|H ′|ψE〉 = 0. (3)

Q1 (2 points) Use first order perturbation theory to find the probability that
the system is in the excited state after t > T .

Now consider the same system with the following experimental values:

Ω =
E

~
= 1.00 × 1012 Hz, ω =

ǫ

~
= 2.00 × 1011 Hz, T = 3.00 × 10−12 s

Q2 (1 points) Give the numerical answer to probability found in Q1.
Q3 (4 points) Solve the problem numerically with the above values without

using perturbation theory and check how well the result agrees with pertur-
bation theory.

(Hints: You never need to use the value of ~ if you always work with
frequencies. Consider the exact total hamiltonian (1/~)H in the interval
between 0 and T . It’s OK if you get negative eigenfrequencies, they just
arise because we chose the energy of the unperturbed ground state to be
zero.)

Problem 4

Consider a nucleus of spin s = 5/2 subjected to the following Hamiltonian:
(γ and β are constants)

H =
(

βS2

x + γ(S2

y + S2

z )
)

(4)

Q1 (2 points) Find the spectrum of H.
Q2 (2 points) Find the degeneracy of the eigenvalues in the spectrum of H.
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Problem 5

Consider the two observables:

A =

(

1 1
1 2

)

, B =

(

2 x
x 3

)

(5)

Q1 (1 point) For what value of x can they be simultaneously diagonalized?
Q2 (1 point) Find the eigenvalues of A and B for x found in Q1.
Q3 (2 points) How are the eigenvalues found in Q2 paired? In other words,
which pairs correspond to the same eigenvector?

Problem 6

In the ground state of a hydrogen atom, the electron is subjected at t > 0 to
the perturbation

H ′ = gr cos θe−γt (6)

where r and θ are the usual polar coordinates of the electron, g is a small
parameter and γ > 0. You may ignore the spin degree of freedom in this
problem and use lowest order perturbation theory.
Q1 (2 points) Which of the states |n, l,m〉 can be excited by this perturba-
tion?
Q2 (3 points) What is the probability for the electron to be found in the
first excited state (n = 2) state at t = +∞?

You may use the fact that

∫

∞

0

r3R21(r)R10(r) dr =
27
√

2

34
√

3
a0,

〈Y10| cos θ|Y00〉 =
1√
3

where a0 is the Bohr radius and Rnl(r) are the radial wave functions.

4


















