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1. Convolutional network. Construct a convolutional neural network with one convolution layer
with a single 2 × 2 kernel with ReLU neurons, stride (1,1), and padding (0,0). This is followed
by a 2× 3 max-pooling layer with stride (1,1), and a fully connected classification layer with two
output neurons and a signum (sgn) activation function to classify the patterns shown in Figure 1.
Specify the weights of the kernel as well as weights and thresholds of the classification layer. 2p.

Figure 1: Patterns to be classified by convolutional network. Question 1.
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Figure 2: Bars-and-stripes ensemble, � corresponds to x = 1, and � to x = 0. Question 2.

2. Boltzmann machine. Boltzmann machines approximate a binary data distribution Pdata(x)
in terms a model distribution, the Boltzmann distribution.
(a) Without hidden units, the Boltzmann distribution reads PB(s) = Z−1 exp(−βH) with energy
function H = − 1

2

∑
i6=j wijsisj . A measure for how well PB approximates Pdata is the Kullback-

Leibler divergence

DKL =

p∑
µ=1

Pdata(x(µ)) log[Pdata(x(µ))/PB(s = x(µ))] . (1)

In the sum over µ, terms with Pdata(x(µ))= 0 are set to zero. Show that DKL is non-negative, and
that it assumes its global minimum DKL = 0 for Pdata(x(µ)) = PB(s = x(µ)).
(b) Explain why one needs hidden units to approximate the bars-and-stripes distribution, where
Pdata = 1/14 for the patterns shown in Figure 2, and equal to zero otherwise. 2p.

3. Linearly inseparable classification problem. A classification problem is given in Figure 3.
Inputs x(µ) inside the gray triangle have targets t(µ) = 1, inputs outside the triangle t(µ) = −1. The

problem can be solved by a perceptron with one hidden layer with three neurons V
(µ)
j = sgn

(
−θj+∑2

k=1 wjkx
(µ)
k

)
, for j = 1,2,3. The network output is computed as O(µ) = sgn(−Θ+

∑3
j=1WjV

(µ)
j ).

Find weights wjk, Wj and thresholds θj , Θ that solve the classification problem. 2p.

Figure 3: Classification problem. Question 3.
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4. Backpropagation. Figure 4 shows a chain of neurons with residual connections. (a) Using
the energy function H = 1

2 (t− V (L))2, show that the learning rule for w(L,L−1) is

δw(L,L−1) ≡ −η ∂H

∂w(L,L−1)
= η (t− V (L))g′(b(L))V (L−1). (2)

Here b(`) is the local field of neuron V (`), g(b) is its activation function, and g′(b) is the derivative
of g with respect to b. (b) Compute the learning rules for w(L−1,L−2) and w(L−2,L−3). 2p.

Figure 4: Chain of neurons with residual connections. Question 4.

5. Binary stochastic neurons have the asynchronous update rule

s′m =

{
+1 with probability p(bm) ,

−1 with probability 1− p(bm) .
(3)

Here, bm =
∑
j wmjsj−θm is the local field, and p(b) = 1

1+e−2βb . Under certain conditions, Eq. (3)
is equivalent to the following rule. Change sm to s′m with probability

Prob(sm → s′m) =
1

1 + eβ∆Hm
, (4a)

with
∆Hm = H(. . . ,s′m, . . .)−H(. . . ,sm, . . .) . (4b)

with energy function H = − 1
2

∑
ij wijsisj +

∑
i θisi.

(a) Assuming that the weight matrix is symmetric and that its diagonal elements are zero, show
that:

∆Hm = −bm(s′m − sm). (5)

(b) Using Eq. (5), derive Eq. (4) from Eq. (3). 2p.

6. Oja’s rule for a linear neuron with weight vector w, input x, and output y = wTx reads
δw = ηy(x−yw). Show that for zero-mean data, 〈x〉 = 0, this learning rule has a steady state w∗

equal to the leading normalised eigenvector of the matrix 〈xxT〉. The leading eigenvector is the
one corresponding to the largest eigenvalue, and the average 〈· · · 〉 is over the data distribution of
inputs x. 2p.
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2. Boltzmann machine (a) Start with the KL divergence,

DKL =

p∑
µ=1

Pdata(x
µ) log

Pdata(x
µ)

PB(s = xµ)
(1)

= −
p∑

µ=1

Pdata(x
µ) log

PB(s = xµ)

Pdata(xµ)
. (2)

Use the inequality log z ≤ z − 1, where the equality holds iff z = 1.

−
p∑

µ=1

Pdata(x
µ) log

PB(s = xµ)

Pdata(xµ)
≥ −

p∑
µ=1

Pdata(x
µ)

[
PB(s = xµ)

Pdata(xµ)
− 1

]
, (3)

≥ −
p∑

µ=1

[PB(s = xµ)− Pdata(xµ)] , (4)

Since the probabilities PB, Pdata must sum to 1,

−
p∑

µ=1

Pdata(x
µ) log

PB(s = xµ)

Pdata(xµ)
≥ − [1− 1] ≥ 0, (5)

with the equality valid if and only if PB(s = xµ) = Pdata(x
µ).

