CHALMERS, GÖTEBORGS UNIVERSITET

EXAM for
ARTIFICIAL NEURAL NETWORKS
COURSE CODES: FFR 135, FIM 720 GU, PhD

Time:
Place:
Teacher:

Allowed material:
Not allowed:

January 4 (2023), at $14^{00}-18^{00}$
Johanneberg
Bernhard Mehlig, 073-420 0988 (mobile)

Book B. Mehlig, Machine Learning with Neural Networks, CUP
Any other written material, calculator

Maximum score on this exam: 12 points.
Maximum score for homework problems: 12 points.
To pass the course it is necessary to score at least 5 points on this written exam.
CTH >13.5 passed; >17 grade $4 ;>21.5$ grade 5 , GU >13.5 grade G; >19.5 grade VG.

1. One-step error probability. In this question, consider a deterministic Hopfield network with weights given by

$$
\begin{equation*}
w_{i j}=\frac{1}{N} \sum_{\mu=1}^{p} x_{i}^{(\mu)} x_{j}^{(\mu)} \tag{1}
\end{equation*}
$$

where the diagonal entries are non-zero, and the patterns $\boldsymbol{x}^{(\mu)}$ are random bits such that

$$
\begin{equation*}
\operatorname{Prob}\left(x_{i}^{(\mu)}= \pm 1\right)=\frac{1}{2} \tag{2}
\end{equation*}
$$

The local field is given by

$$
\begin{equation*}
b_{i}=\sum_{j=1}^{N} w_{i j} s_{j} \tag{3}
\end{equation*}
$$

Feeding an arbitrary stored pattern $\boldsymbol{x}^{(\nu)}$ to the network (i.e. by setting $s_{j}=x_{j}^{(\nu)}$, and updating a single bit, what is the probability of the bit changing sign? This probability is explored in the following subquestions.
(a) Derive the cross-talk term $C_{i}^{(\nu)}$, defined such that an error occurs when $C_{i}^{(\nu)}>1$. Start from $b_{i}=\sum_{j=1}^{N} w_{i j} x_{j}^{(\nu)}(0.5 \mathrm{p})$.

Answer: When we use Hebb's rule (2.25), the local field is obtained as $b_{i}^{(\nu)}=x_{i}^{(\nu)}+\frac{1}{N} \sum_{j=1}^{N} \sum_{\mu \neq \nu} x_{i}^{(\mu)} x_{j}^{(\mu)} x_{j}^{(\nu)}$, instead of Equation (2.28). This implies a slightly different definition of the cross-talk term. Equation (2.33) is replaced by:

$$
\begin{equation*}
C_{i}^{(\nu)}=-x_{i}^{(\nu)} \frac{1}{N} \sum_{j=1}^{N} \sum_{\mu \neq \nu} x_{i}^{(\mu)} x_{j}^{(\mu)} x_{j}^{(\nu)} \tag{4}
\end{equation*}
$$

(b) Assuming N and p large, compute the mean value of $C_{i}^{(\nu)}(\mathbf{1} \mathrm{p})$.

Answer: Average over the independent patterns, using that $\left\langle x_{i}^{(\nu)} x_{i}^{(\mu)} x_{j}^{(\mu)} x_{j}^{(\nu)}\right\rangle=$ 0 when $i \neq j$ and $\mu \neq \nu$, because the average factorises in this case, and $\left\langle x_{k}^{(\mu)}\right\rangle=0$. When $i=j$, there are $p-1$ terms that average to $\left\langle\left[x_{j}^{(\nu)}\right]^{2}\left[x_{j}^{(\mu)}\right]^{2}\right\rangle=$ 1. Thus, we conclude that $\left\langle C_{i}^{(\nu)}\right\rangle=-(p-1) / N \approx-p / N$ for large p.
(c) Using the central-limit theorem, one can show that the distribution of $C_{i}^{(\nu)}$ is

