Quantum Mechanics FKA081/FIM400
 Final Exam January 172013

Next review time for the exam: 1 February 15-17 in my room.
NB: If you want to come to the review you must collect your exam
before at the "Kansli" in Origo 4th floor (Opening hours Mon,
Wed, Fri 9:00-11:00. (This info is also available on the course home-
page.)
Examinator: Gabriele Ferretti tel. 7723168,0762293068 ferretti@chalmers.se

Allowed material during the exam:

- The course textbook J.J. Sakurai and Jim Napolitano, Modern Quantum Mechanics Second Edition (2010).
NB: The old red cover version: J.J. Sakurai, Modern Quantum Mechanics Revised Edition (1994) is also allowed.
- A standard calculator.

Write the final answers clearly marked by Ans: ... and underline them.

You may use without proof any formula in the book.
There is a total of 30 points in this test. The exam counts for 90% of the final grade, (that is $3 \times$ points $\%$). The grades are assigned according to the table in the course homepage.

Problem 1

Consider the Hamiltonian $H=H_{0}+H^{\prime}$ where

$$
H_{0}=\left(\begin{array}{ccc}
E_{1} & 0 & 0 \tag{1}\\
0 & E_{1} & 0 \\
0 & 0 & E_{2}
\end{array}\right) \quad \text { and } \quad H^{\prime}=\left(\begin{array}{ccc}
0 & 0 & a \\
0 & 0 & b \\
a & b & 0
\end{array}\right)
$$

where $E_{1}<E_{2}, H^{\prime}$ is a perturbation and a and b are real.
Q1 (1 points) What is the degeneracy of the energy levels of H_{0} ?
Q2 (2 points) Show that the spectrum is not corrected to first order in perturbation theory.
Q3 (2 points) Find the second order correction to the level E_{2}. (NB: Do not try to do the second order correction for E_{1}.)

Problem 2

A one dimensional harmonic oscillator of angular frequency ω is in its ground state $(n=0)$ for $t<0$. For $t>0$ it is subjected to a potential

$$
\begin{equation*}
V(x)=\lambda \mathrm{e}^{-t / \tau} x^{4} \tag{2}
\end{equation*}
$$

where x is the coordinate operator and λ a small constant.
Q1 (2 points) Discuss what are the transitions $0 \rightarrow n$ allowed to first order perturbation theory.
Q2 (3 points) Find the probability of finding the oscillator in the $n=4$ excited state at $t \rightarrow+\infty$.

Problem 3

Consider a mixed ensemble of spin $1 / 2$ neutral atoms. The spin ensemble averages of the beam along the \mathbf{x} and \mathbf{y} directions are measured to be $\left[S_{x}\right]=$ 0.4 and $\left[S_{y}\right]=0.3$.

Q1 (1 points) What other measurement is required to completely specify ρ ? Q2 (3 points) What is the maximum value we can expect for $\left[S_{z}\right]$?
Q3 (3 points) What can we say about the beam in the case when $\left[S_{z}\right]$ is maximum?

Problem 4

Consider the following statement: "For any three operators A, B and C on some Hilbert space, if A commutes with B and B commutes with C then A commutes with C."
Q1 (1 points) Is the statement true or false?
Q2 (2 points) If true, give a proof, if false, give a counterexample.

Problem 5

The Hamiltonian of a one-dimensional harmonic oscillator is given by

$$
\begin{equation*}
H=\frac{1}{2} p^{2}+\frac{1}{2} x^{2} \tag{3}
\end{equation*}
$$

where for simplicity we set all dimensionfull parameters to one.
Consider the trial wave function

$$
\psi(x)=\left\{\begin{array}{cl}
1+(x / a) & \text { for }-a<x<0 \tag{4}\\
1-(x / a) & \text { for } 0<x<a \\
0 & \text { for }|x|>a
\end{array}\right.
$$

Q1 (3 points) Perform the variational calculation and find the energy of the ground state in this approximation.
Q2 (1 points) Sketch the form of the trial wave function you would use to compute the energy of the first excited level.

