Quantum Mechanics FKA081/FIM400

Final Exam August 20 2013

Next review time for the exam: 27 September 12-13 in my room. NB: If you want to come to the review you must collect your exam before at the "Kansli" in Origo 5th floor. (This info is also available on the course homepage.)

Examinator: Gabriele Ferretti tel. 7723168, 0739687998 ferretti@chalmers.se

Allowed material during the exam:

- The course textbook J.J. Sakurai and Jim Napolitano, Modern Quantum Mechanics Second Edition (2010).
 NB: The old red cover version: J.J. Sakurai, Modern Quantum Mechanics Revised Edition (1994) is also allowed.
- A Chalmers approved calculator (Casio FX82..., Texas TI30..., Sharp ELW5...).

Write the final answers clearly marked by Ans: ... and underline them.

You may use without proof any formula in the book.

There is a total of 30 points in this test. The exam counts for 90% of the final grade, (that is $3 \times$ points %).

Problem 1

A spinless atom of mass m is suspended in a potential $V(r) = \frac{1}{2}m\omega^2 r^2$ where ω is a constant and $r^2 = x^2 + y^2 + z^2$ the distance from the origin.

Q1 (1 points) What are the energies of the ground state and the first two exited states?

Q2 (2 points) What are the degeneracies of the energy levels above? (That is how many independent states are there for each level?)

Q3 (2 points) What are the allowed values of L^2 and L_z for such states?

Note: You do not have to solve the 3D Schrödinger equation to answer these questions.

Problem 2

Consider a spinless particle of mass m in a one-dimensional well with potential:

$$V(x) = \begin{cases} 0, & \text{for } 0 \le x \le a; \\ \infty, & \text{otherwise.} \end{cases}$$
(1)

The first relativistic correction can be described by the Hamiltonian

$$H' = -\frac{p^4}{8m^3c^2}$$
(2)

Q1 (2 points) Compute the first order correction induced by H' to all the states $|n\rangle$.

Q2 (2 points) Given a and m, for which values of n can we trust this approximation?

Problem 3

Consider the same system as in problem 2, namely a (non-relativistic) spinless particle of mass m in a one-dimensional well with potential:

$$V(x) = \begin{cases} 0, & \text{for } 0 \le x \le a; \\ \infty, & \text{otherwise.} \end{cases}$$
(3)

Suppose at time t = 0 the width of the well suddenly doubles (that is $a \to 2a$). Q1 (3 points) If the particle was in the ground state for t < 0, what is the probability of finding the particle in some unspecified excited state for t > 0? (Use the "sudden approximation".)

Problem 4

Consider the following two observables:

$$A = \begin{pmatrix} 3 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{pmatrix}$$
(4)

Q1 (1 points) Show that they can be simultaneously diagonalized.

Q2 (2 points) Find a basis of common eigenvectors $|a, b\rangle$.

Q3 (2 points) Let C be another observable that commutes with both A and B. Show that it must have eigenvectors $|a, b\rangle$ and that their eigenvalues uniquely determine C.

Q4 (2 points) Why did we need to know that C commutes with both A and B? Would [A, C] = 0 be enough?

Problem 5

An ion of a certain atom has l = 1 and s = 0 and is subjected to a Hamiltonian (a, b real constants)

$$H = a(L_x^2 - L_y^2) + bL_z (5)$$

(This type of Hamiltonian occurs e.g. for ions in a crystals with a magnetic field proportional to b along the z-axis.)

Q1 (2 points) Write H as a 3×3 matrix in the basis in which L_z is diagonal. Q2 (2 points) Find and plot the energy levels as a function of b for a fixed. Q3 (2 points) Show that the first order perturbation in b ($b \ll a$) vanishes and comment this result in the light of the exact solution found above.

Problem 6

Consider a three levels system with eigenstates $|0\rangle$, $|1\rangle$, $|2\rangle$ of energies $E_0 < E_1 < E_2$ subjected a weak time-dependent Hamiltonian H'(t) that has the following matrix elements:

$$\langle n|H'(t)|m\rangle = \lambda_{mn} e^{-t^2/T^2} \tag{6}$$

Q1 (1 points) What conditions must the matrix λ satisfy in order for H'(t) to be acceptable as Hamiltonian?

Q2 (1 points) What conditions must the matrix λ satisfy in order for H'(t) to be treated as a perturbation?