$$
\begin{equation*}
P\left(C_{i}^{(\nu)}\right)=\left(2 \pi \sigma_{C}^{2}\right)^{-1 / 2} \exp \left[-\left(C_{i}^{(\nu)}-\left\langle C_{i}^{(\nu)}\right\rangle\right)^{2} /\left(2 \sigma_{C}^{2}\right)\right], \tag{5}
\end{equation*}
$$

where $\left\langle C_{i}^{(\nu)}\right\rangle$ is the mean value computed in the previous subquestion, and σ_{C}^{2} is the variance of the distribution of $C_{i}^{(\nu)}$. Using the result from (b), describe what happens to the one-step error probability in the limit where $p \gg N$. (0.5p).
Answer: Due to the central limit theorem, the distribution of C is a shifted Gaussian, $P(C)=\left(2 \pi \sigma_{C}\right)^{1 / 2} \exp \left[-(C-\langle C\rangle)^{2} /\left(2 \sigma_{C}^{2}\right)\right]$, instead of Equation (2.36). For small $\alpha=p / N$, the mean tends to zero, so that the new distribution approaches Equation (2.36). For large values of α, the mean $\langle C\rangle$ dominates the error probability. In the limit $\alpha \rightarrow \infty$, the mean of the weight matrix, $\langle\mathbb{W}\rangle=\frac{p}{N} \mathbb{I}$, dominates the network dynamics. The one-step error probability tends to zero in this limit because all states are reproduced, but the network cannot learn anything meaningful.
2. Linearly inseparable problem. A classification problem is given in Figure 1. Inputs $\boldsymbol{x}^{(\mu)}$ inside the grey region have targets $t^{\mu}=1$, inputs outside the grey region have targets $t^{\mu}=-1$. The problem can be solved by a perceptron with a hidden layer with four neurons $V_{j}^{(\mu)}=\operatorname{sgn}\left(-\theta_{j}+\sum_{k=1}^{2} w_{j k} x_{k}^{(\mu)}\right)$, for $j=1, \ldots, 4$. The output is computed as $O^{(\mu)}=\operatorname{sgn}\left(-\Theta+\sum_{j=1}^{4} W_{j} V_{j}^{(\mu)}\right)$. Find the weights $w_{j k}, W_{j}$, and thresholds θ_{j}, Θ that solve the classification problem (2 p).
Answer: We set the rows in the 4×2 weight matrix $\mathbb{W}^{(1)}$ leading from the input layer to the hidden layer to be normal vectors to the decision boundaries

Figure 1: Classification problem for question 2.
pointing towards the origin:

$$
\mathbb{W}^{(1)}=\left[\begin{array}{cc}
-1 & 0 \tag{6}\\
0 & 1 \\
-\frac{1}{3} & -1 \\
\frac{1}{3} & -\frac{1}{4}
\end{array}\right]
$$

Using that the decision boundary is parametrized by $w_{i 1}^{(1)} x_{1}+w_{i 2}^{(1)} x_{2}=\theta_{i}^{(1)}$, we pick a point on the i :th decision boundary to find the threshold. This gives $\theta_{1}^{(1)}=-2, \theta_{2}^{(1)}=-2, \theta_{3}^{(1)}=-\frac{5}{3}, \theta_{4}^{(1)}=-\frac{5}{6}$. Setting all elements in the 1×4 weight matrix $\mathbb{W}^{(2)}$ connecting the hidden layer to the output layer to 1 , we know that the sum $\sum_{i=1}^{4} w_{i}^{(2)} V_{i}$, where V_{i} is the output from the i :th hidden neuron, will only take its maximal value of 4 when the input coordinate is inside the grey region. Otherwise, it will be less than or equal to 2 . Thus, we pick the threshold $\theta^{(2)}$ to be a value between 2 and 4 , say 3 .
3. Backpropagation. Derive the update rules for the weights and thresholds of a one-layer perceptron with two input neurons, M hidden neurons, and three output neurons. The activation function $g(b)$ is used for all neurons. The outputs from the input layer, hidden layers, and output layers, are denoted x_{k}, V_{j}, and O_{i} respectively. The weights leading from the input layer to the hidden layer are denoted $w_{j k}$ and the weights leading from the hidden layer to the output layer are denoted $W_{i j}$. The thresholds for the hidden and output layer are denoted θ_{i} and Θ_{i} respectively. Consider the energy function $H=\sum_{\mu=1}^{p} E\left(\mathbf{t}^{(\mu)}, \mathbf{O}^{(\mu)}\right)$, where $E\left(\mathbf{t}^{(\mu)}, \mathbf{O}^{(\mu)}\right)$ is a differentiable scalar function that depends on the targets $\mathbf{t}^{(\mu)}$ and outputs $\mathbf{O}^{(\mu)}$, and which reaches its minimum when $\mathbf{t}^{(\mu)}=\mathbf{O}^{(\mu)}$. $(2 \mathrm{p})$.