(b) Hidden units are required because 3-point correlations must be considered
to differentiate between bars and stripes.
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3. Linearly inseparable classification problem The weights and thresh-
olds for the three neurons can be inferred by writing the equations of the three
decision boundaries:

f1(x1, x2) = −x1 − x2 + 2 = 0 (6)

f2(x1, x2) = x1 + 0x2 + 2 = 0 (7)

f3(x1, x2) = 0x1 + x2 + 2 = 0. (8)

For each decision boundary, fi(x1, x2) = 0 on the boundary, fi(x1, x2) > 0 on
the side containing the origin, (0, 0), and fi(x1, x2) < 0 on the other side of
the decision boundary. Since fi(0, 0) > 0 for all i, the sign of the coefficients
of x1, x2 are correct.
Thus,

w =

−1 −1
1 0
0 1

 , θ =

−2
−2
−2

 (9)

Finally, choosing W = [1, 1, 1] and Θ = 5/2 maps the region enclosed by the
three decision boundaries to +1 but the region outside to −1.
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4. Backpropagation
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5. Binary stochastic neuron
(a) Assuming only neuron m was updated, sm → s′m while the other neurons
remained in the same state: si → s′i = si∀i 6= m, let us start by writing the
energy H:

H = −1

2
(
∑

i 6=m,j 6=m

wijsisj +
∑
i 6=m

wimsism +
∑
j 6=m

wmjsmsj + wmmsmsm)

+
∑
i 6=m

θisi + θmsm.

Now we use the symmetery of the weights, wmj = wjm, and that wmm = 0,

H = −1

2
(
∑

i 6=m,j 6=m

wijsisj + 2
∑
j 6=m

wmjsmsj) +
∑
i 6=m

θisi + θmsm. (10)

Similarly, the updated energy H ′ is,

H ′ = −1

2
(
∑

i 6=m,j 6=m

wijsisj +
∑
i 6=m

wimsis
′
m +

∑
j 6=m

wmjs
′
msj + wmms

′
ms
′
m)

+
∑
i 6=m

θisi + θms
′
m.

where we have used the fact that si → s′i = si∀i 6= m. Now simpify using
symmetry of weights and vanishing diagonals,

H ′ = −1

2
(
∑

i 6=m,j 6=m

wijsisj + 2
∑
j 6=m

wmjs
′
msj) +

∑
i 6=m

θisi + θms
′
m. (11)

Subtracting Eq. (10) from (11),

∆H = −(s′m − sm)(
∑
j 6=m

wmjsj − θm) = −bm(s′m − sm). (12)

where wmm = 0 is used again in the last equality to write
∑

j 6=mwmjsj−θm =∑
j wmjsj − θm = bm.

(b) Here one needs to consider different cases and show that Equation (3) in
the exam is always equivalent to Equation (4a) in the exam.
Case 1: s′m = 1, sm = −1
Equation (4a) gives:

P (−1→ 1) =
1

1 + eβ∆Hm
=

1

1 + e−2βbm

.
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Equation (3) gives: s′m = 1 with probability

p(bm) =
1

1 + e−2βbm

.
Case 2: s′m = −1, sm = −1.
Equation (4a): Use conservation of probability, P (−1→ 1)+P (−1→ −1) =
1 =⇒ P (−1→ −1) = 1− P (−1→ 1),

P (−1→ −1) = 1− 1

1 + e−2βbm
=

1

1 + e2βbm

.
Equation (3) gives: s′m = −1 with probability

1− p(bm) = 1− 1

1 + e−2βbm
=

1

1 + e2βbm

. Case 3: s′m = −1, sm = 1
Equation (4a) gives:

P (1→ −1) =
1

1 + eβ∆Hm
=

1

1 + e2βbm

.
Equation (3) gives: s′m = −1 with probability

1− p(bm) =
1

1 + e2βbm

. Case 4: s′m = 1, sm = 1 Equation (4a): Use conservation of probability,
P (1→ −1) + P (1→ 1) = 1 =⇒ P (1→ 1) = 1− P (1→ −1),

P (1→ 1) = 1− 1

1 + e2βbm
=

1

1 + e−2βbm

.
Equation (3) gives: s′m = 1 with probability

p(bm) =
1

1 + e−2βbm

.
Thus, we have shown that in all 4 possible cases, the two update rules are
equivalent.
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6. Oja’s rule
(a) We start with the given learning rule:

δw = ηy(x− yw),

= η(xy − y2w),

= η[xxTw − (wTxxTw)w],

Where for the first time we have written y = wTx = xTw, while for the
second term: y2 = yy = wTxxTw. Now avergaing δw over the data distri-
bution,

〈δw〉 = η[〈xxT〉w − (wT〈xxT〉w)w].

Let C ≡ 〈xxT〉, then the above equation reads,

〈δw〉 = η[Cw − (wTCw)w].

Assume that w = w∗ is the normalized maximal eigenvector of the matrix
C. That is, Cw∗ = λ1w

∗ where w∗Tw = 1 and λ1 is the maximal eigenvalue.
We obtain,

〈δw〉 = η[Cw∗ − (w∗TCw∗)w∗],
= η[λ1w

∗ − λ1(w∗Tw∗)w∗],

= η[λ1w
∗ − λ1w

∗],

= 0.

Thus we have shown that the normalized maximal eigenvector w∗ of C is a
steady state of the given learning rule.
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