Q3 (2 points) Assume that the system is in the ground state $|0\rangle$ when $t \ll -T$. Compute the probability of finding the system in $|m \neq 0\rangle$ for $t \gg T$. Q4 (1 points) Evaluate the order of magnitude of the probability of transition

 $|0\rangle \rightarrow |1\rangle$ for $E_1 - E_0 = 1$ eV, $\lambda_{01} = 10^{-2}$ eV, $T = 10^{-16}$ s. Use $\hbar \approx 6 \times 10^{-15}$ eV s and make all the appropriate numerical approximations.

$$H = \frac{P^{2}}{2m} + \frac{1}{2}m\omega^{2}t^{2} = H_{x} + H_{y} + H_{z}$$

where $H_{x} = \frac{P_{x}^{2}}{2m} + \frac{1}{2}m\omega^{2}z^{2}$ etc...
So the system is equivalent to 3 one-dim.
hermonic oscillator of eigenvalues/vectors:
 $H_{x} |m_{x}\rangle = trw(m_{x} + \frac{1}{2})$ etc...
 $A1 \cdot |m_{x}, n_{y}, n_{z}\rangle$ has energy $trw(N + \frac{3}{2})$
where $N = m_{x} + m_{y} + m_{z} = 0, 1, 2, ...$

Q3:
$$\| L^2 \text{ and } L_2 \text{ commute with } H$$

and with each other so we
can also write the eigenfunct.
as: $| N, \ell, M \rangle$
 $\| L_2 | N \ell m \rangle = tr^2 \ell(\ell + i) | N \ell m \rangle$
 $L_2 | N \ell m \rangle = tr m | N \ell m \rangle$
The groud state is usu degenerate => $\ell = m = 0$
The groud state is usu degenerate => $\ell = m = 0$
The N=1 state contains a $M = 1$ wave fot:
 $L_2 = -i th \frac{2}{2q}$, $| M_x = 1, M_y = 0, n_2 = 0 \rangle + iq$
hence all $3 N = 1$ states have $\ell = 1$
(and $m = \pm 1, 0$).
Similarly the $6 N = 2$ states can
be written as $\ell = 2$ ($m = -2, \dots + 2$)
and $\ell = 0$ ($m = 0$)
States
(No $\ell = 1$ because $\ell = 2, 0$ already-
exhausts all 6 states).

BLEM 2 × × $\Psi_{m}(x) = \chi \cdot \sin\left(\frac{mtx}{a}\right)$ M= 1,2,3... $(M^{2} is a normalization constant that$ you don't need ...) . $P^{2} = -th^{2} \frac{p^{2}}{2x^{2}} => P^{2} \Psi_{m} = m \left(\frac{t_{h} \pi}{q}\right)^{2} \Psi_{m} .$ $H = \frac{P}{2m} = H_0 \Psi_n = M^2 \cdot \frac{1}{2m} \left(\frac{h\pi}{g}\right)^2 \Psi_n$ R1: Tirst order non deg. pert. H. $\frac{\psi_{n}}{\omega_{m}} = \frac{(\psi_{n}) + (\psi_{n})}{(\psi_{n}) + (\psi_{n})} = -\frac{1}{8mc^{2}} \frac{(\psi_{n}) + (\psi_{n})}{(\psi_{n}) + (\psi_{n})}$ $= -\frac{1}{8mc^{2}} \left(\frac{2(\pi \pi^{2})}{m(q)} \right)^{2} \frac{(\Psi_{n})\Psi_{n}}{(\Psi_{n})} \frac{1}{(\Psi_{n})}$

Q2. We can trust this approx.
up to
$$|E_n^{(1)}| \leq |E_n^{(0)}| =>$$

 $\frac{1}{8m^3c^2} m^4 \left(\frac{\tan \pi}{a}\right)^4 \leq \frac{1}{2m} m^2 \left(\frac{\tan \pi}{a}\right)^2$
 $=> m^2 \leq 4m^2c^2 \left(\frac{q}{4\pi\pi}\right)^2$
Note that for ma $\leq \frac{\pi}{c}$
this is never allowed.