Answer: We start by deriving the update rules for the output weights. The
update rule is

$$
\begin{equation*}
W_{m n}^{\prime}=W_{m n}+\delta W_{m n}, \quad \delta W_{m n}=-\eta \frac{\partial H}{\partial W_{m n}} \tag{7}
\end{equation*}
$$

Performing the differentiation, we have

$$
\begin{equation*}
\frac{\partial H}{\partial W_{m n}}=\sum_{\mu=1}^{p} \frac{\partial E\left(\mathbf{t}^{(\mu)}, \mathbf{O}^{(\mu)}\right)}{\partial W_{m n}}=\sum_{\mu=1}^{p} \sum_{i=1}^{3} \frac{\mathrm{~d} E}{\mathrm{~d} O_{i}^{(\mu)}} g^{\prime}\left(B_{i}^{(\mu)}\right) \sum_{j=1}^{M} \frac{\partial W_{i j}}{\partial W_{m n}} V_{j}^{(\mu)} \tag{8}
\end{equation*}
$$

where $B_{i}^{(\mu)}$ is the local field of the i :th output neuron. Using that $\frac{\partial W_{i j}}{\partial_{m n}}=$ $\delta_{i m} \delta_{j n}$, we obtain

$$
\begin{equation*}
\frac{\partial H}{\partial W_{m n}}=\sum_{\mu=1}^{p} \frac{\mathrm{~d} E}{\mathrm{~d} O_{m}^{(\mu)}} g^{\prime}\left(B_{m}^{(\mu)}\right) V_{n}^{(\mu)}=\sum_{\mu=1}^{p} \Delta_{m}^{(\mu)} V_{n}^{(\mu)} \tag{9}
\end{equation*}
$$

where $\Delta_{m}^{(\mu)}=\frac{\mathrm{d} E}{\mathrm{~d} O_{m}^{(\mu)}} g^{\prime}\left(B_{m}^{(\mu)}\right)$. Hence, the update rule for the output weights is

$$
\begin{equation*}
\delta W_{m n}=-\eta \sum_{\mu=1}^{p} \Delta_{m}^{(\mu)} V_{n}^{(\mu)} \tag{10}
\end{equation*}
$$

Similarly, the update rule for the output thresholds is calculated to be

$$
\begin{equation*}
\delta \Theta_{m}=\eta \sum_{\mu=1}^{p} \Delta_{m}^{(\mu)} \tag{11}
\end{equation*}
$$

The update rule for the weights leading from the input to the hidden layer is given by

$$
\begin{equation*}
w_{m n}^{\prime}=w_{m n}+\delta w_{m n}, \quad \delta w_{m n}=-\eta \frac{\partial H}{\partial w_{m n}} \tag{12}
\end{equation*}
$$

