CHALMERS, GOTEBORGS UNIVERSITET

EXAM for
ARTIFICIAL NEURAL NETWORKS

COURSE CODES: FFR 135, FIM 720 GU, PhD

Time: October 25, 2021, at 0830 — 1230
Place: Lindholmen-salar
Teachers: Bernhard Mehlig, 073-420 0988 (mobile)
Anshuman Dubey, 072-190 6469 (mobile)
Allowed material: Mathematics Handbook for Science and Engineering
Not allowed: Any other written material, calculator

Maximum score on this exam: 12 points.

Maximum score for homework problems: 12 points.

To pass the course it is necessary to score at least 5 points on this written exam.
CTH >13.5 passed; >17 grade 4; >21.5 grade 5,

GU >13.5 grade G; > 19.5 grade VG.

1. Convolutional network. Construct a convolutional neural network with one convolution layer
with a single 2 x 2 kernel with ReLLU neurons, stride (1,1), and padding (0,0). This is followed
by a 2 x 3 max-pooling layer with stride (1,1), and a fully connected classification layer with two
output neurons and a signum (sgn) activation function to classify the patterns shown in Figure 1.
Specify the weights of the kernel as well as weights and thresholds of the classification layer. 2p.
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Figure 1: Patterns to be classified by convolutional network. Question 1.
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Figure 2: Bars-and-stripes ensemble, B corresponds to z = 1, and [ to x = 0. Question 2.
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2. Boltzmann machine. Boltzmann machines approximate a binary data distribution Pyata ()
in terms a model distribution, the Boltzmann distribution.

(a) Without hidden units, the Boltzmann distribution reads Pg(s) = Z~ ! exp(—(H) with energy
function H = f% Zl 2 WijSiSj. A measure for how well Pg approximates Pqata is the Kullback-
Leibler divergence

Dxr =Y Paata(®")10g[Paata (@) / Py (s = )] (1)

p=1

In the sum over u, terms with Pdata(w(“))z 0 are set to zero. Show that Dgp, is non-negative, and
that it assumes its global minimum Dgy, = 0 for Pdata(:c(“)) = Pp(s = ac(“)).

(b) Explain why one needs hidden units to approximate the bars-and-stripes distribution, where
Pyata = 1/14 for the patterns shown in Figure 2, and equal to zero otherwise. 2p.

3. Linearly inseparable classification problem. A classification problem is given in Figure 3.
Inputs (*) inside the gray triangle have targets t(*) = 1, inputs outside the triangle t(*) = —1. The

problem can be solved by a perceptron with one hidden layer with three neurons Vj(“) =sgn(—6;+
Zi:l wjsz”)), for j = 1,2,3. The network output is computed as O = Sgn(*@*FZ?:l WjVj(“)).
Find weights w;;, W; and thresholds 6;, © that solve the classification problem. 2p.
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Figure 3: Classification problem. Question 3.



4. Backpropagation. Figure 4 shows a chain of neurons with residual connections. (a) Using
the energy function H = %(t — V(L))27 show that the learning rule for w(*L=1) ig

(L,L-1) = OH

ow " TL=1)

— n(t = V(D)g (BB ED, (2)

Here b is the local field of neuron V), g(b) is its activation function, and ¢'(b) is the derivative
of g with respect to b. (b) Compute the learning rules for w(*=1L=2) and w(k=2L-3), 2p.
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Figure 4: Chain of neurons with residual connections. Question 4.

5. Binary stochastic neurons have the asynchronous update rule

S

, {+1 with probability  p(by,), (3)

" —1  with probability 1 — p(by,).

Here, by, = 3 Win;8j — O, is the local field, and p(b) = Tl—wb' Under certain conditions, Eq. (3)
is equivalent to the following rule. Change s, to s, with probability

1

Prob(sm — S’/m.) = m s

(4a)
with
AH,, =H(...,s0,,...) — H(...\8m,...). (4b)

with energy function H = —% Zij w;js;S; + y . 08
(a) Assuming that the weight matrix is symmetric and that its diagonal elements are zero, show
that:

AH,, = —by (s, — Sm)- (5)
(b) Using Eq. (5), derive Eq. (4) from Eq. (3). 2p.
6. Oja’s rule for a linear neuron with weight vector w, input «, and output y = w'x reads
dw = ny(x — yw). Show that for zero-mean data, () = 0, this learning rule has a steady state w*
equal to the leading normalised eigenvector of the matrix (xx'). The leading eigenvector is the
one corresponding to the largest eigenvalue, and the average (---) is over the data distribution of
inputs x. 2p.
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1. Convolutional network.
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2. Boltzmann machine (a) Start with the KL divergence,

p
Pdata(xu)
— M
DKL - “z; Pdata(x )log PB(S _ :UM) (1)
Pg(s = zt)
= — Piata (") log —————=. 2

Use the inequality log z < z — 1, where the equality holds iff z = 1.