Problem 6

Q1 (One point for every commutator.)
Compute the following six commutators of operators in the Hilbert space of a single particle. $\left(r^{2}=x^{2}+y^{2}+z^{2}, p=\right.$ momentum, $L=$ orbital angular momentum, $S=$ spin.)

$$
\begin{aligned}
& {\left[L^{2}, S_{x}\right]} \\
& {\left[L^{2}, x y\right]} \\
& {\left[p_{x}, r^{2}\right]} \\
& {\left[L_{z}, p_{y}\right]} \\
& {\left[p_{x}, \sin x\right]} \\
& {\left[L_{z}, p^{2}\right]}
\end{aligned}
$$

Problem 1
Q1: E1 doubly degenerate, E2 non degenerate
Q2: The eigenvectors corresponding, to E_{1} are:

$$
\left|E_{1}, 1\right\rangle=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left|E_{1}, 2\right\rangle=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \text {. }
$$

and: $\left\langle E_{1}, i\right| H^{\prime}\left|E_{1}, j\right\rangle=0 \quad i, j=1022$.
(Note: $H^{\prime}\left|E_{1}, 1\right\rangle=\left(\begin{array}{l}0 \\ 0 \\ a\end{array}\right), H^{\prime}\left|E_{1}, 2\right\rangle=\left(\begin{array}{l}0 \\ 0 \\ b\end{array}\right)$).
$\Rightarrow N_{n} 1$ st order correction to E_{1}.
The eigenvector of E_{2} is $\left|E_{2}\right\rangle=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ and similarly: $\left\langle E_{2}\right| H^{\prime}\left|E_{2}\right\rangle=0$.
$\Rightarrow N o$ l st coder correction to E_{2}.

$$
\begin{aligned}
& \text { Qu: } E_{2}^{(2)}=\sum_{q=1,2} \frac{\left.\left|\left\langle E_{1}, q\right| H^{\prime}\right| E_{2}\right\rangle\left.\right|^{2}}{E_{2}-E_{1}}= \\
& =\frac{1}{E_{2}-E_{1}}\left\{\left|(100) H^{\prime}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right|^{2}+\left|(010) H^{\prime}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right|^{2}\right\}= \\
& =\frac{1}{E_{2}-E_{1}}\left\{\left|(100)\left(\begin{array}{l}
a \\
b \\
0
\end{array}\right)\right|^{2}+\left|(010)\left(\begin{array}{l}
a \\
b \\
0
\end{array}\right)\right|^{2}\right\}= \\
& =\frac{|a|^{2}+|b|^{2}}{E_{2}-E_{1}}
\end{aligned}
$$

$P_{\text {Roblism }} 2$
Q1: Transition prob amplitude:

$$
\begin{aligned}
& C_{m}^{(1)}=-\frac{i}{\hbar} \int_{0}^{t} e^{i n \omega t^{\prime}} \cdot \lambda e^{-l / \pi}\langle n| x^{4}|0\rangle \\
& |n\rangle=\frac{1}{\sqrt{m!}}\left(\mathbb{Q}^{+}\right)^{n}|0\rangle \quad x^{4}=\left(\frac{\hbar}{2 m \omega}\right)^{2}\left(a+a^{+}\right)^{4}
\end{aligned}
$$