PROBLEM 3

$$\begin{array}{c|c} \hline PROB(EM 4) & = \\ \hline Q1: [A,B] = 0 \quad \text{ot}. \\ \hline Q2: \begin{vmatrix} 3-a & 0 & -1 \\ 0 & 2-a & 0 \\ -1 & 0 & 3-a \end{vmatrix} = (3-a)(2-a) = (2-a) = 0. \\ \hline q = 2, 2, 4 & \cdot \\ \hline Non deg & eigenvector : |a=4> = \begin{pmatrix} 7 \\ 2 \end{pmatrix}. \\ \begin{pmatrix} -1 & 0 & -1 \\ 0 & -2 & 0 \end{pmatrix} \begin{pmatrix} x \\ 7 \\ 2 \end{pmatrix} = 0 = (3-b) = (3-b) = 0 \\ \hline 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2 \\ -1 \end{pmatrix} \\ \hline 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ 7 \\ 2 \end{pmatrix} = 0 = (3-b) = (2-b) = 0 \\ \hline 1 & 0 & 3-b \end{bmatrix} = (3-b)^{2}(2-b) - (2-b) = 0 \\ \hline 1 & 0 & 3-b \end{bmatrix} = (3-b)^{2}(2-b) - (2-b) = 0 \\ \hline 1 & 0 & 3-b \end{bmatrix} = (3-b)^{2}(2-b) - (2-b) = 0 \\ \hline 1 & 0 & 3-b \end{bmatrix} = (3-b)^{2}(2-b) - (2-b) = 0 \\ \hline 1 & 0 & 3-b \end{bmatrix} = (3-b)^{2}(2-b) - (2-b) = 0 \\ \hline 1 & 0 & 3-b \end{bmatrix} = (3-b)^{2}(2-b) - (2-b) = 0 \\ \hline 1 & 0 & 3-b \end{bmatrix} = (3-b)^{2}(2-b) - (2-b) = 0 \\ \hline 1 & 0 & 2-b & 0 \\ \hline 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ 7 \\ 7 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ 7 \\ 7 \\ 2 & -2 & 0 \\ 7 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ 7 \\ 7 \\ 7 \\ -1 & 0 & -1 \end{pmatrix} = 0 = (b-4) = \frac{1}{12} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} \\ \hline 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ 7 \\ 7 \\ 7 \\ -1 & 0 & -1 \end{pmatrix} = 0 = (b-4) = \frac{1}{12} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} \\ \hline 1 & 0 & -1 \end{pmatrix} \\ \hline 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ 7 \\ 7 \\ 7 \\ -1 & 0 & -1 \end{pmatrix} = 0 = (b-4) = \frac{1}{12} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} \\ \hline 1 & 0 & -1 \end{pmatrix} \\ \hline 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ 7 \\ 7 \\ 7 \\ -1 & 0 & -1 \end{pmatrix} = 0 = (b-4) = \frac{1}{12} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} \\ \hline 1 & 0 & -1 \end{pmatrix} \\ \hline 1 & 0 & -1 \end{pmatrix} \\ \hline 1 & 0 & -1 \end{pmatrix} \begin{bmatrix} x \\ 7 \\ 7 \\ 7 \\ -1 & 0 & -1 \end{pmatrix} = 0 = (b-4) = \frac{1}{12} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} \\ \hline 1 & 0 & -1 \end{pmatrix} \\ \hline 1 & 0$$

PROBLEM 5. (t=1).

$$Q1: L_{x} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, L_{x}^{2} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

$$L_{y} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}, L_{y}^{2} = \frac{1}{2} \begin{pmatrix} 1 & 0 & -i \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

$$L_{z} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$H = Q \begin{pmatrix} \frac{1}{2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} b & 0 & Q \\ 0 & 0 & 0 \\ 0 & 0 & -b \end{pmatrix}$$

eigenve dozs: for b:0

$$|1\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} i \\ i \end{pmatrix} \quad |2\rangle = \begin{pmatrix} 0 \\ i \\ 0 \end{pmatrix} \quad |3\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.$$
First order perturbation:

$$(11 L_2 |1\rangle = \langle 21 L_2 |2\rangle = \langle 31 L_2 |3\rangle = 0.$$
Consistent withe the exact solution:

$$\int a^2 + b^2 = a \sqrt{1 + \frac{b^2}{a^2}} \simeq a + \frac{1}{2} \frac{b^2}{a}$$
No term lineer in b.

PROBLEM 6.
Q1:
$$H'^{\dagger} = H' => \Lambda^{\dagger} = \lambda$$

Q2: The eigenvalues of λ must be
Swell compared to $E_1 - E_0$, $E_2 - E_1$.
Q3: For $m = 1$ or 2:
 $Q_3:$ For $m = 1$ or 2:
 $P(0 - 5m) \simeq \frac{|\lambda_{0m}|^2}{t^2} \int_{-\infty}^{t_0} e^{-t^2/T^2} \cdot \frac{|\omega_{0m}t|^2}{t} =$
 $= \frac{|\lambda_{0m}|^2}{t^2} TTT e^{-\frac{W_{0m}T^2}{t}}$
 $= \frac{|\lambda_{0m}|^2}{t^2} TTT e^{-\frac{W_{0m}T^2}{t}}$
 $Q_4: \int_{e^2} m = 1$ $W_{01} = \frac{E_1 - E_0}{t_1} = \frac{1eV}{6.00^{15} eV.S}$
 $= 5 \frac{W_{01} \cdot T}{2} = \frac{10^{16} e^{-t}}{2.6 00^{16} s} \sim 10^{-2}$

$$P(0->1) = \frac{10^{-4} eV^2}{36 \cdot 10^{-30} eV^2 s^2} \cdot 3 \cdot 10^{-32} \sim 10^{-5}$$