Pgp(s==x Pg(s = x#
— ZPdata ) log P(jata(x'u)> > — Z Piata(z |:—Pd(ata(xu)) — 1] . (3)

> Z PB Pdata( )] ) (4>

Since the probabilities Pg, Py, must sum to 1,

Pg(s = zM)
_ZPdata IOgWZ—[l—l] >0, (5)

with the equality valid if and only if Pg(s = 2#) = Pyaa(z").
(b) Hidden units are required because 3-point correlations must be considered
to differentiate between bars and stripes.



3. Linearly inseparable classification problem The weights and thresh-
olds for the three neurons can be inferred by writing the equations of the three
decision boundaries:

filzy,20) = =21 —22+2=0 (6)
folz1,29) =21+ 022 +2=10 (7)
f3(r1,02) =02y + 29 +2=0. (8)

For each decision boundary, f;(z1,x2) = 0 on the boundary, f;(z1,x2) > 0 on
the side containing the origin, (0,0), and f;(x1,22) < 0 on the other side of
the decision boundary. Since f;(0,0) > 0 for all ¢, the sign of the coefficients
of x1, x4 are correct.

Thus,
-1 -1 —2
w=|1 0],0=|-2 (9)
0 1 —2

Finally, choosing W = [1, 1, 1] and © = 5/2 maps the region enclosed by the
three decision boundaries to +1 but the region outside to —1.



4. Backpropagation
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5. Binary stochastic neuron

(a) Assuming only neuron m was updated, s,, — s/ while the other neurons
remained in the same state: s; — s, = s;Vi # m, let us start by writing the
energy H:

1
H = —5( Z W;;8;8; + Z WimSiSm + Z WiniSmSj + WyymSmSm.)
i#Fm,j#Em i#m Jj#FEm
+ Z 91'81- + Gmsm.

Now we use the symmetery of the weights, w,,; = w;n, and that wy,,, =0,

1
H = —5( E W;jSiSj + 2 E wmjsmsj) + E QZ‘SZ‘ + Qmsm. (10)
i#Em,j#Em J#m i#Fm

Similarly, the updated energy H’ is,

1
H = —5( Z w;j8;i8; + Z WimSiSh, + Z Winj S Sj + Winm Sy Sy )
i#Em,jEm i#m J#Em
+ Z 0;s; + 0,5 .
i#m
where we have used the fact that s; — s, = s;Vi # m. Now simpify using
symmetry of weights and vanishing diagonals,

1
1£m,j£m j£m i£m

Subtracting Eq. (10) from (11),

AH = —(s, = $m) (D Winjsj — Om) = —buu(s],, — ). (12)
J#Fm

where w,,,,, = 0 is used again in the last equality to write ) otm Wy S; —0,, =
Zj WmjS; — 9m = bm
(b) Here one needs to consider different cases and show that Equation (3) in
the exam is always equivalent to Equation (4a) in the exam.
Case 1: s/, =1,s,, = —1
Equation (4a) gives:

B 1 B 1
1+ ePAHm ] e=26bm

P(-1—1)



Equation (3) gives: s/, = 1 with probability

1
Pbm) = 1 4 e=26bm
Case 2: s/ = —1,s,, = —1.
Equation (4a): Use conservation of probability, P(—1 — 1)+ P(—1 — —1) =
l = P(-1—>-1)=1-P(-1— 1),

1 1

P(-1—--1)=1- 1 + e—2Bbm - 1 + 26bm

Equation (3) gives: s/, = —1 with probability

1
1+ e 28m ] 26bm

1—pbn) =1

. Case 3: s/, =—1,s,, =1
Equation (4a) gives:

1 1

Equation (3) gives: s/, = —1 with probability

1

. Case 4: s/, = 1,s,, = 1 Equation (4a): Use conservation of probability,
Pl—--1)+P1l—1)=1= Pl—1)=1-P(1——-1),

1 1

P(1_>1):1_]_+626bm:1+6_25bm

Equation (3) gives: s/, = 1 with probability

1

p(bm) = 1 +€726bm

Thus, we have shown that in all 4 possible cases, the two update rules are
equivalent.
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6. Oja’s rule
(a) We start with the given learning rule:

dw = ny(x — yw),
= n(xy — y*w),

= plzx’w — (w xx w)w,

Where for the first time we have written y = w'x = x"w, while for the

second term: y? = yy = w' zx'w. Now avergaing dw over the data distri-
bution,

(dw) = n[{zz")w — (w' (zz")w)w].
Let C = (zx"), then the above equation reads,
(bw) = n[Cw — (w'Cw)w].

Assume that w = w™ is the normalized maximal eigenvector of the matrix
C. That is, Cw* = \jw* where w*Tw = 1 and ), is the maximal eigenvalue.
We obtain,

(dw) = n[Cw* — (w*T Cw*)w,
= p[hw* — A\ (wTw*)w?],
= nhw" — \w?],
=0.

Thus we have shown that the normalized maximal eigenvector w* of C is a
steady state of the given learning rule.
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