Note: $\left(a+a^{+}\right)^{4}=a^{4}+a^{3} a^{+}+a^{2} a^{+} a+2 a^{+} a^{2}+a^{+} a^{3}+$ $+a^{2} a^{+2}+a a^{+} a a^{+}+a^{+} a^{2} a^{+}+a a^{+2} a+a^{+} a a^{+} a$

$$
+a^{+}+a^{2}+a^{+3} a+a^{+} a a^{+}+a^{+} a a^{+2}+a a^{+3}+a^{+4}
$$

(16 terms.).
I can immediately drop the 8 terms with a to the right because $a|0\rangle=0$ The term $a^{3} a^{+}$also gives zero on 10): $a^{3} a^{\dagger}|0\rangle=a^{2}\left[a, a^{+}\right]|0\rangle=a^{2}|0\rangle=0$.
The terms $a^{2} a^{+2}$, a $a^{+} a a^{+}$and $a^{+} a^{2} a^{+}$ contain. The same amount of a^{\prime} 's ad $a^{+}{ }^{+}$'s and give zero on $\langle n| "|0\rangle$ for $m\rangle 0$.
the terms $a^{+2} a a^{+}, a^{+} a a^{+2}, a a^{+3}$ give mon zero only for $n=2$ and a th requires $n=4:$ Only $0 \rightarrow 202$ $0 \rightarrow 4$ allowed

Q2: First note: $\langle 4| x^{4}(0\rangle=$

$$
\begin{aligned}
& =\left(\frac{\hbar}{2 m \omega}\right)^{2} \cdot \frac{1}{\sqrt{4!}}\langle\underbrace{0\left|a^{4} a^{+4} 10\right\rangle}_{=4!}=\left(\frac{\hbar}{2 m \omega}\right) \cdot \sqrt{4!} \\
& \Rightarrow C^{(1)}(t)=-\frac{i}{\hbar} \int_{0}^{t} \partial t^{\prime} e^{i \omega d_{4} t^{\prime}} \cdot \lambda e^{-t / 6} \cdot\left(\frac{\hbar}{2 m \omega}\right)^{2} \cdot \sqrt{4!} \\
& =-\frac{i}{\hbar} \lambda \cdot \sqrt{\frac{3}{2}} \cdot\left(\frac{\hbar}{m \omega}\right)^{2} \cdot \int_{0}^{t} d t^{\prime} e^{\left(i \omega / 4-\frac{1}{2}\right) t^{\prime}}= \\
& =-\frac{i}{\hbar} \lambda \sqrt{\frac{3}{2}}\left(\frac{\hbar}{m \omega}\right)^{2} \cdot \frac{e^{0 i \omega t-t / 2}-1}{4 i \omega-\frac{1}{c}} \\
& r_{0 \rightarrow 4_{4}}=\lim _{t \rightarrow+\infty}\left|e^{(1)}(t)\right|=\frac{3 \lambda^{2} \hbar^{2}}{2 m^{4} \omega^{4}} \cdot \frac{1}{(4 \omega)^{2}+\frac{1}{c^{2}}}
\end{aligned}
$$

Problsm $3 \quad(h \equiv 1)$
Q1: We need someting aloug \hat{z},

$$
\text { e.g. }\left[s_{z}\right]
$$

Q2: Let $\left[S_{z}\right]=x$ unkwow.
Let $\rho=\left(\begin{array}{cc}a & b-i c \\ b+i c & 1-a\end{array}\right) \quad \begin{aligned} & \text { general } 2 \times 2 \\ & \rho=\rho^{+},\end{aligned}$tr $\rho=1$.

$$
\begin{aligned}
& {\left[S_{x}\right] }=\frac{1}{2} \operatorname{tr} \rho \sigma_{x}=b=0,4 \\
& {\left[S_{y}\right] }=\frac{1}{2} \operatorname{tr} \rho \sigma_{y}=c=0,3 . \\
& {\left[S_{z}\right] }=\frac{1}{2} t \rho \sigma_{z}=\frac{1}{2}(2 a-1)=x \Rightarrow a=x+\frac{1}{2} \\
& \pi \rho^{2} \\
&=2 x^{2}+\frac{1}{2}+b^{2}+c^{2} \leq 1 \\
& \Rightarrow x \leq \sqrt{\frac{1}{4}-\frac{b^{2}+c^{2}}{2}} \cong 0,35
\end{aligned}
$$

Q3. For $x=0.35 \quad \operatorname{tr} \rho^{2}=1$ \Rightarrow pure ensanble.