Performing the derivative, we obtain

$$
\begin{equation*}
\frac{\partial H}{\partial w_{m n}}=\sum_{\mu=1}^{p} \sum_{i=1}^{3} \Delta_{i}^{(\mu)} \sum_{j=1}^{M} W_{i j} \frac{\partial V_{j}^{(\mu)}}{\partial w_{m n}}=\sum_{\mu=1}^{p} \sum_{i=1}^{3} \Delta_{i}^{(\mu)} \sum_{j=1}^{M} W_{i j} g^{\prime}\left(b_{j}^{(\mu)}\right) \sum_{k=1}^{2} \frac{\partial w_{j k}}{\partial w_{m n}} x_{k}^{(\mu)} \tag{13}
\end{equation*}
$$

which simplifies to

$$
\begin{equation*}
\frac{\partial H}{\partial w_{m n}}=\sum_{\mu=1}^{p} \sum_{i=1}^{3} \Delta_{i}^{(\mu)} W_{i m} g^{\prime}\left(b_{m}^{(\mu)}\right) x_{n}^{(\mu)}=\sum_{\mu=1}^{p} \delta_{m}^{(\mu)} x_{n}^{(\mu)} \tag{14}
\end{equation*}
$$

where $\delta_{m}^{(\mu)}=\sum_{i=1}^{3} \Delta_{i}^{(\mu)} W_{i m} g^{\prime}\left(b_{m}^{(\mu)}\right)$. Thus, the update rule for the input weights is

$$
\begin{equation*}
\delta w_{m n}=-\eta \sum_{\mu=1}^{p} \delta_{m}^{(\mu)} x_{n}^{(\mu)} \tag{15}
\end{equation*}
$$

The update rule for the hidden thresholds take a similar form:

$$
\begin{equation*}
\delta \theta_{m}=\eta \sum_{\mu=1}^{p} \delta_{m}^{(\mu)} . \tag{16}
\end{equation*}
$$

4. Convolutional network. The two patterns shown in Figure 2(a) are processed by a simple convolutional neural network that has one convolution layer with one single 3×3 kernel with ReLU units, zero threshold, and weights as given in Figure 2(b). Stride $(1,1)$. The resulting feature map is fed into a 3×3 max-pooling layer with stride $(1,1)$. Finally, there is a fully connected classification layer with two output units with Heaviside activation functions. (a) For both patterns determine the resulting feature map and the output of the max-pooling layer ($\mathbf{1 p}$).
Answer: The feature map for patterns (a) and (b) are

$$
(a):\left[\begin{array}{lll}
1 & 3 & 1 \\
3 & 4 & 3 \\
2 & 7 & 2 \\
2 & 6 & 2 \\
1 & 4 & 1
\end{array}\right], \quad(b):\left[\begin{array}{lll}
2 & 4 & 1 \\
3 & 4 & 3 \\
2 & 6 & 1 \\
3 & 4 & 3 \\
2 & 4 & 1
\end{array}\right]
$$

and the outputs of the max-pooling layers are

$$
(a):\left[\begin{array}{l}
7 \\
7 \\
7
\end{array}\right], \quad(b):\left[\begin{array}{l}
6 \\
6 \\
6
\end{array}\right]
$$

(b) Determine weights and thresholds of the classification layer that allow to classify the two patterns into different classes (1p).
Answer: By picking output weights as $W=[1,1,1]$, the outputs for patterns (a) and (b) will be 21 and 18 respectively. Thus, it suffices to choose a threshold between 21 and 18 to successfully classify the different patterns, say $\theta=20$.
5. Oja's rule. The aim of unsupervised learning is to construct a network that learns the properties of a distribution $P(\mathbf{x})$ of input patterns $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)^{\top}$. Consider a network with one linear output function $y=\sum_{j=1}^{N} w_{j} x_{j}$. Under Oja's learning rule $\delta w_{i}=\eta y\left(x_{i}-y w_{i}\right)$ the weight vector \mathbf{w} converges to a steady state \mathbf{w}^{*} with components w_{j}^{*}.
(a) Show that the steady state \mathbf{w}^{*} is an eigenvector of the matrix \mathbb{C}^{\prime} with elements $C_{i j}^{\prime}=\left\langle x_{i} x_{j}\right\rangle$. Here $\langle\ldots\rangle$ denotes the average over $P(\mathbf{x})(\mathbf{1} \mathrm{p})$.
(a) Show that the steady state \mathbf{w}^{*} is an eigenvector of the matrix \mathbb{C}^{\prime} with elements $C_{i j}^{\prime}=\left\langle x_{i} x_{j}\right\rangle$. Here $\langle\ldots\rangle$ denotes the average over $P(\mathbf{x})$. ($\mathbf{1 p}$).

