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1. Hopfield model with time-continuous dynamics. Consider a Hop-
field net with continuous-time dynamics:

τ d
dt
ni = −ni + g(

∑
j

wijnj − θi)

with g(b) = (1 + e−b)−1 and time scale τ . Show that the energy function

E = −1
2

∑
ij

wijninj +
∑
i

θini +
∑
i

∫ ni

0

dn g−1(n)

cannot increase under the network dynamics if the weights are symmetric.
Here g−1 is the inverse function of g, so that g−1

(
g(b)

)
= b. Hint: use the

fact that g(b) is a monotonically increasing function of b. (2p).
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2. Three-point probabilities in 3 × 3 bars-and-stripes data set.
Demonstrate that a Boltzmann machine requires hidden units to learn the
3 × 3 data set shown in Figure 1(a). To this end, evaluate all eight three-
point probabilities P (x1 =±1, x2 =±1, x3 =±1) for x1, x2, and x3 as shown
in panel (b). Here xj = +1 represents �, and xj = −1 stands for �. Check
whether these three-point probabilities factorise. For example, does

P (x1 =1, x2 =1, x3 =−1) = P (x1 =1, x2 =1)P (x3 =−1)

hold, or not? Use your results to explain why a Boltzmann machine needs
hidden units to learn the data set (a). Now consider the data set in Fig-
ure 1(c), only stripes. Explain why no hidden units are needed for (c). (2p).

Figure 1: (a) 3×3 bars-and-stripes data set. The shown patterns occur with
probability Pdata = 1

14
, all other patterns have Pdata = 0. (b) Data set with

stripes only. The shown patterns occur with probability Pdata = 1
8
, all other

patterns have Pdata = 0.
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3. Linearly inseparable problem. A classification problem is given in
Figure 2. Inputs x(µ) inside the gray triangle have targets t(µ) = 1, in-
puts outside the triangle have targets is t(µ) = 0. The problem can be
solved by a perceptron with one hidden layer with three neurons V

(µ)
j =

θH

(
−θj +

∑2
k=1wjkx

(µ)
k

)
, for j = 1, 2, 3. The network output is computed

as O(µ) = θH

(
−Θ +

∑3
j=1WjV

(µ)
j

)
. Here θH(b) is the Heaviside function:

θH(b) =

{
1 if b > 0

0 otherwise

Find weights wjk, Wj and thresholds θj, Θ that solve the classification prob-
lem (2p).

𝑥2

𝑥1
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Figure 2: Linearly inseparable classification problem, Question 3.

4. Convolutional neural network. The two patterns shown in Figure 3
are processed by a very simple convolutional network that has one convolu-
tion layer with one single 2 × 2 kernel with ReLU neurons, zero threshold,
and stride (1,1). The resulting feature map is fed into a 2 × 3 max-pooling
layer with stride (1,1). Finally there is a fully connected classification layer
with one output neuron with the Heaviside activation function. Determine
weights of the kernel and weights and thresholds of the classification layer
that allow to classify the two patterns into different classes (2p).

Figure 3: Patterns to be classified by convolutional network. Black squares
= 1, white squares = 0. Question 4.
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5. Lyapunov exponent in deep neural networks. The error in a multi-
layer perceptron propagates backwards according to the rule:

δ
(l−1)
i =

N∑
j

δ
(l)
j w

(l)
ji g
′(b

(l−1)
i ) .

Here g′ = dg/db is the derivative of the activation function. Assume that the
network is trained on random input patterns with independent bits. Further
assume that the weights are random, Gaussian distributed with mean zero
and variance 〈wijwkl〉 = σ2

wδikδjl, and that the thresholds are set to zero.
Here δik is the Kronecker delta, don’t confuse it with the error!

(a) Compute the mean of the error δ
(l−1)
i in the limit N → ∞ neglecting

any correlations between local fields, weights, or errors (0.5p).

(b) Show that the variance of the error in the limit N → ∞ obeys the
recursion

〈(δ(l−1)i )2〉 = Nσ2
w〈(δ

(l)
j )2〉〈[g′(b(l−1)i )]2〉 ,

under the same assumptions as in task (a) (0.5p).

(c) It can be shown that the distribution of the local fields b
(l)
j converges

to a Gaussian with zero mean and a fixed variance σ2
f , for large N and many

layers. Assuming that the distribution has this form, derive an approxima-
tion for the maximal Lyapunov exponent. It is defined as

λ1 = log
∣∣δ(l−1)/δ(l)∣∣.

Explain why σ2
w should be chosen to be on the order N−1 for the network

to learn well. Hint: write 〈[g′(b(l−1)i )]2〉 as an integral expression, you do not
need to evaluate the integral. (1p).
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6. Backpropagation. To train a multi-layer perceptron by gradient de-
scent one needs update formulae for weights and thresholds. Derive these up-
date formulae for sequential training using backpropagation for the netweork
shown in Fig. 4. The weights for the hidden layer are denoted by wjk, and
those for the output layer by W1j. The corresponding thresholds are denoted
by θj and Θ1, and the activation function by g(. . . ). The target values for

input patterns x(µ) is t
(µ)
1 , and the pattern index µ ranges from 1 to p. The

energy function is H = 1
2

∑p
µ=1(t

(µ)
1 −O

(µ)
1 )2 (2p).

Figure 4: Multi-layer perceptron with three input terminals, one hidden
layer, and one output. Question 6.
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