Problsm 4
Q1: FALSE
Q2: $A=L_{x}, B=\mathbb{L}^{2}, C=L_{y}$
(or many other!)
ProbisM 5
Q1:

$$
\|\psi\|^{2}=\int d x \psi^{2}(x)=2 \cdot \int_{0}^{a}\left(1-\frac{x}{a}\right)^{2} d x=\frac{2}{3} a
$$

$$
\frac{d}{d x} \psi=\left\{\begin{array}{cc}
1 / q & -a<x<0 \\
-1 / p & 0<x<a \\
0 & |x|>a
\end{array}\right.
$$

$$
\begin{aligned}
& \frac{d^{2}}{d x^{2}} \psi=\frac{1}{a} \delta(x+a)-\frac{2}{a} \delta(x)+\frac{1}{a} \delta(x-a) . \\
& \Rightarrow\left\langle\frac{1}{2} p^{2}\right\rangle=-\frac{1}{2} \int \psi \psi^{\prime \prime}(x) d x=-\frac{1}{2} \cdot\left(-\frac{2}{a}\right)=\frac{1}{a} .
\end{aligned}
$$

$$
\begin{aligned}
\left\langle\frac{1}{2} x^{2}\right\rangle & =\frac{1}{2} \int x^{2} \psi^{2}(x) d x=\frac{1}{2} \cdot 2 \cdot \int_{0}^{a} x^{2}\left(1-\frac{x}{a}\right)^{2} d x= \\
& =\frac{Q^{3}}{30} . \\
E(a)= & \frac{\frac{1}{a}+\frac{a^{3}}{30}}{\frac{2}{3} a}=\frac{3}{2} \frac{1}{a^{2}}+\frac{a^{2}}{20} .
\end{aligned}
$$

Minimum for $\frac{d E}{d a^{2}}=0 \Rightarrow a^{2}=\sqrt{30}$

$$
\Rightarrow E_{\text {mm }}=\frac{3}{2} \cdot\left(\frac{1}{\sqrt{30}}\right)+\frac{\sqrt{30}}{20} \simeq 0,548 /
$$

(net bad compared w/ EXACT $=\frac{1}{2}$).
Q2: I need something 1 to Ψ w opprite parity and 1 "node, ley:

Probismb

$$
k_{1}=1
$$

$$
\begin{aligned}
& Q 1: 1)\left[\|^{2}, S_{x}\right]=0 \\
& 2)\left[\mathbb{L}^{2}, x y\right]=\left[L_{x}^{2}, x y\right]+\left[L_{y}^{2}, x y\right]+\left[L_{z}^{2}, x y\right]= \\
& =\ldots=i x L_{x} z+i x z L_{x}-i L_{y} z y-z L_{y} y+ \\
& +i L_{z} y^{2}+i y L_{z} y-i x L_{z} x-i x^{2} L_{z}=\ldots
\end{aligned}
$$

(lan also be writien interm of p^{\prime})
3)

$$
\begin{aligned}
& {\left[P_{x}, r^{2}\right]=\left[p_{x}, x^{2}\right]=x\left[p_{x} x\right]+\left[p_{x} x\right] x} \\
& =-2 i x
\end{aligned}
$$

4)

$$
\begin{aligned}
& {\left[L_{z}, p_{y}\right]=\left[x p_{y}-y p_{x}, P y\right]=} \\
= & -\left[y, P_{y}\right] P_{x}=-i p_{x}
\end{aligned}
$$

5) $\left[P_{x}, \sin x\right]=-i \frac{d}{d x} \circ \sin x-\sin x 0\left(-\frac{i d}{d x}\right)=$ $=-i \sin ^{\prime} x=-i \cos x$.
6) $\left[L_{z}, p^{2}\right]=0$ by rotational invariance.