Figure 2: Patterns for question 4.

Answer: We start with the given learning rule written in vector notation:

$$
\begin{aligned}
\delta \mathbf{w} & =\eta y(\mathbf{x}-y \mathbf{w}) \\
& =\eta\left(\mathbf{x} y-y^{2} \mathbf{w}\right) \\
& =\eta\left[\mathbf{x x}^{\top} \mathbf{w}-\left(\mathbf{w}^{\top} \mathbf{x x}^{\top} \mathbf{w}\right) \mathbf{w}\right]
\end{aligned}
$$

where in the last line we have used $y=\mathbf{w}^{\top} \mathbf{x}=\mathbf{x}^{\top} \mathbf{w}$, which yields $y^{2}=y y=$ $\mathbf{w}^{\top} \mathbf{x} \mathbf{x}^{\top} \mathbf{w}$. Now, by averaging $\delta \mathbf{w}$ over the data distribution, we get

$$
\begin{equation*}
\langle\delta \mathbf{w}\rangle=\eta\left[\left\langle\mathbf{x} \mathbf{x}^{\top}\right\rangle \mathbf{w}-\left(\mathbf{w}^{\top}\left\langle\mathbf{x} \mathbf{x}^{\top}\right\rangle \mathbf{w}\right) \mathbf{w}\right] . \tag{17}
\end{equation*}
$$

Let $\mathbb{C}^{\prime}=\left\langle\mathbf{x} \mathbf{x}^{\top}\right\rangle$. Then, using the above equation, we have

$$
\begin{equation*}
\langle\delta \mathbf{w}\rangle=\eta\left[\mathbb{C}^{\prime} \mathbf{w}-\left(\mathbf{w}^{\top} \mathbb{C}^{\prime} \mathbf{w}\right) \mathbf{w}\right] . \tag{18}
\end{equation*}
$$

Now assume that $\mathbf{w}=\mathbf{w}^{*}$ is the normalized maximal eigenvector of the matrix \mathbb{C}^{\prime}; that is, $\mathbb{C}^{\prime} \mathbf{w}^{*}=\lambda_{1} \mathbf{w}^{*}$ where $\left(\mathbf{w}^{*}\right)^{\top} \mathbf{w}=1$ and λ_{1} is the maximal eigenvalue. Then

$$
\begin{aligned}
\langle\delta \mathbf{w}\rangle & =\eta\left[\mathbb{C}^{\prime} \mathbf{w}^{*}-\left(\left(\mathbf{w}^{*}\right)^{\top} \mathbb{C}^{\prime} \mathbf{w}^{*}\right) \mathbf{w}^{*}\right] \\
& =\eta\left[\lambda_{1} \mathbf{w}^{*}-\lambda_{1}\left(\left(\mathbf{w}^{*}\right)^{\top} \mathbf{w}^{*}\right) \mathbf{w}^{*}\right] \\
& =\eta\left[\lambda_{1} \mathbf{w}^{*}-\lambda_{1} \mathbf{w}^{*}\right] \\
& =0
\end{aligned}
$$

which proves that the eigenvector \mathbf{w}^{*} is a steady state of the learning dynamics.
(b) Show that the matrix \mathbb{C}^{\prime} has non-negative eigenvalues ($\left.\mathbf{1} \mathrm{p}\right)$.

Answer: Given an eigenvector \mathbf{v} of \mathbb{C}^{\prime} we have

$$
\begin{equation*}
\mathbf{v}^{\top} \mathbb{C}^{\prime} \mathbf{v}=\mathbf{v}^{\top}\left\langle\mathbf{x} \mathbf{x}^{\top}\right\rangle \mathbf{v}=\lambda \mathbf{v}^{\top} \mathbf{v} . \tag{19}
\end{equation*}
$$

This can be rewritten as

$$
\begin{equation*}
\left\langle\mathbf{v}^{\top} \mathbf{x} \mathbf{x}^{\top} \mathbf{v}\right\rangle=\left\langle\left(\mathbf{v}^{\top} \mathbf{x}\right)^{2}\right\rangle=\lambda\|\mathbf{v}\|^{2} . \tag{20}
\end{equation*}
$$

Table 1: Three-point probabilities for the data set shown in Figure 3(a,b).

x_{1}	x_{2}	x_{3}	$P\left(x_{1}, x_{2}, x_{3}\right)$
1	1	1	$\frac{4}{14}$
1	1	-1	$\frac{1}{14}$
1	-1	1	$\frac{1}{14}$
-1	1	1	$\frac{1}{14}$
1	-1	-1	$\frac{1}{14}$
-1	1	-1	$\frac{1}{14}$
-1	-1	1	$\frac{1}{14}$
-1	-1	-1	$\frac{4}{14}$

Hence, the eigenvalues are given by

$$
\begin{equation*}
\lambda=\frac{\left\langle\left(\mathbf{v}^{\top} \mathbf{x}\right)^{2}\right\rangle}{\|\mathbf{v}\|^{2}} \geq 0 \tag{21}
\end{equation*}
$$

6. Restricted Boltzmann machine. Demonstrate that a Boltzmann machine requires hidden units to learn the 3×3 data set shown in Figure 3(a). Evaluate all eight three-point probabilities $P\left(x_{1}= \pm 1, x_{2}= \pm 1, x_{3}= \pm 1\right)$ for x_{1}, x_{2}, and x_{3} as shown in panel (b). Here $x_{j}=+1$ represents \square, and $x_{j}=-1$ stands for \square. Check whether these three-point probabilities factorise. For example, does $P\left(x_{1}=1, x_{2}=1, x_{3}=-1\right)=P\left(x_{1}=1, x_{2}=1\right) P\left(x_{3}=-1\right)$ hold, or not? Use your results to explain why a Boltzmann machine needs hidden units to learn the data set (a). Now consider the data set in Figure 3(c), only stripes. Explain why no hidden units are needed for (c) ($\mathbf{2 p}$).
Answer: The eight three-point probabilities $P\left(x_{1}=1, x_{2}=1, x_{3}=-1\right)$ for the data set are listed in Table 1. Since $P\left(x_{1}=1, x_{2}=1\right)=\frac{5}{14}$ and $P\left(x_{3}=-1\right)=$ $\frac{7}{14}$, we see that $P\left(x_{1}=1, x_{2}=1, x_{3}=-1\right) \neq P\left(x_{1}=1, x_{2}=1\right) P\left(x_{3}=-1\right)$, this three-point probability does not factorise. This means that a Boltzmann machine requires hidden units to represent the data set (a). For the data set (c), by contrast, the three-point probabilities do factorise. For example, $P\left(x_{1}=1, x_{2}=1, x_{3}=-1\right)=\frac{1}{8}, P\left(x_{1}=1, x_{2}=1\right)=\frac{1}{4}$, and $P\left(x_{3}=-1\right)=\frac{1}{2}$. Since the three-point correlations can be expressed in terms of two-point correlations, no hidden units are needed to represent this data set with a Boltzmann machine.
(a)

(b)

(c)

Figure 3: (a) 3×3 bars-and-stripes data set. The shown patterns occur with probability $P_{\text {data }}=\frac{1}{14}$, all other patterns have $P_{\text {data }}=0$. (b) Definition of the bits x_{1}, x_{2}, and x_{3}. (c) Data set with stripes only. The shown patterns occur with probability $P_{\text {data }}=\frac{1}{8}$, all other patterns have $P_{\text {data }}=0$. Question 6 .

Errata for "Machine learning with neural networks" Bernhard Mehlig, Cambridge University Press (2021)
p. 32
l. 11
' $w_{i i}>0$ ' should be replaced by ' $w_{i i}=0$ '.
p. 32
l. 21
p. 37
l. 16
should read: ' $H=-\frac{1}{2} \sum_{i j} w_{i j} g\left(b_{i}\right) g\left(b_{j}\right)-\int_{0}^{b_{i}} \mathrm{~d} b b g^{\prime}(b)$,
with $b_{i}=\sum_{j} w_{i j} n_{j}-\theta_{i}$, cannot increase... .
p. 54
l. 17
p. 55
eq. (4.5c)
replace ' \sqrt{N} ' by ' $N^{-1 / 2}$,
replace ' $\left\langle b_{i}(t)\right\rangle \sim N$ ' by ' $\left\langle b_{i}(t)\right\rangle=O(1)$ '.
replace ' $-\beta b_{m}$ ' by ' $2 \beta b_{m}$ '.
p. 67
eq. (4.5 d)
replace ' βb_{m} ' by ' $-2 \beta b_{m}$ '.
add superscripts ' (μ) ' to ' $\delta w_{m n}, ' \delta \theta_{n}^{(\mathrm{v})}$, and ' $\delta \theta_{n}^{(\mathrm{h})}$,.
p. 72 l. 12 the list should read ' $1,2,4$, and 8 '.
p. 85 fig. 5.11 switch the labels ' 10 ' and ' 50 '.
p. 93 fig. 5.22 switch the labels ' 1111 ' and ' 1101 ' in the right panel.
p. 97 eq. (6.6a)
insert ' $V_{n}^{(\mu)}$, before the ' \equiv ' sign.
p. 106 l. 18
should read 'a compromise, reducing the tendency of the
network to overfit at the expense of training accuracy'.
p. 117 fig. $7.5 \quad$ the hidden neurons should be labeled ' $j=0,1,2,3$ '
from bottom to top.
p. 118 fig. 7.6 exchange labels ' 1 ' and ' 2 '.
eq. (7.9) should read ' $O_{1}=\operatorname{sgn}\left(-V_{0}+V_{1}+V_{2}-V_{3}\right)$ '.
p. 121
fig. 7.10
change ' $w^{(L-2)}$ ' to ' $w^{(L)}$ '.
p. 122 eq. (7.17) replace ' \mathbb{J} ' by ' \mathbb{J} ', also in the two lines above the equation.
p. 123 eq. (7.19) should read ' $\boldsymbol{\delta}^{(\ell)}=\boldsymbol{\delta}^{(L)} \mathbb{J}_{L-\ell}$ with $\mathbb{J}_{L-\ell}=\left[\mathbb{D}^{(L)}\right]^{-1} \mathbb{J}_{L-\ell}^{\prime} \mathbb{D}^{(\ell)}$.
p. 131
eq. (7.45)
replace ' O_{l} ' by ' O_{i} '.
p. 139 l. 33
p. 160 l. 15
p. 161 l. 19
replace 'the Lagrangian (7.57)' by ' $\frac{1}{2} \delta \boldsymbol{w} \cdot \mathbb{M} \delta \boldsymbol{w}$ '.
delete 'then $L_{i j}=\delta_{i j}$. In this case'.
p. 171 l. 23 the upper limit of the second summation should be ' M '.
replace 'negative real parts' by 'positive real parts', and 'positive' by 'negative' in the next line.
p. 197 alg. 10 replace ' $s_{j}=0$ ' by ' $s_{j}=1$ ' in line 2 of Algorithm 10.
p. 202 l. 37 replace 'positive' by 'non-negative'.
p. 203 l. 21 should read 'Alternatively, assume that $\boldsymbol{w}^{*}=u+\mathrm{i} v$ can be written as an analytic function of $\boldsymbol{r}=r_{1}+\mathrm{i} r_{2} \ldots$.
l. 27 add 'See Ref. [2]'.
p. 225 l. $5,6 \quad$ replace 'two' by 'two (three)' and 'lost' by 'lost (drew)'.

Gothenburg, October 18 (2022).

